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The aim of this chapter is to compare and present available surrogate-based methods suitable
for the assimilation of measurement data of some model response in order to characterize the
model’s input parameters or input fields. The comparison is done through a worked-out example
of assimilating seabed subsidence data for the compressibility field identification of a reservoir.
Throughout the example we provide a general framework for any engineering problem where we
wish to identify input parameters or fields—and by that to reduce the uncertainties of the pre-
dicted response—by assimilating observations of the output of the model. We here provide algo-
rithms of the compared methods and link the examples to on-line accessible MATLAB® codes (see
https://ezander.github.io/ParameterAndFieldIdentification/).

8.1 Introduction
The production of fluids from deep hydrocarbon reservoirs causes a variation of the pore pressure
within the subsurface rock formation. The consequent compaction of the reservoir can be appre-
ciated as deformation on the land or seabed surface. In case of offshore reservoirs, the vertical
displacements of the seafloor can cause induced earthquakes and severe damages, such as in the
well-known literature cases of the Goose Creek field south of Huston or the Groningen field in
the Netherlands [208]. Thus the target is to continuously improve the accuracy of estimation of
the compaction caused by the reservoir development as new information (e.g. measurements) are
available.

Here, a three-dimensional (3D) finite element method (FEM) model [70] is used to describe the
geomechanical behaviour of an offshore reservoir exploited for gas production. The main focus is
at estimating the parameters characterising the model response and the associated uncertainty. In
particular, the uniaxial vertical compressibility is considered for calibration, as it represents the
most influencing parameter controlling the amount of deep compaction.

Different approaches are available to deal with the estimation of compressibility. The simplest
way is by some laboratory tests for characterising the geological formations using well-logging tech-
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niques. Here a different approach is considered, based on the inversion of seabed surface data. The
idea here is to use indirect observations of seafloor subsidence to infer a heterogeneous compress-
ibility field. In particular, a time-lapse bathymetric map of the seabed collected over the reservoir
domain is used. Such method allows a relatively cheap non-destructive monitoring of the reservoir
by updating the compressibility field when new measurements of the subsurface displacements are
available. One way to update our initial uncertainty of the compressibility field represented by some
prior distribution is to use the Bayesian posterior, an updated distribution of the compressibility
field given the measured seabed displacements. This posterior is proportional to the product of the
likelihood and the prior distribution of the compressibility field. The likelihood is the probability of
how likely is it to measure the given values of displacements for a given realisation of the compress-
ibility field. Due to the fact that the likelihood can not be written here with a closed form one rather
uses sampling based procedures. The Metropolis-Hastings random walk can be used as our example
of a sampling technique, which results in a Markov-chain Monte Carlo (MCMC) procedure. One
problem is the slow convergence of Monte Carlo (MC) based methods, necessitating a large number
of MC simulations; for an sufficiently accurate statistic, one is often required to run many hundred
thousands of samples. This means for the evaluation of the likelihood that one needs to compute
for every sample of the compressibility field the displacement field with the help of the FEM model.
This can be highly demanding from a computational point of view in large-scale systems [209].

Another way to update the compressibility field is through an optimised estimator based on the
conditional expectation (see Chapter 4). The task here is to find an estimator—a map from the
measured data to the updated input—that minimises in a mean squared sense the difference between
the prior input parameter and the estimated one computed from the measured data. The Kalman
smoother or its frequently used version the Ensemble Kalman smoother (EnKF) [210] are equivalent
to such approach if we restrict the estimators to be some linear function of the measured data, and
the prior to be Gaussian. As it is shown in the context of the compressibility field identification,
limiting the estimator to linear maps may be a too strong restriction for non-linear problems, and
the assumption of Gaussian prior also limit the method. To improve the performance, non-linear
estimators are also tested here for comparison.

In this study, the computational cost of all the above mentioned methods is kept here in a
manageable scale by approximating the dependence of the FEM model solution, i.e., the seabed
surface vertical displacements, on the compressibility field via a purely mathematical surrogate
or proxy model using the so-called polynomial chaos expansion (PCE). In contrast to the FEM
solver, the PCE can be evaluated with little computational cost. We generate a surrogate model for
two scenarios: (I) for the case when we restrict the compressibility to be constant throughout the
domain, and (II) for a stochastic spatially varying compressibility field input. The dependence of the
seabed displacement on the value of the compressibility is smooth, and thus the PCE approximation
can be computed by a few runs of the deterministic FEM model. However, when soil conditions are
such that, a spatially varying compressibility field has to be assumed, the whole random field of
the compressibility has to be updated. To enable the use of the same framework of the surrogate
modelling when the random input is not a random variable but a random field, we discuss here
separated representations of random fields. In this paper this discretisation of the compressibility
random field is accomplished via a truncated Karhunen-Loève Expansion (KLE). Using the KLE,
the compressibility field can be represented as a function of a finite number of independent random
variables. With such a representation, the surrogate modelling is done in the same way as in the
scalar case, but the dimension of the stochastic problem is higher, which necessitates a higher
number of runs of the deterministic FEM solver for the determination of the proxy model. With
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the help of the PCE surrogate model, classical stochastic inversion techniques can be applied in
an efficient and straight forward manner. Using the PCE framework, the Kalman filter posterior
can also be given in a PCE form, resulting in a completely sample-free inversion method [153].
Further improvements can be achieved by identifying non-linear estimators from the minimisation
problem but still limiting these maps to some finite dimensional space spanned by some given basis
functions. This procedure is described in detail in Chapter 4.

This chapter is organised as follows: Section 8.2 briefly describes the FEM geomechanical model,
that is, the deterministic solver and its reformulation using a probabilistic framework. The PCE
spectral representation of the model response, that is, the surrogate or proxy model, is explained
in Section 8.3. Here, an orthogonal projection is used for the computation of a surrogate model. In
the following Section 8.4, the separated representation of a random field is explained through the
KLE and the POD theories. Finally, the different data assimilation methods, that is the MCMC,
the PCE-based Kalman filter, and the nonlinear filters are explained and compared in Section 8.5
for the reservoir compressibility field identification. We conclude the work in Section 8.6, and also
discuss an actual ongoing research outlook, and possibilities of further improvements.

8.2 Numerical modelling of seabed displacement
Modelling the geomechanical behaviour of a producing reservoir aims at computing the stress and
displacements fields generated by pore-pressure changes in space and time due to reservoir activities
such as fluid extraction from the subsurface. In this section, the mathematical formulation of the
problem is provided, along with its extension to the stochastic dimension. This extension enables
us to put forward the uncertainties of the model due to our lack of knowledge of the exact input.

8.2.1 The deterministic computation of seabed displacements
The geomechanical analysis of a producing gas reservoir is carried out here by solving the governing
partial differential equations of poro-elasticity with the aid of a FEM model. A one-way coupling
approach is implemented, assuming that the mechanics-to-fluid coupling is negligibly weak. The
pore pressure increment in space and time is first solved for the fluid flow dynamics, and then used
as an external source to solve the mechanical equilibrium equations. Here, we just briefly recall
the basic formulation and the most important model features. Interested readers are directed to
Appendix .1 for some more details, and to [70] for the whole model description. The equilibrium
equations governing the phenomenon of consolidations and the boundary conditions read

∇ · σ′ − α∇p = ρg + b in D,
u = u0 on ΓD,

σ · n = t on ΓN , ΓN ∪ ΓD = Γ,
(8.1)

with∇ the Nabla operator, σ′ and σ the effective and the total stress tensors, α the Biot’s coefficient,
p the pore pressure, ρ the fluid density, g the gravity acceleration, b the external body forces, and
t the total force per unit surface on the Neumann boundary ΓN . By deriving the weak formulation
of the problem and applying a spatial discretisation of the displacement and pressure fields (see
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derivation and the equation in a more detailed form in Appendix .1), we get a nonlinear system of
equations

A(a,p) = Π(a)− f(p) = 0, (8.2)
with the nodal displacements a and the nodal pressure values p. This equation can be solved for
the unknown a with the help of a Newton solver by initiating a solution vector a0 and solving in a
sequential manner the linear system of equations

−KT∆an = A(an,p) (8.3)

for the increment of nodal displacements ∆a, and computing the new solution vector an+1 = an +
∆an, until Equation (8.2) is satisfied with a residual error whose norm is within a certain threshold.
In Equation (8.3) KT is the tangent stiffness matrix, the Jacobian of Π. The important thing here
is that KT is scaled with the inverse of the oedometric compressibility cM (see Equation (.148) in
Appendix .1). According to previous experiments, the compressibility can be described by a power
law relation

cM (σz) = cM0

(
σ′z
f0

)−λ
, (8.4)

where σ′z is the vertical effective stress, f0 is a fixed value of stress enabling a dimensionless form,
and λ and cM0 are material coefficients estimated via measurements, for example, by a radioactive
marker technique (RMT). The problem of the actual analysis is that no in-situ measurements for
λ and cM0 were available. However, measurements were available for similar case studies, which
allowed a pre-calibration of the cM model parameters, that is cM0 = 1.0044 · 10−2 MPa−1 and λ =
1.1347 with f0 = 1 MPa. Due to the strong compartmentalisation of the analysed fault formation,
the compressibility may vary from block to block of the reservoir. In due course, a horizontally
varying function fcM (x̂, ŷ)1 is introduced to scale the compressibility cM 2, so Equation (8.4) modifies
to

cM (x̂, ŷ, σz) = fcM (x̂, ŷ)cM0

(
σ′z
f0

)−λ
. (8.5)

To conclude, for a prediction of the subsidence, our task is to solve for the nodal displacements
a the nonlinear system of equations (8.2), where the Jacobian depends on the actual value of the
stress state through the compressibility parameter cM . Figure 8.2 shows a visualisation of this task,
in the case of knowing the exact value of the scaling parameter fcM . The figure shows that given a
specific pressure change, the FEM code solves for the nodal displacements a, which can be mapped
to the displacement field u = [ux̂, uŷ, uẑ]T . This can be further mapped to the seabed subsidence
evaluated at all ny points where measurements are available. To be consistent with Chapter 4, let
us note that this forward model is a concrete example of the abstract solution operator G, that is,

y = G(fcM (x̂, ŷ)) [y]i := uẑ(x̂i, ŷi) i = 1..ny. (8.6)

In our numerical examples, we used the mesh shown in panel (A) of Figure 8.1 with n = 320, 901
mesh nodes. The ny = 60 assimilation points — where measurements are available — are shown
in panels (B) and (D) of the figure. The coordinates of assimilation points were chosen such, that

1We use x̂, ŷ and ẑ letters for the spatial variables to distinguish it from the measurable response y and the
measurement z.

2Please note, it would make sense to introduce another scaling factor, scaling the exponent λ, but for simplicity,
for now we stick to the problem of one uncertain field.
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Figure 8.1: (A) Axonometric view of the FEM grid used for the geomechanical simulations, (B)
zoom of the central portion of the domain with location of the ny = 60 data assimilation points on
the seabed, (C) 3D section of (A) where the producing layers are highlighted, and (D) discretisation
of the compressibility field by a 14x10 square cells with location of the 60-data assimilation points.

they are located at the center points of the FEM elements. The subsurface displacements of the
reservoir are mainly influenced by the central portion of the spatial domain shown in panel (D).
Our goal was to identify the compressibility field in this central portion Ds of the domain.

8.2.2 Modified probabilistic formulation
Due to a lack of accurate information on the scaling factor fcM , we use the available seabed data of
vertical displacements y for calibrating this scaling factor in order to have a more accurate prognosis
for the seabed subsidence in the future. In other words, the parameter fcM should be inferred from
measurement data on the history of seabed subsidence y. Unfortunately, from a given measured
subsidence zm we can not give an explicit form of the parameter fcM . That would mean to invert
the deterministic solver shown in Figure 8.2, or to be more exact, the operator G in Equation (8.6).

A Worked-out Example of Parameter and Field Identification Methods



160 Bayesian Inverse Problems: Fundamentals and Engineering Applications

y = G(fcM )

Scaling factor of compressibility fcM (x̂, ŷ)

Deterministic solver:
Solve A(fcM ,a(fcM ), p) = 0 for a

Nodal displacements: a ∈ R3n

Map to the measurable subsurface displacements:
1) Displacement fields: u(x̂, ŷ, ẑ) = Nu(x̂, ŷ, ẑ)a
2) Vertical displacements at locations where displacements can be measured:
[y]i = [ 0 0 1 ]u(x̂i, ŷi, ẑi) i = 1 . . . ny

Prognosis of subsurface displacement at assimilation points: y ∈ Rny

Figure 8.2: Schematic flowchart of the deterministic solver, the computation of subsidence, and the
measurable expression.

G is typically not invertible, and hence the inverse problem is unfortunately an ill-posed one, for
example, because there is no solution or no unique solution. Instead of releasing this problem by
some rather ad hoc regularisation method, we follow a different path, namely, we put the whole
problem in a probabilistic setting, by handling the unknown parameter fcM as a random field,
that is

FcM (x̂, ŷ, ω) : Ds × Ω→ R, (8.7)

where ω3 is an event or a realisation from the space of all possible outcomes Ω, and Ds is the crucial
part of the spatial domain shown in the (D) panel of Figure 8.14. To represent our knowledge about
the possible values of FcM , we assign to it some a priori distribution function πF (fcM ), and use the
Bayesian inversion to update this a priori distribution using the measurement data zm.

First, let us choose the a priori distribution function of the scaling factor. This should be based
on some professional geotechnical expertise. Careful attention has to be paid so that we do not
modify the problem in such a way that we ruin the essential properties of the physics. In our case,
it is important that the matrix C stays positive definite, as naturally a negative compressibility
would not make any sense. To keep this important property, we use the semi-bounded Lognormal
distribution with support IF = (0,+∞). The fact that λ and cM0 were measured from similar case

3One can think of ω as an abstract notation showing random nature (see more in Chapter 4).
4Furthermore we assign capital letters for the random variables and random fields, and small letters for a realisation

of them. For example FcM is a random variable and one realisation of it is FcM (ωi) = fcM,i.
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Figure 8.3: Lognormal prior probability distribution of fcm.

studies would suggest a constant expected value of the scaling factor equal to one. Nevertheless, due
to the experienced subsidence being much higher then what the field experts expected, we assumed
a higher expected value of 5.5, that is

E[FcM ] =
∫
IF

fcMπF (fcM ) dfcM = 5.5, (8.8)

and a variance chosen in such a way that with 99.5% probability fcM < 10. Accordingly, we define
the prior distribution of the scaling factor to be

FcM ∼ lnN (µ, σ2Σ), µ(x̂, ŷ) = 1.562, σ(x̂, ŷ) = 0.534. (8.9)

We assumed a constant variance and mean over the spatial domain. Σ is the correlation function of
the random field. The marginal distribution at all spatial points is shown in Figure 8.3. We consider
two different scenarios:

(I) The first, and simpler, scenario assumes that the compressibility field is spatially constant
throughout the spatial domain. In such a case, the random field is fully correlated, which means
that for any two points with coordinates (x̂, ŷ) and (x̂′, ŷ′), the correlation is one

Σ(x̂, ŷ, x̂′, ŷ′) = 1; (8.10)

and thus the scaling factor can be described by one scalar random variable.

(II) The second scenario allows the update to identify a spatially varying compressibility field.
Although in this way the complexity of the model is higher, the strong compartmentalisation
suggests that the compressibility may not be constant throughout the spatial domain. We assume
that at the analysed height the compressibility field is smoothed out and thus its values at
different spatial points are strongly correlated, and that this correlation depends only on the
distance d in between the points. According to geotechnical expertise, the dependence can be

A Worked-out Example of Parameter and Field Identification Methods
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described by the Matérn covariance function5 Cνc(d/lc)

Σ(x̂, ŷ, x̂′, ŷ′) = Cνc(d/lc)5, νc = 2, lc = 4000m, (8.12)

where νc is a non-negative parameter of the covariance function—influencing the smoothness of
the field realisations, d is the distance

√
(x̂− x̂′)2 + (ŷ − ŷ′)2, and lc is the correlation length.

The smaller the correlation length is, the faster the covariance values decay with the distance
and the wilder the realisations of the field can get.

From a mathematical point of view, it is much nicer to work with variables, which are in a vector
space (so that any linear combination of the variable is also in the same space). For this purpose,
we rather represent the field FcM as a function of some underlying Gaussian random field. The map
from the Gaussian to the Lognormal random field is straightforward:

FcM (Θ(x̂, ŷ, ω)) = eµ+σΘ Θ ∼ N (0,Σ), (8.13)

where Θ : Ds × Ω → R is the underlying Gaussian field. To further simplify the description of the
stochastic input, we write the Gaussian field as a function of some random variables Q

Θ(x̂, ŷ, ω) = F(Q(ω)). (8.14)

This task is trivial for a spatially constant field, that is for the problem description (I). In this
scenario, the field Θ is fully correlated and thus independent of the spatial variables x̂ and ŷ, and
accordingly can be written as a standard Gaussian random variable, so Q is just one standard
Gaussian random variable Q, and F is simply the identity map

Θ(x̂, ŷ, ω) = F(Q) = Q(ω) Q ∼ N (0, 1). (8.15)

In the case of a spatially varying field, the task is a bit more complicated. Fortunately, with the help
of the Karhunen-Loève Expansion (KLE, see Section 8.4) we can represent any ‘decent’ stochastic
field as a linear combination of the product of some square integrable spatial eigenfunctions ri(x̂, ŷ)
and Gaussian independent random variables Xi in the form

Θ(x̂, ŷ, ω) ≈ µΘ(x̂, ŷ) +
L∑
i=1

σiri(x̂, ŷ)Xi(ω), (8.16)

where µΘ is the mean of the field Θ, which is due to Equation (8.13) is constant zero. For the
properties and the numerical computation of the KLE, see Section 8.4. Setting these Xi standard
Gaussian random variables to be Q, we have the desired set of input random variables and the
corresponding F map

F(Q) = µΘ(x̂, ŷ) +
L∑
i=1

σiri(x̂, ŷ)Qi(ω), Q ∼ N (0, IL), (8.17)

5The Matérn covariance function reads

Cνc (d/lc) = σ2 21−νc

Γ(νc)

(
√

2νc
d

`c

)νc
Kνc

(
√

2νc
d

`c

)
(8.11)

where Γ is the gamma function, and Kνc is the modified Bessel function of the second kind.
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with IL being the identity matrix of size L × L. Later, in the update process, instead of directly
updating the FcM field, we update first these random variables Q, and then use the above defined
maps to compute the updated scaling factor. Such a general framework enables the algorithms to
be used not only for the task to update a field input, but also for the identification of a set of
uncertain parameters. In such a case, the Q parameters can directly be the uncertain parameters
if they are Gaussian.

With the new probabilistic description of the scaling factor

FcM (x̂, ŷ, ω) = eµ+σF(Q(ω)) (8.18)

the modified formulation of the compressibility in Equation (8.5) reads

CM (σ′z, x̂, ŷ, ω) = FcM (x̂, ŷ, ω) cM0

(
σ′z
f0

)−λ
. (8.19)

Within the probabilistic framework, the nonlinear operator given in Equation (8.2) becomes a
stochastic operator, as it depends on the actual realisation of the random field FcM ,

As(FcM (x̂, ŷ, ω) ,a (FcM (x̂, ŷ, ω)) ,p) = 0, (8.20)

or in a shorter form
As(ω,a(ω),p) = 0. (8.21)

Naturally, in this way the nodal displacements a and accordingly, the displacement field Uz =
Uz(x̂, ŷ, ω) are also random expressions, depending on the actual realisation ω of the random vector
Q. For the assimilation of the compressibility field, we use measurements of the subsurface displace-
ments Y = Y(Q(ω)), which is also a random vector. This prediction of the displacements computed
by the FEM solver has to be compared with the measured data zm. However, the mathematical
model is just a simplification of reality, which means that the true displacement field can differ from
the predicted value, even if we know the exact compressibility field. Furthermore, our measurements
are usually poisoned by some measurement errors. Supposing an additive measurement noise and
modelling error, the measurement can be written as

Z(ω) = Y(ω) + EFEM (ω) + E(ω), (8.22)

where EFEM and E are the random vectors of the modelling error of the FEM code and of the
measurement noise, respectively. As for this chapter, we do not use real measurements, but virtual
ones that we generate with the FEM model, we can ignore the modelling error, so the measurement
model reads

Z = Y + E. (8.23)

In our examples, we suppose that the measurement error is a mean-free Gaussian random vector

E ∼ N (0,CE), [CE ]jj = σ2
ε,j = (0.15 · [zm]j)2, πE(ε) =

60∏
j=1

1√
2πσ2

ε,j

e
−

ε2
j

2σ2
ε,j , (8.24)

with CE ∈ R60×60 the measurement error covariance matrix, a diagonal matrix so that the measure-
ment errors at the different locations are independent of each other. σε,j is the standard deviation of
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the measurement error at the jth assimilation point and is modelled proportional to the measured
value of the displacements zm. πE is the probability density function of the measurement noise
model, and [ε]j = εj is a realisation of the measurement error at the jth assimilation node.

For real-life applications, a modelling error is advisable to be also included in the measurement
model. This error is in general a correlated random field, and its properties are not known in general.
For such problems, a different error model can be included. Then the assimilation will include the
identification of these parameters of the modelling error. If we rather suppose that the modelling
error is just a white noise, then it can be handled together with the measurement noise model. The
danger of ignoring a systematic modelling error can result in an update process that compensates
a missed-out term by an improper shift of the uncertain input parameter(s).

8.3 Surrogate modelling
To mitigate the high computational cost of the different update procedures, it is advantageous
to build a surrogate model which mimics the expensive FEM solver with an approximate, but
computationally cheap, mathematical model. The surrogate model allows a fast evaluation of the
displacements y for a specific realisation q of Q, or indirectly for a specific realisation of the scaling
factor FcM . This is schematically shown in Figure 8.4. Depending on the representation of the
surrogate, an evaluation of statistics and sensitivities is often also very cheap. In the following, we
describe the so-called Polynomial Chaos Expansion (PCE) for the surrogate modelling.

For mathematical convenience, we represent all random expressions with some fixed ‘reference
random variables’. We choose these variables to be a set of uncorrelated Gaussian random variables
{Ξi}Si=1 collected in a random vector Ξ ∼ N (0, I) with distribution πΞ given by

πΞ(ξ) =
S∏
j=1

1√
2π
e−

ξ2
j
2 (8.25)

As the variables Ξi are Gaussian and uncorrelated, they are independent as well. One can think of
Ξ as an orthogonal coordinate system, such as the local, reference Cartesian coordinate system in the
FEM procedure, only that this one is in the parametric and not in the spatial domain. For different
types of distributions of the uncertain parameters or fields, we can define functions that map
the reference random variables Ξ—also called the germ—to the uncertain parameters or fields of
interest. In our example, the parameter Q is a set of independent random variables and thus it could
directly be the germ. The reason to introduce the parameter Q besides the germ (see Figure 8.4) is
because we will need to modify this parameter in the calibration process, by obtaining an updated
map from the germ to the parameter Q. A practical and efficient approach is to make a surrogate of
y = G (fcM (Q (ξ))) in the form of a linear combination of some multivariate stochastic polynomials
{Φi(ξ1, ξ2, · · · ξs)}M−1

i=0 . Also for mathematical convenience, we choose orthogonal polynomials with
respect to the Gaussian density, satisfying the orthogonality condition

E[Φi(ξ)Φj(ξ)] =
∫
Rn

Φi(ξ)Φj(ξ)πΞ(ξ)dξ = γiδij , (8.26)
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where δij is the Kronecker delta, and γi is the squared norm of the polynomials, that is

γi = E[Φi(ξ)Φi(ξ)]. (8.27)

The polynomials orthogonal with respect to the Gaussian density πΞ are the so-called Hermite
polynomials6. Then the measurable displacement y can be written as a linear combination of these
polynomials Φi with coefficients υi

yh =
∑
i

υiΦi = ΥΦM , (8.28)

where in the last expression we have collected the polynomials in a vector ΦM = [Φ0,Φ1, · · ·ΦM−1]T
and the PCE coefficients of the vertical displacement υi ∈ Rny in a matrix Υ ∈ Rny×M , whose jth

row corresponds to the PCE coefficients of the displacement at the jth assimilation point and its
ith column corresponds to the ith stochastic basis function.

Setting up the surrogate model consists of two steps:

1. Represent the input random field fCM as a function of the reference random variable ξ (see
Figure (8.4)).

2. Determine the surrogate model by computing the coefficients υi of the expansion of yh in
Equation (8.28).

For the first task, we have already represented (Equation (8.18)) the field FcM with a set of L (in the
first scenario L = 1) Gaussian random variables Q. Now we only need to express Q in the reference
coordinate system, a set of independent standard Gaussian random variables. As in our example,
Q is already a set of independent random variables, for its description we need S = L reference
random variables and because the elements of Q have already standard Gaussian distribution, the
relationship can be given now by simply providing the identity map

Q = I(Ξ) = Ξ. (8.29)

The second task, the computation of the coefficients υi can be done by different approaches,
which are usually classified into so-called intrusive and non-intrusive methods. Intrusive methods
can sometimes lead to more stable approximations, but may need modifications of the deterministic
solver and are thus harder to implement. Non-intrusive methods use the deterministic solver as it is,
doing only pointwise evaluations. Interested readers are directed to [179] for a detailed description of
these methods. Here, we choose a relatively straightforward non-intrusive approach, the orthogonal
projection, which will be described in the next section.

8.3.1 Computation of the surrogate by orthogonal projection
The target here is to find a best approximation of y(ξ) in the form of a linear combination of the
stochastic polynomials Φi(ξ), where ‘best’ is meant in the least squares sense. Therefore, we want

6For non-Gaussian random vector Q it is also possible to use a set of non-Gaussian reference random variables,
and thus the orthogonal polynomials are not Hermite polynomials but ones that are orthogonal with respect to
the probability density of these reference variables [192], in this case the approximation is termed ‘Generalized
Polynomial Chaos Expansion’ (gPCE). Because some of the later described update methods are restrained to the
update of Gaussian random variables we require here the input parameter Q to be Gaussian.

A Worked-out Example of Parameter and Field Identification Methods
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q

θ(x̂, ŷ)

fcM (x̂, ŷ)

Deterministic solver y = G(fcM ) Surrogate model

ξ

y yh = ΥΦ(ξ)

fcM = eµ+σθ

θ = F(q)
q = I(ξ)

approximates

Figure 8.4: Replacing the deterministic solver by a PCE surrogate model: the dashed line shows
the path without a surrogate model and the continuous line shows the one when a surrogate model
is used. fcM is the random field input, θ is the underlying Gaussian field, q is a Gaussian random
vector representing the field θ, ξ is the germ of the surrogate, a set of independent standard Gaussian
random variables serving as the reference coordinate system of the stochastic dimension, y is the
measurable response, and yh is its surrogate approximation.

to choose the coefficients such that the expression

E
[
ε2
h

]
= E

[
(y− yh)2

]
=
∫
Rs

(y(ξ)− yh(ξ))2
πΞ(ξ) dξ (8.30)

is minimised. It is derived in Appendix .4 that the minimisation problem leads to the following
equation for the coefficients

υi = 1
γi
E [yΦi] = 1

γi

∫
Rs

y(ξ)Φi(ξ)πΞ(ξ) dξ. (8.31)

Unfortunately, this integral expression can not be computed in closed form, as the dependence of y
on ξ is through the simulation and cannot be explicitly given. However, since we can compute the
displacement y at specific values of ξ by the FEM solver, the integral expression can be evaluated
numerically by the quadrature rule

υi ≈
1
γi

N∑
j=1

wjy(ξj)Φi(ξj) (8.32)

where N is the number of integration points and ξj and wj are the points and weights of the inte-
gration rule. For an overview of the integration rules for stochastic and high-dimensional problems,
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see example [179]. For the reservoir problem here, we used mostly sparse Smolyak grids with Gauss-
Hermite quadrature rules. To sum up, the algorithm to compute the coefficients of the surrogate
model of y is as follows:

Algorithm 11: Computation of the gPCE coefficients by orthogonal projection

1. Define the prior distribution of the input field FcM (x̂, ŷ) and determine the map from
the set of independent reference random variables ξ = [ξ1, ξ2, · · · , ξL]T to fcM .

2. Specify the orthogonal basis polynomials {Φi}M−1
i=0 used for the expansion (see Ap-

pendix .2.1).

3. Compute the squared norms γi of the basis polynomials (see Appendix .2.2 for the norms
of univariate polynomials and Appendix .2.1 for multivariate polynomials).

4. Get the integration points ξj and weights wj for all j = 1 . . . N from a suitable integration
rule.

5. Map the integration points ξj to the uncertain field fcM,j(x̂, ŷ) by the map defined in
point 1.

6. Compute the measurable response y by the deterministic solver with the field fcM,j(x̂, ŷ)
for all j = 1 . . . N .

7. Evaluate all basis functions {Φi}(M−1)
i=0 at all the integration points {ξj}Nj=1.

8. Compute the gPCE coefficients from υi ≈ 1
γi

∑N
j=1 wjy(ξj)Φi(ξj) and collect them in

the matrix Υ = [υ0, . . . ,υM−1].

The gPCE of y then reads yh(ξ) = ΥΦM (ξ), where ΦM is a vector collecting the ba-
sis functions defined in point 2, or the same in function of the Q input parameter using
Equation (8.29):

yh(ξ) = ΥΦM (I−1(q)) (8.33)

Example 1: Surrogate model of seabed displacement by orthogonal projection. Here,
we present an example for determining a PCE surrogate model for one nodal displacement computed
by orthogonal projection. The example is developed for the univariate case, that is, for the problem
where we assume a homogeneous scaling factor. (See Examples 3 and 4 when the input is a random
field.)

1. Define the prior distribution of the random field FcM and determine the map from
the germ to FcM .
The prior distribution of FcM (x̂, ŷ, ω) is defined in Equation (8.9). The variables θ and Q and
the maps in between are defined in Equations (8.15), (8.18), and (8.29). As is shown there, for

A Worked-out Example of Parameter and Field Identification Methods
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the homogeneous scenario, q = ξ is just one standard Gaussian random variable. The map from
the germ to the input field is defined by

fcM (ξ) = eµ+σξ = e1.562+0.534ξ. (8.34)

2. Specify the orthogonal basis polynomials used for the expansion of y.
As we have only one variable ξ, we use univariate polynomials, and as we have Gaussian germ,
we use the Hermite ones. We choose here a polynomial basis of maximum degree three and
generate the polynomials using the three-term recurrence relation (see Appendix .2.1). The
vector of PCE basis functions is then

Φ4 =


H0(ξ)
H1(ξ)
H2(ξ)
H3(ξ)

 =


1
ξ

ξ2 − 1
ξ3 − 3ξ

 . (8.35)

3. Compute the squared norms hi of the polynomials.
The norms of the polynomials can be also computed easily from the sequences of the three-term
recurrence relation (see Appendix .2.2). For our Hermite polynomials the norms read

γi = hi = i! γ0 = h0 = 1 γ1 = h1 = 1 γ2 = h2 = 2 γ3 = h3 = 6. (8.36)

4. Get the integration points and weights.
We approximate the integral (8.31) by numerical integration. As the variable ξ is Gaussian, we
use the Gauss-Hermite quadrature rules [71]. The integration points and the weights can be
computed from an eigenvector problem given in Appendix .2.3. If we assume that yk(ξ) can be
well approximated by polynomials of maximum degree d = 3, then the yk(ξ)Φi(ξ) term can be
approximated by a polynomial of maximum degree 2d = 6. Polynomials of maximum degree
2N − 1 can be integrated exactly by an N point Gauss integration rule. Accordingly, we choose
the number of points such that 2N − 1 is bigger or equal to 2d = 6, that is, we go with a four-
point rule N = d+ 1 = 4, corresponding to the roots of the Φ4(ξ) polynomial. The integration
points and weights for the four-point Gauss-Hermite rule are

ξ1 = −2.3344 ξ2 = −0.7420 ξ3 = 0.7420 ξ4 = 2.3344,
w1 = 0.0459 w2 = 0.4541 w3 = 0.4541 w4 = 0.0459. (8.37)

5. Map the integration points ξj to fcM,j.
The ξj integration points are mapped to fcM,j(x̂, ŷ) by Equation (8.34)

fcM,1 = 1.3694 fcM,2 = 3.2073 fcM,3 = 7.0885 fcM,4 = 16.6019. (8.38)

6. Compute the measurable response.
This step is the computationally expensive one. Now we have four different homogeneous scaling
factors. We have to call the deterministic solver N = 4 times to get the nodal displacements for
the different scaling values. Here, we only show the results for one specific nodal displacement
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(k = 25, which corresponds to the node in the third row from the bottom and the fifth node
from the left of the nodes shown by the blue dots in the D panel of Figure 8.1).

yk(ξ1) = −0.0015 yk(ξ2) = −0.0038 yk(ξ3) = −0.0087 yk(ξ4) = −0.0206. (8.39)

The numbers are in meters and the negative sign means a downward displacement.

7. Evaluate the basis functions at all integration points.
The basis functions evaluated at the integration points are

Φ4(ξ1) =


1.0000
−2.3344
4.4495
−5.7181

Φ4(ξ2) =


1.0000
−0.7420
−0.4495
1.8174

Φ4(ξ3) =


1.0000
0.7420
−0.4495
−1.8174

Φ4(ξ4) =


1.0000
2.3344
4.4495
5.7181

 . (8.40)

8. Compute the PCE coefficients.
The PCE coefficients of the 25th node which are written in the 25th row of the Υ coefficient
matrix

Υ =


...

...
...

...
−0.0067 −0.0037 −0.0010 −0.0002

...
...

...
...

 . (8.41)

As the response surface – the dependence of the y displacement on ξ – is a smooth function,
the absolute values of the PCE coefficients decay fast.

8.3.2 Computation of statistics
Statistics like the mean and the variance of the displacements can be computed cheaply from the
surrogate model, due to the advantageous orthogonality property of the basis. The mean of the
displacements Y, for example, can be computed directly from the PCE coefficients corresponding
to the zeroth polynomial Φ0 = 1 as

E[Y] ≈ E[Yh] = E

[
M−1∑
i=0

υiΦi(Ξ)
]

=
M−1∑
i=0

υiE[Φi(Ξ)] = υ0, (8.42)

because of E[Φ0] = 1 and E[Φi6=0] = 0 due to the orthogonality condition (8.26). The autocovariance
of Y can be computed from the rest of the coefficients by

cov[Y,Y] ≈ cov[Yh,yh] = E

(M−1∑
i=0

υiΦi(Ξ)− E[yh]
)(

M−1∑
i=0

υiΦi(Ξ)− E[yh]
)T

=
M−1∑
i=1

υiυ
T
i γi, (8.43)

A Worked-out Example of Parameter and Field Identification Methods
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again because of the orthogonality condition (8.26). Suppose, the random variable Q is also given
with a PCE form in the same PCE basis

Qh =
M−1∑
i=0

Q̂iΦi(Ξ). (8.44)

Then the covariance cov[Q,Y] can be approximated by

cov[Qh,Yh] =
M−1∑
i=1

q̂iυTi γi (8.45)

Example 2: Statistics from PCE expansion. In this example, we show how to compute mean
and variance of the kth nodal displacement resulting from the prior uncertainties of the scaling fac-
tor. We use the PCE coefficients derived in Example 1 for the computation. The mean is computed
from Equation (8.42), which is directly the zeroth coefficient

E(yk) = υk,0 = υ0k = −0.0067. (8.46)

The variance of the displacement can be computed from Equation (8.43), from the square of the
rest of the coefficients

var[yh,25, yh,25] =
3∑
i=1

υ2
25,ihi = (−0.0037)2 ·1+(−0.0010)2 ·2+(−0.0002)2 ·6 = 1.5678e−05. (8.47)

The displacement at the 25th assimilation point can also be computed at any value of the fcM scaling
factor. One computation of the nodal displacements take hours, but evaluation of the surrogate
model doesn’t even take seconds. The PCE of y25 is

yh,25(ξ) =
[
−0.0067 −0.0037 −0.0010 −0.0002

] 
1
ξ

ξ2 − 1
ξ3 − 3ξ

 . (8.48)

For example, when fcM = 4.7681, the nodal displacement can be computed from

ξ = ln(4.7681)− µ
σ

= 0, (8.49)

yh,k(0) =
[
−0.0067 −0.0037 −0.0010 −0.0002

] 
1
0
−1
0

 = −0.0057. (8.50)

8.3.3 Validating surrogate models
Often, prior information on the smoothness of the response y as a function of ξ is not available, which
makes it difficult to come up with a good idea of which PCE basis one should use, and by which
method the coefficients should be computed. For this reason, it is always recommended to carry
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Table 8.1: Validation of different degree surrogate models with the normed relative error (values
are in percentage) computed on Nv = 10 quasi-Monte Carlo validation points.

PCE degree d 1 2 3 4 5
Number of solver calls N 2 3 4 5 6
Normed rel. error ‖εrh‖2 115.48 26.32 5.21 1.47 1.16

out some kind of validation of the computed PCE approximation. Here, we use a set of validation
points {ξj}Nvj=1 sampled from the distribution of Ξ using a quasi-random sampling method, in this
case the Halton-sequence. First, the responses are computed by the FEM solver and then the error
is evaluated at these validation points. The relative averaged squared error in the kth spatial node

ε2rh,k =
∑Nv
j=1 ([y(ξj)]k − [yh(ξj)]k)2∑Nv

j=1 ([y(ξj)]k)2 , (8.51)

is then evaluated and compared to decide which surrogate model to use for the inverse method.
Table 8.1 shows the ‖εrh‖2 normed relative errors with proxy models of different degree polynomial
bases. In the later identification process, we used polynomial degree five, which gives a sufficiently
accurate surrogate model.

8.4 Efficient representation of random fields
Random fields are a collection of infinitely many (correlated) random variables; one at every point
of the field. Unfortunately, it is practically infeasible to work with infinitely many variables. We
can handle, however, the fields with their so-called separated representations which represent the
field as a sum of products of (often uncorrelated) random variables and pure spatial functions. Two
prominent examples, the so-called Karhunen-Loéve Expansion (KLE) and the proper orthogonal
decomposition (POD) shall be examined in the following.

8.4.1 Karhunen-Loève Expansion (KLE)
When the soil conditions are treated as spatially varying, the scaling factor becomes a random field.
As that consists of uncountably many random variables – one at each position (x̂, ŷ) – we cannot
use it directly in a computation. However, given certain smoothness of the random field, it can
be represented as a countable series of products of spatial functions times scalar random variables
with decreasing magnitude, such that this series can be truncated after finitely many terms with
diminishing error. Such a representation can be given using the Karhunen-Loève Expansion (KLE),
which expands the Gaussian stochastic field into a series

Θ(x̂, ŷ, ω) = µΘ(x̂, ŷ) +
∞∑
i=1

σiri(x̂, ŷ)Xi(ω)︸ ︷︷ ︸
Θ̃

, (8.52)

A Worked-out Example of Parameter and Field Identification Methods
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where the ri(x̂, ŷ) are orthogonal, square integrable spatial functions, the Xi(ω) are independent
standard Gaussian random variables, and the σi are scaling factors. µΘ is the mean field and Θ̃ is
the fluctuating part of the stochastic field.

The KLE spatial functions ri have a structure which is typical for the specific random field and
are optimal for the representation of the field in the sense that the truncated expansion minimizes
the mean squared error and maximizes the captured variance. It is shown in Appendix .3 that
when the problem is discretised in the spatial domain, and the functions ri are written as a linear
combination

ri(x̂, ŷ) ≈ rh,i(x̂, ŷ) =
n∑
j=1

Ψj(x̂, ŷ)vji = ΨV (8.53)

of some n given spatial basis functions that fulfill the Kronecker delta property Ψj(x̂k, ŷl) = δkl
(e.g. the FEM nodal basis functions) then these optimal spatial functions can be found by solving
the generalized eigenvalue problem (see Equation (.186) in Appendix .3)

GCGvi = λi︸︷︷︸
σ2
i

Gvi. (8.54)

Here, G is the Gramian matrix of the basis functions (also often called the mass matrix), C is the
covariance matrix, and λi and vi are the generalized eigenvalues and eigenvectors (see Appendix .3).
Once Equation (8.54) is solved for λi and vi, the Gaussian Θ field can be approximated by

Θ(x̂, ŷ, ω) ≈ µΘ +
L∑
i=1

σiri(x̂, ŷ)Xi(ω) = µΘ +
L∑
i=1

σi

n∑
k=1

Ψk(x̂, ŷ)vkiXi(ω)

= µΘ + Ψ(x̂, ŷ)VSX(ω), (8.55)

where L ≤ n is the truncated number of the eigenvectors and S is an L by L diagonal matrix with
the σi =

√
λi values. In a more detailed form, the second part of the equation can be expressed as

Ψ(x̂, ŷ)VSX(ω) = (8.56)

=
[
Ψ1(x̂, ŷ) Ψ2(x̂, ŷ) · · · Ψn(x̂, ŷ)

]

v11 v12 · · · v1L
v21 v22 · · · v2L
...

... . . . ...
vn1 vn2 · · · vnL



σ1

σ2
. . .

σL



X1(ω)
X2(ω)

...
XL(ω)

 .

Algorithm 12: Computation of the truncated KLE of a random field

1. Choose a spatial mesh with nodes (x̂j , ŷj) for j = 1 . . . n and a corresponding nodal
basis {Ψj(x̂, ŷ)}nj=1 and collect the functions in a row vector Ψ.

2. Compute the n × n Gramian matrix G of the nodal basis with elements [G]ij =∫
D Ψi(x̂, ŷ)Ψj(x̂, ŷ)dxdy.
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3. Compute the n × n covariance matrix C from the covariance function, [C]ij =
CovΘ̃(x̂i, ŷi, x̂j , ŷj) = Σ(x̂i, ŷi, x̂j , ŷj) = Cνc(

√
(x̂i − x̂j)2 + (ŷi − ŷj)2).

4. Solve the generalized eigenvalue problem GCGvi = λiGvi for i = 1 . . . n for the
eigenvectors vi and the eigenvalues λi = σ2

i . If n is very high, one may directly compute
a truncated number of eigenvectors and eigenvalues.

5. Truncate the expansion by checking the captured variance with different number of
eigenfunctions. The relative captured covariance with L eigenfunctions can be computed
by

ρL =
∑L
i=1 λi∑n
j=1 λj

.

Collect the L eigenvectors in the columns of the matrix V and the L values σi into the
diagonal of the matrix S.

The separated representation of θ(x, y, ω) evaluated at the KLE mesh nodes is given by
µθ+VSX(ω), with X being a vector of L independent standard Gaussian random variables.
The complete field of θ is given by

θ(x̂, ŷ, ω) = µθ(x̂, ŷ) + Ψ(x̂, ŷ)VSX(ω).

8.4.2 Proper Orthogonal Decomposition (POD)
Another approach to represent the random field is by the so-called Proper Orthogonal decomposition
(POD). Let T be the random vector whose ith element corresponds to the random field Θ taken
at the ith node of the spatial mesh, that is, [T(ω)]i = Θ(x̂i, ŷi, ω) for all nodes (x̂i, ŷi). Then this
random vector can be written in the form

T(ω) = µT + T̃(ω)
= µT + VSW(ω)

= µT +
∑
i

σiviWi(ω), (8.57)

where S is a diagonal matrix with [S]ii = σi, V an orthogonal matrix and W(ω) a vector of
uncorrelated random variables, that is, E[Wi(ω)Wj(ω)] = δij . The orthogonal matrix V can be
computed from the eigenvalue decomposition of the covariance matrix of T, namely

CT = E[T̃T̃T ] = VSE[W(ω)TW(ω)]︸ ︷︷ ︸
=I

SVT = VS2VT =
∑
i

σ2
i vivTi . (8.58)

A Worked-out Example of Parameter and Field Identification Methods
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The POD then can be computed by solving the eigenvector problem

CT = VS2VT (8.59)
CTV = VS2 VTV︸ ︷︷ ︸

=I

(8.60)

or in a different form
CTvi = σ2

i vi = λivi (8.61)

Note, that the POD in expression (8.57) can be regarded as the discretised form of the KLE
Equation (8.52). The vectors vi represent the nodal values of some field-typical spatial functions
and the Wi represent independent Gaussian random variables, given that Θ is a Gaussian random
field. If the same spatial nodes with coordinates {x̂i, ŷi}ni=1 are chosen as the one in the KLE, then
the covariance matrix CT matches the matrix C introduced in the KLE discretization. In this way,
Equations (8.53) and (8.61) are almost the same, and are identical when the chosen spatial functions
are orthonormal, so when the Gramian G is the identity matrix. In this case, the eigenvalues λi and
eigenvectors vi are the same as the one computed from the POD approach. In general, the nodal
basis is not orthogonal, but if the nodal points are distributed uniformly, then the results from the
two computations give very similar results.

Algorithm 13: Computation of the POD of a discretised random field

1. Choose a spatial mesh with nodes (x̂j , ŷj) for j = 1 . . . n.

2. Compute the n × n covariance matrix C from the covariance function, [C]ij =
CovΘ̃(x̂i, ŷi, x̂j , ŷj) = Σ(x̂i, ŷi, x̂j , ŷj) = Cνc(

√
(x̂i − x̂j)2 + (ŷi − ŷj)2)

3. Solve the eigenvalue problem Cvi = λivi for i = 1 . . . n for the eigenvectors vi and
the eigenvalues λi = σ2

i . If n is very high, it may be more efficient to compute only a
limited number of eigenvectors and eigenvalues.

4. Truncate the expansion by checking the captured variance with a different number
of eigenfunctions. The relative captured energy with L eigenfunctions can be computed
by

ρL =
∑L
i=1 λi∑n
j=1 λj

.

The POD of the field is written in the form Θ(x̂j , ŷj , ω) = µΘ(x̂j , ŷj) + [VSX(ω)]j with X
being a vector of L independent standard Gaussian random variables.

Example 3: Separated representation of the scaling factor. Let the prior distribution
of FcM be defined by Equation (8.9) and (8.12). First, we write a separated representation of the
underlying Gaussian field Θ ∼ N (0,Σ), which is later mapped to the lognormal field FcM by
Equation (8.13). The representation is computed by the following steps:
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1. Define the spatial mesh.
The FEM mesh with quadratic elements of the domain Ds is shown with a light grey color in
Figure 8.5. For the KLE mesh, we used the center points of the quadratic elements of the FEM
mesh. We extended the mesh with some additional outer nodes, because the KL Expansion
has sometimes poor accuracy at the boundary. The resulting 192 nodes were connected with
triangular elements, which is shown with black lines in Figure 8.5. On the mesh, we defined
piecewise linear basis functions {Ψj(x̂, ŷ)}192

j=1, taking the value one on the jth node and zero on
every other node. These functions are collected in a horizontal vector Ψ.

2. Compute the Gramian.
The Gramian matrix G has size 192 × 192, but only seven diagonals have non-zero elements
due to the nodal basis used.

3. Compute covariance matrix.
The covariance matrix C has also size 192×192. The element at row i and column j is computed
by

[C]ij = CovΘ(x̂i, ŷi, x̂j , ŷj) = Cνc

(√
(x̂i − x̂j)2 + (ŷi − ŷj)2/lc

)
(8.62)

where the function Cν is given in Equation (8.11).

4. Solve the generalized eigenvalue problem.
After solving Equation (8.54) for λi and vi, the eigenfunctions can be computed by ri(x̂, ŷ) =
Ψ(x̂, ŷ)vi. The first nine eigenfunctions are shown in the right panel of Figure 8.6.

5. Truncate the expansion.
The left panel of Figure 8.6 shows the relative captured variance ρL using different truncations
of the expansion. We decided to keep L = 11 eigenfunctions with which more then 93% of the
total variance is captured.
Now we can write the field Θ with the expansion Θ =

∑11
i=1 σiXiri(x̂, ŷ), where the Xi are 11

independent standard Gaussian random variables and σi =
√
λi.

6. Map the random field Θ to FcM .
Following Equation (8.13) and using the separated representation of Θ, the map from the
reference Gaussian random variable X to FcM is given by

FcM (x̂, ŷ,X) = e
1.562+0.534·

(∑L

i=1
σiri(x̂,ŷ)Xi

)
(8.63)

Example 4: Surrogate modelling of seabed displacement with random fields. Once
we have the separated representation of the input field Equation (8.63), the forward model and the
derivation of a surrogate model can be done the same way as in the scalar case. The only difference
is that we have more then one germ now, meaning that the dimension of problem grew to L = 11.
The steps to build the surrogate model (following Algorithm 11 to generate a gPCE model) are
described below.

A Worked-out Example of Parameter and Field Identification Methods



176 Bayesian Inverse Problems: Fundamentals and Engineering Applications

Figure 8.5: Triangular KLE mesh used for the separated representation of the scaling factor (with
bold lines), the central part of the quadrilateral FEM mesh (with grey lines, see B panel of Fig-
ure 8.1), and the assimilation points (with gray dots).

Figure 8.6: Relative captured variance ρL for different numbers of eigenfunctions L and the desired
93% level (to the left); the first nine eigenfunctions r1 to r9 (to the right).
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1. Define the prior distribution of the random field FcM and determine the map from
ξ to fcM .
This was mainly done in the previous example, see Equation (8.63) for the map from X to FcM .
Choosing the Q parameters to be X and using the identity map (8.29) connecting the reference
parameters to the input parameters Q the map becomes7

fcM (x̂, ŷ, ξ) = e
1.562+0.534·

(∑L

i=1
σiri(x̂,ŷ)ξi

)
. (8.64)

2. Specify the orthogonal basis polynomials used for the expansion of y.
As we chose the number of eigenfunctions to be L = 11, we need eleven independent Gaussian
random variables to describe the random input and thus Ξ is a random vector of eleven variables.
Accordingly, the basis functions Φi are multivariate polynomials expressed as products of the
univariate Hermite polynomials. The multivariate polynomials can be defined by the so-called
multi-indices (see more in Appendix .2.1 and the table below). For polynomials of maximum
degree d = 1, the multi-index set and the corresponding basis are shown below.

multi-index basis functions
ξ1 ξ2 · · · ξL

i α = i1, i2 ... iL) Φi
0 0 0 · · · 0 Φ0 = H0(ξ1)H0(ξ2) · · ·H0(ξL) = 1 · 1 · · · 1 = 1
1 1 0 · · · 0 Φ1 = H1(ξ1)H0(ξ2) · · ·H0(ξL) = ξ1 · 1 · · · 1 = ξ1
2 0 1 · · · 0 Φ2 = H0(ξ1)H1(ξ2) · · ·H0(ξL) = 1 · ξ2 · · · 1 = ξ2
... . . . ...

L+ 1 0 0 · · · 1 ΦL+1 = H0(ξ1)H0(ξ2) · · ·H1(ξL) = 1 · 1 · · · ξL = ξL

. (8.65)

3. Compute the squared norms γi of the basis polynomials.
In our case, we have effectively only univariate polynomials, for which we have defined the norms
already. As the norm of H0(ξi) and also of H1(ξi) is one, all twelve polynomials have norm one
(see Appendix .2.2).

4. Get the integration points and weights.
The full tensor integration rule would be too expensive here to compute because of the high
dimension of the stochastic space L = 11. If we took the tensor product of the two-point uni-
variate rules, that would give N = 2L = 2048 integration points, which means the deterministic
solver would have to be run 2, 048 times, which is prohibitive in our case. Instead, we use the
Smolyak sparse integration grid (see e.g. [179]), which adds up to only twenty-three points.

5. Map the integration points ξj to fcM,j(x̂, ŷ).
We have twenty-three samples of the reference random vector, which results in twenty-three
field realisations of the scaling factor FcM (see Figure 8.7). FcM scales the compressibility field
in the FEM code. As the FEM computation supposes a constant compressibility field within
the FEM elements, we need to extract one value of the scaling factor fcM for each quadrilateral
FEM element. Since the centers of the elements coincide with the KLE nodes, and it is enough
to possess the values of fcM at these nodes, we do not need the basis functions Ψj for the

7When coding, it is practical to write Equation (8.29), q = I(ξ), in a PCE form; this will also be convenient later
in the update process.
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Figure 8.7: Realisations of the random field fcM,j computed at the first twelve integrations
points ξj .

computation. The compressibility field at the kth KLE node with coordinates (x̂k, ŷk) is given
by

fcM (x̂k, ŷk, ξ) = e
1.562+0.534

(∑L

i=1
σi[vi]k[ξ]i

)
, (8.66)

or the values of the scaling factor for all KLE nodes at the jth integration point

fcM (ξj) = e1.562+0.534VSξj . (8.67)

6. Compute the measurable response.
For the computation, we only need the fcM values that correspond to the FEM center points
(see Figure 8.5) and thus we drop the ones corresponding to the extended nodes. These selected
values are used for setting the scaling factor scaling the compressibility value for each FEM
element. We compute the measurable responses y(fcM (ξj)) (by the map given in point 1) for all
integration points ξj . This step involves running the FEM solver with the twenty-three different
compressibility fields.

7. Evaluate the basis functions at all integration points.
Here the twelve basis functions are evaluated at the twenty-three integration points.
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8. Compute the PCE coefficients.
Similar to the scalar case, we compute the PCE coefficients from υi ≈ 1

γi

∑N
j=1 wjy(ξj)Φi(ξj)

and collect them in the matrix Υ = [υ0, . . . ,υM−1].

8.5 Identification of the compressibility field

8.5.1 Bayes’ Theorem
Having samples from similar soil conditions, we possess some knowledge about what values the
scaling factor of the compressibility field FcM could possibly take. Unfortunately, as we do not
know the exact value of this scaling factor, we represent this ‘belief’ of ours with probabilities.
So, we model the scaling factor with a random variable/field whose prior probability distribution
mirrors our ‘belief’. When we have the opportunity to learn more about the scaling factor of the
compressibility field from new measurements—in this case from measuring the displacement field—
then our task is to change our belief in the simplest way so that it does not contradict the newly
received information. The mathematical formulation of ‘updating’ such a ‘belief’ based on some
evidence is expressed with the conditional probabilities of Bayes’ Theorem (refer to Chapter 1
for more insight about Bayes’ Theorem). Bayes’ Theorem states that the updated (or assimilated
or posterior) probability distribution of the scaling factor given a certain measurement zm of the
displacements at the assimilation points is

πF |zm(fcM )︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
πzm|F (fcM )

prior︷ ︸︸ ︷
πF (fcM )∫

IF

πzm|F (fcM )πF (fcM )dfcM︸ ︷︷ ︸
evidence

= L(fcM )πF (fcM )
ζ

, (8.68)

where
• πF |zm is the posterior distribution function of the scaling factor, representing our ‘changed

belief’ about the scaling factor after assimilating the measurement zm,

• L(fcM ) = πzm|F is the likelihood, expressing how likely it is to observe the measured value zm
given a certain value of the scaling factor,

• πF is the prior distribution function of the scaling factor representing our ‘belief’ prior to learning
about the new evidence, and

• ζ =
∫
IF
πzm|FπF dfcM is the evidence, the normalising factor assuring that the new posterior

distribution function integrates to one.
For simplicity’s sake, we use here the above derived separated representation of the random field
and we update in this case the distribution of the random variables Q instead of updating directly
the random field. For the input random vector Q, Bayes’ Theorem becomes

πQ|zm(q) =
πzm|Q(q)πQ(q)∫

IQ
πzm|Q(q)πQ(q)dq = L(q)πQ(q)

η
. (8.69)

A Worked-out Example of Parameter and Field Identification Methods
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In Bayes’ Theorem, the challenging part is to compute the evidence and the likelihood. The likeli-
hood is a function of q and it expresses how likely it is to measure the observed displacement values
zm given a certain q value of the input variables. Our measurements are usually contaminated by
measurement errors. Supposing that the error is additive, the measurement becomes

zm = y(qm) + ε, (8.70)

where ε is one realisation of the random variables E of the measurement noise with probability
density πE , and qm is the ‘true’ value of the input variable(s). The likelihood can be computed
from evaluating the probability density of the measurement error πE at ε = zm − y(q), that is,

L(q) = πE(zm − y(q)). (8.71)

8.5.2 Sampling-based procedures—the MCMC method
Unfortunately, the posterior can not be written in general in an explicit, closed form. That is why
the simplest way is to go with some sampling-based method: Instead of having a closed form of the
updated density, we generate samples of the updated scaling factor and compute statistics of the
posterior density via those samples.

The most commonly known algorithm to sample from the posterior distribution is probably the
Metropolis-Hastings random walk algorithm, presented as Algorithm 1 in Chapter 1, which belongs
to the group of Markov-Chain Monte Carlo (MCMC) methods. The basic idea of the Metropolis-
Hastings algorithm is to generate samples by a random walk in the parameter space, constructed
such that the stationary distribution of this process equals the target distribution (in this case the
Bayes posterior)[150]. That is, after an initial transient phase, taking samples from the random
walk is equivalent to directly sampling from the posterior.

The random walk is governed by the so-called proposal density. The proposal density is a
conditional distribution that selects a new point for consideration depending on which point of
the parameter space we are actually standing at. Theoretically, the algorithm converges for almost
any possible proposal density; however, in practice the speed of convergence depends crucially on
how well and problem-adapted it was chosen. There are many sophisticated and adaptive ways of
choosing this density [83, 7], the simplest (and most-frequently used) being to choose a multivariate
Gaussian density N (q, σ2

pI) centered around the current point q.
To assure that we really sample from the posterior distribution, not all the proposed steps are

accepted. For symmetric proposal densities, the probability with which we accept the new point is
governed by the ratio of the posterior density at the new point and that of the current point. If the
posterior probability at this new value of the parameter is higher than at the previous point, the
step will be accepted. If the posterior probability is lower, the new step may be rejected. The lower
the ratio of the two probabilities is, the new step as a sample is accepted with the lower probability.

At every point only the numerator of Equation (8.69) has to be evaluated, since the denominator
is a constant value and only the ratio of the probabilities matters in determining whether the new
point will be accepted or not. This is a great advantage of the method, since the denomiator, that
is, the evidence, is usually hard to compute due to the integral involved.
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In a nutshell, the basic algorithm to generate N samples from the posterior is formulated below:

Algorithm 14: Sampling from posterior distribution by MCMC

1. Choose the starting point q0 of the random walk, for example, the mean values of
the prior distribution of Q, q0 = E[Q].

2. Choose proposal density πQ′|q(q′), where q′ is the proposed new value of the reference
parameter, and πQ′|q(q′) is the conditional probability of proposing a new value of the
parameter q′ given the actual value of the parameter q.

3. For i = 0 . . . N repeat:

(a) Draw one q′i sample from the proposal density πQ′|qi(q′).
(b) Decide whether the proposed new point q′i can be accepted:

i. Compute the acceptance ratio

α = min
{

1,
πQ|zm(q′i)
πQ|zm(qi)

πQ′|qi(q′i)
πQ|q′

i
(qi)

}

= min
{

1, L(q′i)πQ(q′i)
L(qi)πQ(qi)

πQ′|qi(q′i)
πQ|q′

i
(qi)

}
.

Where πQ|q′
i
(qi) is the probability of proposing the actual value of the parame-

ter qi when we stand at the proposed value q′i. When the proposal distribution
is symmetric, the ratio simplifies to the ratio of the posterior density at the
proposed point and the one at the actual point:

α = min
{

1, L(q′i)πQ(q′i)
L(qi)πQ(qi)

}
(8.72)

ii. Draw a sample u from the uniform distribution U [0, 1].
iii. If u ≤ α, accept the new point q′i, make the step to a new point qi+1 = q′i.

Otherwise reject the new point, stay at the previous location qi+1 = qi.

The classical method creates one chain from the random walk. The coordinates of the chain are
the samples. It is common to drop samples from the beginning of the chain, the so-called burn-in
period, because those depend too much on the chosen starting point q0. The algorithm can be
slightly modified by computing several chains in parallel.

As described above, the time-consuming part of the procedure is the computation of the likeli-
hood. In the MCMC computation, the likelihood has to be evaluated at every step of the random
walk to compute the acceptance ratio α from Equation (8.72). For that, at each new value of q,
Equation (8.71) has to be evaluated, which involves the computation of a prognosis of nodal dis-

A Worked-out Example of Parameter and Field Identification Methods
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placements y via the deterministic simulation. For a computationally expensive model, this may
not be affordable. However, with the already determined PCE surrogate model of the nodal dis-
placements, the evaluation of the likelihood is computationally very cheap.

Example 5: Updating the homogeneous scaling factor by MCMC. For testing the
Bayesian inversion scheme, a synthetic measurement zm was used. First, the deterministic code
was run with a chosen ‘true’ value of the scaling factor fcM ,m = 1.89 to generate the measurement.
At this value of the scaling factor we have θm = (ln(fcM ) − µ)/σ = (ln(1.89) − 1.562)/0.534 =
−1.733, and thus also ξm = qm = −1.733. We assumed the measurement error model given by
Equation (8.24). The synthetic measurements are generated by computing y(fcM,m) and adding a
randomly drawn sample of some ‘true’ Em measurement error model with slightly lower standard
deviation σεm,j = 0.1 · [ym]j than that of E. The random walk could be done directly in the space
of the scaling factor FcM , but for keeping the general framework, here we carry out the random
walk for the input parameter Q.

1. As starting point of the random walk we chose the prior mean, that is,

q0 = E[Q] = 0. (8.73)

2. A Gaussian proposal density N (q, σ2
p) centered at the last step q was used with σp = 0.2, which

has 30% of the variance of the prior parameter Q.

3. For the random walk, we need to define the likelihood function. Instead of the computationally
expensive FEM solver, we evaluate y using its PCE approximation in Equation (8.33) computed
as in Example 1 but with polynomial degree five

L(q) = det(2πCE)−1/2e−
1
2 (zm−Y(q))TC−1

E
(zm−Y(q))

≈ det(2πCE)−1/2e−
1
2 (zm−ΥΦ(I−1(q)))TC−1

E
(zm−ΥΦ(I−1(q))). (8.74)

The posterior distribution of Q is then defined by the product of the likelihood and the prior

πQ(q) = 1√
2πσ2

e−
q2

2σ2 . (8.75)

4. We ran Algorithm 14 with the preceding inputs which produced the MCMC chain as shown in
the left panel of Figure 8.8. In the zoomed out beginning part shown in the right panel of the
figure, one can see that at the beginning of the chain, the walk is stuck for a while at the starting
point because of the many non-accepted proposals. This is due to the prior mean being far from
the posterior mean. As the walk goes towards the posterior zone, the chain starts to look like a
white noise. These samples after the transitional burn-in period were stored and mapped to the
scaling factor. The posterior density and its mean were estimated by the probability density of
these samples (see Figure 8.9).

Example 6: Updating the random field by MCMC. For the second scenario, another synthetic
measurement zm was created by adding random samples of Em to the displacements y computed
by the FEM solver with a ‘true’ spatially varying fcM field (see left upper and left bottom panels
of Figure 8.12).
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Figure 8.8: The posterior samples {qi}10000
i=1 from the MCMC random walk chain (to the left) and

zoomed out part of it (to the right) to show the selected transitional burn-in period.

Figure 8.9: MCMC update results: the prior probability density and the posterior density estimate
of FcM with the mean of the posterior and the ‘true’ value.

The measurement error model and the likelihood are the same as in the scalar case, the
only difference being that the random walk is now taking place in a higher dimensional space
(L = 11), the number of eigenfunctions we chose to represent the random field with, and thus also
the number of independent standard Gaussian random variables. For evaluating the likelihood, the
PCE derived in Example 4 was used. The random chain of the first four input parameters are shown
on Figure 8.10. The posterior domain shrinks as the scatter plot of the posterior samples of the left
panel of Figure 8.11 shows. The right panel of Figure 8.11 shows the 90% confidence region and the
mean of the prior and the posterior distribution. At the points where no measurement data was
available (at the boundaries of the domain, specially at the corner points), the uncertainties stay
pretty high. However, in the critical region, the updated mean gives a good estimated value of the
scaling field. Figure 8.12 shows together the ‘true’ field fcM,m and the mean posterior estimate as

A Worked-out Example of Parameter and Field Identification Methods
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Figure 8.10: Random chain of the first four elements of q (right).

Figure 8.11: MCMC update results: scatter plot of the samples of the prior and the posterior first
four input parameter q and their PDFs (to the left), mean and 90% confidence region of the prior
(in the middle), and the posterior (to the right).

well as the standard deviation of the posterior and the deviation of the mean estimate from fcM,m.
It can be seen, that in the area of the assimilation points, the standard deviation of the posterior
reduced significantly compared to the standard deviation of the prior (σf = 3.16). An exception is
the region where no significant displacements were measured. Here the posterior standard devia-
tion stays somewhat higher as these measurements could not contribute much to the assimilation
process. Though only few eigenmodes were used, and we also kept the PCE representation of y
linear, the Bayesian posterior mean captures pretty well the ‘true’ field at the assimilation area.
It is important to highlight that for this result, the inversion cost only twenty-three deterministic
solver calls.
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Figure 8.12: Result of the update by MCMC: 2D (on the top) and 3D view (on the bottom) of
the ‘true’ fcM ’ field, from which the measurement was generated from (to the left), mean of the
posterior of fcM computed from the MCMC samples (second column), standard deviation of the
posterior fcM field computed from the MCMC samples (third column) and the deviation of the mean
posterior from the ‘true’ field (to the right). The upper right figures also show the sixty assimilation
points used for the update, with colors showing the magnitude of the measured displacement.

8.5.3 The Kalman filter and its modified versions

8.5.3.1 The Kalman filter

The Kalman filter was first proposed as a state estimation technique, but it can be also used for
parameter estimation when the parameter is Gaussian and the estimate can be given with a linear
function of the data. The filter is in detail explained in [64]. The main assumption of the Kalman
filtering is that the map from the parameter Q to the measurable can be written in a linear form

Y(Q) = HQ, (8.76)

where H is a matrix representing the linear map. Assuming Gaussian distribution for the measure-
ment error E, the likelihood reads

L(q) = det(2πCE)−1/2e−
1
2 (zm−Hq)TC−1

E
(zm−Hq). (8.77)

The Bayes’ Theorem states that the posterior distribution of Q is

πQ′(q) = L(q)πQ(q)∫
IQ
L(q)πQ(q) . (8.78)

If we assume a Gaussian prior distribution for the parameter Q

πQ(q) = det(2πCQ)−1/2e−
1
2 (q−µQ)TC−1

Q
(q−µQ) (8.79)

A Worked-out Example of Parameter and Field Identification Methods
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with mean µQ and covariance CQ, then it can be shown that this posterior distribution corresponds
to a Gaussian distribution

πQ′(q) = det(2πCQ′)−1/2e
− 1

2 (q−µQ′ )TC−1
Q′

(q−µQ′ ), (8.80)

with
µQ′ = E[Q′] = µQ + K(zm −HµQ), CQ′ = cov[Q′,Q′] = (I−KH)CQ, (8.81)

where CQ′ is the covariance of the posterior random variable and K is the Kalman gain

K = CQHT (HCQHT + CE)−1 (8.82)
K = CQY (CY + CE)−1 (8.83)

with CQY and CY being the covariances cov[Q,Y] and cov[Y,Y]. The random variable

Q′ = Q + K(zm − Z) (8.84)

can also be shown to be Gaussian and has mean µQ′ and covariance CQ′ . Gaussian posteriors are
completely described by their first two moments, the mean and the variance, thus Equation (8.84)
gives the exact posterior random variable when Q is Gaussian and the map from Q to Y is linear.

8.5.3.2 The ensemble Kalman filter

The main problem is that in our case—and usually in many engineering problems—the measurable
Y is not linearly depending on Q, so the map can not be given simply by a transformation matrix
H. Actually, in our case the operator

y(q) = G (fcM (F (q))) = H(q) (8.85)

was only introduced in an abstract way, and is not even explicitly given. However, many variations
of the Kalman filter were proposed that are applicable for non-linear problems. An example is the
Ensemble Kalman filter (EnKF), which keeps the form of the filter given in Equation (8.84), but
represents the random variables Q′, Q, and Z by MC samples

q′(ξj) = q(ξj) + K(zm − z(ξj ,ηj)) ∀j = 1 . . . N, (8.86)

where N is the number of samples, z(ξj ,ηj) = H(q(ξj)) + ε(ηj), with ε(ηj) a sample from the
measurement noise model E, and η the germ of the measurement error model. The Kalman gain is
computed using (8.83), but approximating the covariances from MC samples

CY = 1
N − 1

N∑
j=1

(y(ξj)− ȳ) (y(ξj)− ȳ)T , (8.87)

CQY = 1
N − 1

N∑
j=1

(q(ξj)− q̄) (y(ξj)− ȳ)T , (8.88)

CE = 1
N − 1

N∑
j=1

(ε(ηj)− ε̄) (ε(ηj)− ε̄)T , (8.89)
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where the bar above a variable means mean of the samples, for example

q̄ = 1
N

N∑
j=1

q(ξj). (8.90)

The ensemble Kalman filter is also applicable for (slightly) non-linear models, but as all MC proce-
dures, necessitates a very large number of samples N , involving N evaluations of the deterministic
solver to compute all responses y(ξj) from the samples q(ξj) of the input random variable. However,
with the help of our surrogate model, the evaluation can be done with much less computational
effort.

The algorithm of the EnKF using a PCE surrogate model is as follows:

Algorithm 15: Parameter update by the ensemble Kalman filter

1. Generate N samples of the random variables Q and E: q(ξj), ε(ηj) j = 1 . . . N .

2. Compute the yh displacements using the surrogate model yh(ξj) =
M−1∑
j=0

υiΦi(ξj) for all

j = 1 . . . N .

3. Compute the Kalman-gain:

(a) Compute the sample covariances CY , CQY , and CE using Equations:

CY = 1
N − 1

N∑
j=1

(y(ξj)− ȳ) (y(ξj)− ȳ)T ,

CQY = 1
N − 1

N∑
j=1

(q(ξj)− q̄) (y(ξj)− ȳ)T ,

CE = 1
N − 1

N∑
j=1

(ε(ηj)− ε̄) (ε(ηj)− ε̄)T .

(b) Compute samples of the measurement model by adding to the predicted yi samples
the samples of the measurement error; z(ξj ,ηj) = y(ξj) + ε(ηj).

(c) Compute the Kalman gain K = CQY (CY + CE)−1.

4. Compute samples of the posterior using

q′(ξj) = q(ξj) + K(zm − z(ξj ,ηj)) ∀j = 1 . . . N.

5. Map the samples to the scaling factor fcM .

A Worked-out Example of Parameter and Field Identification Methods
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The advantage of this approach is that it is much faster than doing the random walk of the
MCMC, and we do not have the problem of getting stuck with the random walk, or with decisions
such as how to choose the proposal density or how long the burn-in period should be. However, as
later shown in the examples, the linear filter still has its limits when used for nonlinear problems.

8.5.3.3 The PCE-based Kalman filter

With the help of the PCE approximation, one can compute the (linear) Kalman filter in an even
more straightforward way. This is done purely using the PCE algebra for the updating. The method
is explained in detail in [153]. The main idea is that we can represent all the random variables used
for the Kalman filtering in a PCE form. Then the filtering is done by updating the PCE coefficients
of Q – the map from the germ to the input parameter – without any sampling. This method is
a complete sample-free update procedure. Let us write the input parameter, the error and the
measurable response in a PCE format

q =
L∑
α=0

qαΦ(Q)
α (ξ) ε =

ny∑
α=0

eαΦ(E)
α (η) y =

M−1∑
α=0

υαΦα(ξ). (8.91)

The first map is just the PCE of the map I(ξ), which is now the identity map, but in general could
be any one-to-one map.

The given PCE representations of the three different random vectors are defined each in their
own suitable PCE basis. Our first task is to bring the above given PCEs in one unified basis,
combining all the Polynomial Chaos basis functions together into one joint basis (see Example 7).
Furthermore, we suppose that the measurement errors E are independent from the random input
parameters Q and so are ξ and η. The new PCE representations in the extended basis then take
the form

q =
nc∑
α=0

q̂αΦ̂α(ξ,η) = Q̂Φ̂ ε =
nc∑
α=0

êαΦ̂α(ξ,η) = ÊΦ̂ y =
nc∑
α=0

υ̂αΦ̂α(ξ,η) = Υ̂Φ̂. (8.92)

The new set of basis functions Φ̂α have germs ξ and η. Similarly, we can also write the deterministic
values zm in a PCE format

zm =
nc∑
α=0

ẑαΦ̂α(ξ,η) = ẐΦ̂, (8.93)

where the first coefficient ẑ0 corresponding to the polynomial Φ̂0(ξ,η) = 1 is directly the vector zm
and the rest of the coefficients are zero.

With the help of the new, extended PCE expansions, we can rewrite the filtering step (8.84) as

Q̂′Φ̂ = Q̂Φ̂ + K
(
ẐΦ̂−

(
Υ̂Φ̂ + ÊΦ̂

))
, (8.94)

where Q̂′ is the matrix collecting the new PCE coefficients of the updated random variable Q′. It
can be easily seen from the above equation that these new coefficients can be determined from

Q̂′ = Q̂ + K(Ẑ− Υ̂− Ê). (8.95)

The covariances for the Kalman gain can be computed without any samples from the unified PCE
coefficients following Equation (8.45).
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Algorithm 16: Parameter identification by the PCE-based Kalman filter

1. Write input parameter Q, measurement error model E, and the response Y in a PCE
form:

q =
L∑
α=0

qαΦ(Q)
α (ξ) ε =

ny∑
α=0

eαΦ(E)
α (η) y =

M−1∑
α=0

υαΦα(ξ).

2. Generate a combined PCE basis Φ̂α(ξ,η) and compute the γ̂α squared norm of each
basis function.

3. Rewrite the PCE coefficients in this extended basis; write the measured displacements
zm also in a PCE using the extended basis:

q =
nc∑
α=0

q̂αΦ̂α(ξ,η) ε =
nc∑
α=0

êαΦ̂α(ξ,η) y =
nc∑
α=0

υ̂αΦ̂α(ξ,η) zm =
nc∑
α=0

ẑαΦ̂α(ξ,η).

4. Compute the Kalman gain.

(a) Compute the covariances CY,, CQY , and CE from the PCE coefficients:

CY =
nc∑
α=1

υαυ
T
αγα CQY =

nc∑
α=1

q̂αυ̂Tα γ̂α CE =
nc∑
α=1

êαêTα γ̂α.

(b) Compute the Kalman gain:

K = CQY (CY + CE)−1.

5. Compute the PCE coefficients q̂′α of the updated input random variables Q′:

q̂′α = q̂α + K(ẑα − υ̂α − êα).

The PCE of the updated reference random is

q′ =
nc∑
α=0

q̂′αΦ̂α(ξ,η).

Example 7: Updating the scalar scaling factor by the PCE-based Kalman filter. Here
we present how to do the Kalman filtering for the scalar scaling factor of the compressibility field.

A Worked-out Example of Parameter and Field Identification Methods
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1. Write Q, E, and Y in a PCE form.
For scenario I, Q is a scalar valued random variable and so is the Gaussian germ Ξ. The map
I from the germ to the parameter is the identity map (see Equation (8.29)), whose PCE is

q =
[
0 1

] [H0(ξ)
H1(ξ)

]
=
[
0 1

] [1
ξ

]
. (8.96)

The measurement error model E is a vector valued random variable with ny = 60 random
elements – corresponding to the sixty assimilation points. The distribution of E is given in
Equation (8.24). For representing the sixty independent Gaussian random variables given in
this error model, we need a germ η with sixty independent standard Gaussians. The map from
the germ η to E is given by scaling the germ η by the standard deviation of the measurement
errors. The scaling in a PCE form is given by

ε =


0 σε,1 0 · · · 0
0 0 σε,2 · · · 0
... . . . ...
0 0 0 · · · σε,60




H0
H1(η1)
H1(η2)

...
H1(η60)

 =


0 σε,1 0 · · · 0
0 0 σε,2 · · · 0
... . . . ...
0 0 0 · · · σε,60




1
η1
η2
...
η60

 . (8.97)

We use the PCE approximation of y computed in Example 1, but with polynomial degree five,
which reads

y = Υ
[
1 ξ ξ2 − 1 ξ3 − 3ξ ξ4 − 6ξ2 + 3 ξ5 − 10ξ3 + 15ξ

]T
Υ ∈ R60×6. (8.98)

2. Generate a combined PCE basis.
The new, combined basis containing all PCE polynomials used for the expansion of Q, E, and
Y becomes

Φ̂ =
[
1 ξ ξ2 − 1 ξ3 − 3ξ ξ4 − 6ξ2 + 3 ξ5 − 10ξ3 + 15ξ η1 η2 . . . η60

]T
. (8.99)

3. Rewrite the PCE coefficients in the extended basis.
The coefficients collected in a matrix reads

Q̂ =
[
0 1 0 . . . 0

]
, Q̂ ∈ R1×66,

Ê =


0 0 . . . 0 σε,1 0 · · · 0
0 0 . . . 0 0 σε,2 · · · 0
...

... . . . ...
...

... . . . ...
0 0 . . . 0 0 0 · · · σε,60

 Ê ∈ R60×66,

Υ̂ =


ν1,0 ν1,1 . . . ν1,5 0 0 · · · 0
ν2,0 ν2,1 . . . ν2,5 0 0 · · · 0

...
... . . . ...

...
... . . . ...

ν60,0 ν60,1 . . . ν60,5 0 0 · · · 0

 Υ̂ ∈ R60×66, (8.100)
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with σε,j the standard deviation of the measurement error at the jth assimilation point and υi,j
the elements [Υ]i,j . The matrix of PCE coefficients of the measurement zm reads

Ẑ =


zm,1 0 . . . 0 0 0 · · · 0
zm,2 0 . . . 0 0 0 · · · 0

...
... . . . ...

...
... . . . ...

zm,60 0 . . . 0 0 0 · · · 0

 , Ẑ ∈ R60×66. (8.101)

4. Compute the Kalman gain.
The covariance matrices CY and CE can be computed from the original PCE expansions, but
for the computation of CQY , Q and Y needs to be described in the same basis.

5. Compute the coefficients of the updated input variables Q′.
The PCE of the updated reference random variable is given in the extended basis, which means
that its dimension is the sum of the size L (in Example 1) of the input random variables Q
and the dimension ny of the germ η (in the example 60) needed for the description of the
measurement error E, that is, the updated input parameters are given in stochastic dimension
L+ny = 61. If new measurements are available, the update can be repeated, but the new updated
variable is then given in a new space extended with further stochastic dimensions. For example,
when we receive a new data with measured displacements at the same sixty assimilation points,
the stochastic dimension of the updated input random variable will be L+ ny + ny = 121.

At this point, we have a PCE expansion of the posterior input parameter Q′. What we are interested
in though is the posterior distribution of the scaling factor fcM . The posterior scaling factor can be
given now in an analytical form because we have a PCE of the updated input parameter Q′ and an
explicit map from the parameter to the scaling factor. If a probability density plot is desired, we
can sample from Q′ and map all the samples to the scaling factor. Figure 8.13 shows the updated
density of the scaling factor computed by the PCE-based Kalman filter. One can see that the filter
somewhat overestimates the scaling factor, which is due to the filter being linear.

Figure 8.13: PCE based Kalman filter update results: the prior probability density and the posterior
density estimate of FcM with the mean of the posterior and the ‘true’ value.

A Worked-out Example of Parameter and Field Identification Methods
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Example 8: Updating the spatially varying random field by the PCE-based Kalman
filter. Here we present how to do the Kalman filtering for the scaling factor of the compressibility
field when no homogeneity conditions are assumed.

1. Represent Q, E, and Y by a PCE.
We use the truncated KLE expansion of the field θ computed in Example 3, which represented
the field by L = 11 independent, standard Gaussian random variables, which we use for Q. The
PCE expansion of Q is

q =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1




H0
H1(ξ1)
H1(ξ2)

...
H1(ξL)

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1




1
ξ1
ξ2
...
ξL

 . (8.102)

The PCE of the measurement error E is the same as in the scalar case in the previous example.
For the PCE expansion of Y we use the results in Example 4

y = Υ
[
1 ξ1 ξ2 . . . ξL

]T
, (8.103)

which is given in a simple linear PCE basis.

2. Generate a combined PCE basis.
The extended basis is

Φ̂ =
[
1 ξ1 ξ2 . . . ξL η1 η2 . . . η60

]T
. (8.104)

3. Rewrite the PCE coefficients in the extended basis.
The coefficients in the extended basis become

Q̂ =


0 1 0 . . . 0 0 0 . . . 0
0 0 1 . . . 0 0 0 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . 1 0 0 . . . 0

 Ê =


0 0 0 . . . 0 σε,1 0 . . . 0
0 0 0 . . . 0 0 σε,2 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . 0 0 0 . . . σε,60



Υ̂ =


ν1,0 ν1,1 ν1,2 . . . ν1,L 0 0 . . . 0
ν2,0 ν2,1 ν2,2 . . . ν2,L 0 0 . . . 0

...
...

... . . . ...
...

... . . . ...
ν60,0 ν60,1 ν60,2 . . . ν60,L 0 0 . . . 0



Ẑ =


zm,1 0 0 . . . 0 0 0 . . . 0
zm,2 0 0 . . . 0 0 0 . . . 0

...
...

... . . . ...
...

... . . . ...
zm,60 0 0 . . . 0 0 0 . . . 0

 . (8.105)
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Figure 8.14: Result of the PCE-based Kalman filter field update: 2D and 3D view of the ‘true’
scaling factor (to the left),the mean (second column from left), and the standard deviation (third
column from left) of the posterior scaling factor and the deviation of the mean from the ‘true’ (to
the right). See explanation of the dots in Figure 8.12.

4. Compute the coefficients of the updated input variables Q′.
The Kalman gain and the coefficients are then computed in the same way as in the previous
example.

To have samples of the scaling factor, one first needs to sample from the updated PCE of Q′ (first
by sampling from both germs, ξ and η, that is, from the 11 + 60 independent standard Gaussians,
then by evaluating the polynomials at those sample points and multiplying it with the coefficients
of Q̂′). These samples are then mapped to the scaling factor by

fcM ,j = e1.562+0.534VSq′j (8.106)

where V and S are computed in Example 3. The updated mean field of the scaling factor together
with the ‘true’ field, the standard deviation of the posterior, and the deviation of the mean from
the ‘true’ are shown in Figure 8.14. The result is very similar to the one with the MCMC, but the
computation was much less demanding in terms of runtime here.

8.5.4 Non-linear filters
It is shown for the PCE-based Kalman filter that the use of a functional approximation of the
measurement model allows a functional approximation of the posterior. This method is much easier
to compute than the sampling based MCMC approach. The Kalman filter applies a linear estimator
to obtain the posterior. As presented before, the linearity of the estimator has its limitations. In
an attempt to overcome this problem, it is shown in Chapter 4, how a non-linear filter can be built
based on the conditional expectation, which can be seen as an extension to the Kalman filter. Here,
we draft only the main ideas, to be able to implement it for the reservoir characterization task.
The idea is to find for all L components Qi of the parameter Q an optimal estimator ϕi : Rny → R

A Worked-out Example of Parameter and Field Identification Methods
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minimizing the mean square error

E[||Qi(ξ)− ϕi (Z(ξ,η)) ||22]. (8.107)

Furthermore, we restrict this estimator to be in some finite dimensional space by writing it as
a linear combination of some given basis functions Ψj

ϕi =
∑
j

ϕ̂ijΨj(Z). (8.108)

The task is then to find the coefficients ϕ̂j from the minimisation of (8.107). As described in
Chapter 4, the minimisation leads to the linear system

Aϕ̂i = bi, (8.109)

where ϕ̂ is the vector of coefficients, and the matrix A and the vector bi are the integrals

[A]ij = E[ψi(Z)ψj(Z)] =
∫

i(Z(ξ,η))ψj(Z(ξ,η))πΞ(ξ)πE(η)dξdη, (8.110)

[bi]j = E[Qiψj ] =
∫
Qi(ξ)ψj(Z(ξ,η))πΞ(ξ)πE(η)dξdη. (8.111)

which can be evaluated with the help of numerical integration. Once the coefficients are computed
from the system of Equations (8.109), the updated components of Q can be written with the help
of the MMSE filter by

Q′i = Qi(ξ)− ϕi (Z(ξ,η)) + ϕi(zm). (8.112)

The updated Q′i would have the correct conditional mean if in Equation (8.108) an infinite series
were taken, so that ϕi could be any measurable function. With the finite expansion, this is only
approximately true.

The algorithm to compute an update of the L dimensional Q parameter using the ny dimensional
measurement zm is as follows:

Algorithm 17: Parameter identification by the MMSE

1. Write input parameter Q, measurement error model E, and the response Y in a PCE
form

q =
L∑
α=0

qαΦ(Q)
α (ξ) ε =

ny∑
α=0

eαΦ(E)
α (η) y =

M−1∑
α=0

υαΦα(ξ).

2. Generate a combined PCE basis Φ̂α(ξ,η), and introduce the combined germ vector

ζ =
[
ξ η

]T
.



195

3. Rewrite the PCE coefficients in this extended basis

q =
nc∑
α=0

q̂αΦ̂α(ζ) ε =
nc∑
α=0

êαΦ̂α(ζ) y =
nc∑
α=0

υ̂αΦ̂α(ζ).

The measurement model then becomes

z(ζ) = ε+ y =
nc∑
α=0

êαΦ̂α(ζ) +
nc∑
α=0

υ̂αΦ̂α(ζ) =
nc∑
α=0

(êα + υ̂α) Φ̂α(ζ).

4. Determine the basis for the approximation of the estimators ϕi (e.g. polynomials of
maximum total degree pϕ) by determining the basis functions Ψj(z) collected in a vector
Ψ.

5. Compute the elements of the matrix A:

(a) Determine the integration points ζk and weights wk;
(b) Evaluate the measurement model at the integration points zk = z(ζk), and compute

the elements of the matrix A by

[A]ij ≈
∑
k

i(zk)ψj(zk)wk.

6. Compute the elements of vectors bi:

(a) Determine integration points ζl and weights wl (which could be different from the
ones we used in the computation of A);

(b) Evaluate the measurement model and all input parameters Qi at the integration
points, that is, zl = z(ζl), qi,l = qi(ζl), and compute the elements of vectors bi for
all i = 1 . . . L by

[bi]j ≈
∑
l

qi,lψj(zl)wl.

7. Solve the system of equations A
[
ϕ̂1 · · · ϕ̂L

]
=
[
b1 · · · bL

]
for all coefficients ϕ̂i

of the estimator.

The estimators are then given by

ϕi =
∑
j

ϕ̂ijΨj(Z), i = 1 . . . L.

The best estimate of Q for all components of the input parameter is

q′i = ϕi(zm) =
∑
j

ϕ̂ijΨj(zm) = ϕ̂i
TΨ(zm).

The components of the updated reference parameter reads Q′i(ξ,η) = Qi(ξ)−ϕi (Z(ξ,η))+
q′i.

A Worked-out Example of Parameter and Field Identification Methods
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One of the problematic parts of the method is the computation of integrals (8.110) and (8.111).
For Gaussian ξ and η, the Gauss-Hermite quadrature can be used for the integration. As explained
in Chapter 4 for the computation of matrix A, an integration rule of order pypϕ + 1 will suffice.
Here, py is the maximum total degree of the PCE of y, and pϕ is the degree of the estimator. For
the computation of bi, a minimum order (px + pypϕ + 1)/2 should be used. When the dimension
L + ny of the integration is too high, a sparse grid can be used to keep the number of points in a
computationally affordable regime. If such a rule makes the computations too expensive, a MC or
QMC integration rule could also be applied.

A big problem is that the dimension even for small problems can get very high. This results
in a high dimensional integration demanding high computational cost or questionable accuracy. To
release the burden of dimensionality, we propose here a low-rank approximation of the measurement
model Z by using the POD basis of the response Y(ω). The POD approximation of the fluctuating
part of Y following Section 8.4.2 is given by

Ỹ(ω) ≈ VY SY Yr(ω), (8.113)

where
Yr = S−1

Y VT
Y Ỹ = PỸ, (8.114)

is the reduced model of the response field, P = S−1
Y VT

Y is the projection matrix, VY is the matrix
collecting the eigenvectors vy,i of the covariance matrix CY and Sy is a diagonal matrix with the
squared eigenvalues λY,i. The eigenvalues and the eigenvectors are computed from

CY vy,i = λY,ivy,i. (8.115)

CY is an ny × ny matrix, thus we have at most ny eigenvectors. We ignore the vectors with
indices which are not contributing to the covariance of Y more than some percentage δσ. We
use this eigenbasis to represent the measurement model, so we project the fluctuating part of
the measurement model Z̃ onto this reduced basis spanned by the spatial vectors typical for the
response, that is

Zr = PZ̃ = P(Z− E[Z]) = P (Y− E[Y])︸ ︷︷ ︸
Ỹ

+ PE︸︷︷︸
=Er

= Yr + Er, (8.116)

where in the last but one equality we supposed a mean-free measurement error model E. The
transformed error Er = PE is not uncorrelated anymore, and its covariance matrix is

CEr = Cov(PE) = PCEPT . (8.117)

This correlated error model Er can be represented in a smaller stochastic space—by a germ ηr wich
has much lower stochastic dimension R than ny—namely, the projected error can be written by a
simple linear transformation of the germ,

εr = Lηr, (8.118)

where L is the lower triangular matrix from the Cholesky decomposition of the covariance matrix
CEr , that is

CEr = LLT . (8.119)
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The projected error can be also given in a PCE form

εr =
R∑
β=1

lβΦ(Er)(ηr) = LΦ(Er), (8.120)

where lβ are the columns of the matrix L and Φ(Er) are the linear univariate Hermite polynomials.
Plugging in the PCE approximations of Er and Y into Equation (8.116), the fluctuating part of
the measurement model is approximated by

Z̃r ≈ P
M−1∑
α=0

υαΦα(ξ)− E [Y]
)

+
R∑
β=1

lβΦ(Er)(ηr) = PΥ̃Φ + LΦ(Er), (8.121)

where the Υ̃ is the matrix Υ with the zeroed out first column for subtraction of the mean. This latest
description has the advantage that the dimension of the germ shrunk from L+ ny to L+R. If the
response Y(ξ) is smooth, only a few number of eigenmodes R already give a good approximation.
The optimal estimator will then be a function of the projected error model and can be computed by
solving the linear system in Equation (8.109), where in the computation of matrix A and the right
hand side b (see Equations (8.110) and (8.111)) the measurement model Z(ξ,η) must be replaced
by the projected one Zr(ξ,ηr). Once the optimal maps φi are computed, the best estimate of Qi
can be computed by plugging in the projected measurement zm into the optimal estimator

q′m = φi(P(zm − E[Y])). (8.122)

Using the MMSE filter, the posterior input parameter becomes

Q′i = Qi(ξ)− φi (Zr(ξ,ηr)) + q′m. (8.123)

We only present here examples of updating the spatially not varying scaling factor. When we drop
the assumption of the scalar scaling factor, the field update by MMSE is done the same way, and
the update gives very similar result to the one computed by MCMC or the Kalman filter (see Fig-
ure 8.17). This is normal due to the fact that we used a linear PCE of the response Y, and so the
limitation is more in the PCE approximation of the response. As the response surface is slightly
non-linear, we could improve the accuracy of the MCMC update and also the one of a non-linear
estimator by a higher degree approximation of the response, but that would greatly increase the
cost of the surrogate modelling.

Example 9: Computation of the low rank representation of the measurement model
for the MMSE update. Consider the first scenario, where Q is a scalar valued random variable,
that is, L = 1 and a PCE of Y of maximum polynomial degree py = 5. When we aim at finding a
quadratic estimator, that is, pϕ = 2 by the MMSE estimator, for the computation of the matrix A
by (8.110) we would need to generate integration points from the pypϕ + 1 = 11-point univariate
rule, which results in 11(L+ny) = 1161 = 3.349 · 1063 points using a full tensor grid. Instead of
replacing the integration rule with a Smolyak sparse grid or a QMC grid, we use the low-rank
approximation of the measurement model as explained above.

A Worked-out Example of Parameter and Field Identification Methods

Usuario
Nota adhesiva
left (big) parenthesis is missing after P
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1. Compute the covariance matrix CY .
The 60×60 covariance matrix was determined from the PCE coefficients using Equation (8.43).

2. Compute the eigenvectors and eigenvalues of CY and truncate.
From the eigenvalues {λi}nyi=1, it can be shown that more than 99% of the total variance of Y
can be represented by using only R = 3 modes out of the 60, that is∑3

i=1 λi∑ny
j=1 λj

> 0.99. (8.124)

We collect the first three computed eigenvectors {vy,i}3i=1 in the columns of the matrix Vy,
and the first three eigenvectors in the diagonal of the matrix S and set their product to be the
projection matrix P = S−1

y VT
y .

3. Compute the PCE of the projected measurement error Er.
The covariance matrix of the measurement error model CE is a 60× 60 diagonal matrix whose
diagonal entries are the variances of the error at the sixty assimilation points. The 3× 3 sized
covariance matrix of the projected measurement error CEr is computed by Equation (8.117).
For the PCE of the projected measurement error Er, we first carry out the Cholesky decom-
position (8.119) of CEr which gives us a lower triangular matrix L of size R × R. The new,
projected measurement error can be represented in PCE form by

Er = LΦ(Er) =

l11 0 0
l21 l22 0
l31 l32 l33

ηr,1ηr,2
ηr,3

 . (8.125)

4. Determine the PCE of the projected measurable response Yr.
The computation of the PCE coefficients Υ was performed as in Example 1, but here we used
polynomial degree py = 5. In order to get only the fluctuating part Ỹ of Y, the PCE coefficients
corresponding to the basis function Φ0 = 1 are set to zero. The coefficients Υ̃ of Ỹ are then
projected onto the main three eigenvectors by

Υr = PΥ̃. (8.126)

The PCE of the projected model Yr becomes

Yr = PΥ̃Φ(ξ) = ΥrΦ(ξ). (8.127)

5. Compute the projected measurement zr,m

zr,m = P(zm − E[Y]). (8.128)

Example 10: Test low-rank approximation on the MCMC update. The low-rank ap-
proximation was first tested by using it in an MCMC computation. The procedure is the same as in
Example 5, the only difference being that we use zr,m instead of zm, and Yr instead of the response
Y. The likelihood is computed from the multivariate Gaussian distribution of the projected error
by

L(q) = det(2πCEr )−1/2e−
1
2 (zr,m−Yr(I−1q))TC−1

Er
(zr,m−Yr(I−1q)). (8.129)
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Figure 8.15: Testing low-rank approximation on MCMC update: the posterior density estimate of
FcM without (to the left) and with low-rank approximation (to the right).

Results of the update are shown in Figure 8.15. Cutting the stochastic dimension of the measurement
model from ny = 60 to R = 3 did not influence significantly the results of the MCMC update.

Example 10: Updating the scalar scaling factor by a quadratic MMSE filter. Here
we present how to apply the MMSE filter to the reservoir characterization.

1. Write Q, E, and Y in a PCE form.
The PCE expansions would be the same as the ones given in the first point of Example 7, but
we use here the projected response Yr and the projected error Er whose PCE representation
are explained in Example 9 and given in Equations (8.127) and (8.125).

2. Generate a combined PCE basis.
The PCE basis becomes

Φ̂ =
[
1 ξ ξ2 − 1 ξ3 − 3ξ ξ4 − 6ξ2 + 3 ξ5 − 10ξ3 + 15ξ ηr,1 ηr,2 ηr,3

]T (8.130)

with the combined germ
ζ =

[
ξ ηr,1 ηr,2 ηr,3

]
. (8.131)

3. Rewrite the coefficients in the extended basis.
The coefficients in the extended basis are assembled in the same manner as in Example 7. Due
to the low-rank representation, the modified sizes of the coefficient matrices of Q, Yr, and Er

are
Q̂ ∈ R1×9, Υ̂r ∈ R3×9, Êr ∈ R3×9. (8.132)

The PCE coefficients of the measurement model Zr in this extended basis are simply given by
adding the coefficients of the response and the error, that is,

Ẑr = Υ̂r + Êr. (8.133)

A Worked-out Example of Parameter and Field Identification Methods
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4. Chose approximating basis for the estimator.
We restrict the estimator ϕ to linear combinations of products of the monomials. We tried
different degree estimators. The basis of maximum total degree two example is

Ψ = [1 zr,1 zr,2 zr,3 zr,1
2 zr,1zr,2 zr,1zr,3 zr,2

2 zr,2zr,3 zr,3
2]T , (8.134)

thus, 10 basis functions of the projected measurement model zr8. Without the projection, there
would be 1,891 basis functions.

5. Compute matrix A and vector b.
We used the same integration rule for computing A and b. The tensor product of the one
dimensional n = max{(pypϕ + 1), (1 + pypϕ + 1)/2} = max{(5 · 2 + 1), (1 + 5 · 2 + 1)/2} = 11
point Gauss quadrature rule was used. This sums up to 114 = 14, 641 integration points ζk.
For the computation of the matrix A and vector b, we evaluate the measurement model Z
and the Q parameter at these integration points ζk by using their PCE approximation in the
extended basis.

6. Solve the system of equation to determine the estimator.
The coefficients of the estimator ϕ̂ can be computed by solving the system of equations Aϕ̂ = b,
where ϕ is a vector of 10 coefficients corresponding to the 10 Ψi basis functions given above.
The estimator is given by

ϕ =
∑
j

ϕ̂jΨj(zr). (8.135)

The best estimate of Q is computed by plugging in the projected data zr,m computed in Equa-
tion (8.128) into the estimator

q′m = ϕ(zr,m). (8.136)

The updated Q′ is
Q′(ζ) = Q(ζ)− ϕ(Zr(ζ)) + q′m. (8.137)

To generate samples of Q′, we first sample from the germ of four identical and independent stan-
dard Gaussians (ζ = [ξ, ηr,1, ηr,2, ηr,3]T ), then we compute the input parameter and the projected
measurement model from their PCE representation given in the extended basis. Then the above
expression can be evaluated for any samples of the germ ζ. By further mapping the values of q′
to fcM , we can estimate the posterior distribution, which is shown in Figure 8.16 using different
degree estimators (pϕ = 1, 2, 3).

8Please note, monomials are typically bad for approximation, but with such a low degree estimator it is applicable.
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Figure 8.16: Update results of the MMSE: the prior probability density and the posterior density
estimate of FcM using different degree estimators (linear estimator to the left, degree two in the
middle column and degree three to the right). In the bottom row the density is zoomed to the
posterior.

Figure 8.17: Result of the MMSE field update using a linear estimator and a low rank approximation
of the measurement model, projecting to R = 10 eigenvectors: 2D and 3D view of the ‘true’ scaling
factor (to the left), the mean (second column from left), and the standard deviation (third column
from left) of the posterior scaling factor and the deviation of the mean from the ‘true’ (to the right).
See the explanation of the dots in Figure 8.12.

A Worked-out Example of Parameter and Field Identification Methods
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8.6 Summary, conclusion, and outlook
In this chapter, we presented a general framework for parameter and field identification using
different techniques, but all of which are based on a PCE surrogate model of the response. The
identification is presented on a gas reservoir problem, where we wished to identify the scaling
factor FcM of the compressibility field by inference from measurement of seabed displacements. We
provided examples for two different scenarios, one assuming a spatially not varying, scalar scaling
factor and one dropping the homogeneity condition. A summary of the used identification methods
is as follows:

• The Markov Chain Monte Carlo (MCMC) is based on a Metropolis-Hastings random walk,
which generates samples of the posterior random field of the input parameter FcM . Though the
method is converging very slowly, the computational expense was largely reduced by computing
the likelihood at every random step from the PCE surrogate model instead of the deterministic
solver.

• The Ensemble Kalman filter (EnKF) generates samples of the posterior FcM with the help of
a linear estimator. First, an ensemble of the measurable response is created by sampling from
the PCE surrogate model. The ensemble is then mapped by the linear estimator of the Kalman
filter. The matrix of the Kalman gain is computed from the ensemble.

• The sample-free PCE-based Kalman-Filter (PCEKF) is similar to the EnKF method, but the
Kalman-gain is computed from the PCE coefficients and the updated parameter FcM is deter-
mined in a PCE form, leading to an analytical form of the posterior scaling factor. Sampling
was used here only for plotting the posterior density.

• The Minimum Mean Square Estimator (MMSE) also gives a functional representation of the
updated parameter, but not necessarily in a PCE form. Here, the map from the measurement
model to the updated parameter is not restricted to linear maps but to a finite dimensional
space of polynomials and is determined by minimizing the minimum mean squared error. Here,
different degree polynomials were tested (p = 1, 2, 3).

The results for the posterior mean and variance and the deviation of the posterior from its
‘true’ value fcM,m—from which the synthetic measurement was generated—for the first scenario
are shown in Table 8.2. The MCMC update method can be seen as a reference solution representing
the Bayesian posterior distribution. We used 10,000 samples to get sufficiently accurate statistics of
the posterior. The MCMC update method was also carried out using the low-rank representation
of the measurement model to be able to see the error originating from projecting to the POD basis.
This was important, because the MMSE method was only feasible with the low-rank approximation.
It is shown in the examples that the Kalman filter can largely speed up the computation of the
inverse method, but it only gives the exact posterior distribution if the input variable is Gaussian
and the map to the measurement model is linear. For slightly non-linear problems, the PCE-based
Kalman filter is a fast and efficient method to get an approximate posterior of the input variables.
The MMSE method gives a good extension of the Kalman filter, and it is shown in the last example
how the increased non-linearity of the filter can improve the update.
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Table 8.2: Performance of the different PCE-based update methods: posterior mean E[f ′cM ], the
deviation of the mean from the true value fcM,m, and the posterior variance var(f ′cM ).

MCMC EnKF PCEKF MCMC LR MMSE p = 1 MMSE p = 2 MMSE p = 3
low-rank no no no yes yes yes yes
E[f ′cM ] 1.8521 2.1159 2.1066 1.8679 2.3235 1.9715 1.8647
|E[f ′cM ]− fcM,m| 0.0379 0.2259 0.2161 0.0221 0.4336 0.0814 0.0253
var(f ′cM ) 0.0016 0.0384 0.0303 0.0033 0.0907 0.0109 0.0026

For the identification of the spatially varying field, the same framework is used by separating
the random field’s spatial structure from the stochastic one. This way the random field can be
represented by a set of random variables. For the surrogate modelling in this scenario, we limited the
PCE to a linear one to keep the computational cost affordable. This limitation constraints somewhat
the update procedure and does not emphasize that much the difference between the different update
methods. Even this linear PCE of the response resulted in a sufficiently accurate estimation of the
spatially varying scaling factor, capturing well the spatial structure and the magnitude of the scaling
factor. For the quality of the identification the location of the measurement points plays a crucial
role. Obviously, in the region where no measurements are available, the scaling factor can not be
updated, and also assimilation points with a measured response that are not sensitive to the scaling
factor do not contribute much to the identification.

To conclude, we have shown how a PCE surrogate model of the response can enable different
Bayesian techniques to update the model’s input parameter. The methods were all tested on the
slightly non-linear model of the gas reservoir characterization, where the sample-free PCEKF gave
a good rough estimate of the posterior with very low computational cost. The performance of the
update could be further improved by using the non-linear filter of the MMSE method. It should
be mentioned though that the computational cost of the MMSE method can easily grow very high,
and we kept it in a manageable scale here by using a low-rank approximation of the measurement
model. Another problem with the PCEKF and the MMSE methods could be that the conditional
expectation is not so informative when the Bayesian posterior is multimodal, which can happen for
strongly non-linear problems.

A Worked-out Example of Parameter and Field Identification Methods
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.1 Appendix A: FEM computation of seabed displacements
The governing equilibrium equations to compute the seabed displacements read

∇ · σ′ − α∇p = ρg + b. (.138)

For a saturated porous volume D with surface Σ, the equilibrium is prescribed minimizing the total
potential energy by the virtual work theorem. By using the hypothesis of quasi-static conditions
and neglecting the inertial forces, the work theorem formulation reads∫

D

δε : (σ′ − αp1)dD =
∫
D

δu · bdD +
∫

ΓN
δu · tdΣ, (.139)

where ε is the (small) strain tensor, u = [ ux(x̂, ŷ, ẑ) uy(x̂, ŷ, ẑ) uz(x̂, ŷ, ẑ) ]T is the displacement
vector, 1 the rank-2 identity tensor, and t represents the total external forces acting per unit surface.
The symbol δ indicates the virtual variables. The integral formulation of equation (.139) must be
supplemented with appropriate Dirichlet and Neumann boundary conditions

u = u0 on ΓD,
σ · n = t on ΓN , ΓN ∪ ΓD = Γ,

(.140)

in which σ is the total stress. The FEM discretisation of Equation (.139) is only briefly explained
here. Interested readers are directed to [98, 173] for further details. Here, we introduce a set of basis
functions collected in a row vector

Nu =

Nu1 0 0 Nu2 0 0 · · · Nun 0 0
0 Nu1 0 0 Nu2 0 · · · 0 Nun 0
0 0 Nu1 0 0 Nu2 · · · 0 0 Nun

 , (.141)

and restrict our solution space and the space of virtual displacements to the span of these basis
functions. Accordingly, the virtual and real displacements and strains are approximated by

δu ≈Nuδa δε ≈ Bδa
u ≈Nua ε ≈ Ba,

(.142)

where the elements of a are the unknown nodal displacements and B = LNu with L, the differential
operator defining the kinematic equation

ε ≈ Lu or δε ≈ Lδu. (.143)

The fluid pore pressure p is also discretised by approximating it with the ansatz

p ≈ Npp, (.144)

where p are the nodal component vectors of the pore pressure and Np is the vector of another
set of basis functions. First, rearranging Equation (.139) and then plugging in Equations (.142)

Appendices

Usuario
Tachado

Usuario
Tachado

Usuario
Texto insertado
A1

Usuario
Tachado

Usuario
Texto insertado
A2

Usuario
Tachado

Usuario
Texto insertado
A2

Usuario
Tachado

Usuario
Texto insertado
E

Usuario
Tachado

Usuario
Texto insertado
A3

Usuario
Tachado

Usuario
Texto insertado
A2

Usuario
Tachado

Usuario
Texto insertado
A4

Usuario
Tachado

Usuario
Texto insertado
A5

Usuario
Tachado

Usuario
Texto insertado
A2

Usuario
Tachado

Usuario
Texto insertado
A5

Usuario
Tachado

Usuario
Texto insertado
A6

Usuario
Tachado

Usuario
Texto insertado
A7



208

through (.144) into Equation (.139) and differentiating with respect to the virtual variables, yields
the equation: ∫

D
BT σ̂′dD︸ ︷︷ ︸

Π

=
∫
D
αBT 1̂NT

p pdD
∫
D

NT
ubdD +

∫
ΓN

NT
u tdΓ︸ ︷︷ ︸

f

, (.145)

where (̂·) is the Voigt notation of (·). In this case, a non-linear constitutive model is implemented
leading to a nonlinear form of Π. Thus, the system of equations in (.145) can be solved by a
Newton-like method with the Jacobian matrix KT computed as

KT = dΠ
da = d

da

∫
D

BT σ̂′(a)dD =
∫
D

BT dσ̂′(a)

da dD =
∫
D

BTCBdD. (.146)

The tangent constitutive tensor C governs stress-strain relationship

dσ̂′ = Cdε̂. (.147)

For an isotropic porous material, the tangent operator C reads

C = c−1
M



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0
0 0 0 1−2ν

2(1−ν) 0 0
0 0 0 0 1−2ν

2(1−ν) 0
0 0 0 0 0 1−2ν

2(1−ν)


, (.148)

where ν is the Poisson’s moduli, cM = [(1 +ν)(1−2ν)]/[E(1−ν)] is the oedometric compressibility
and E is Young’s modulus, and the tangent stiffness KT in Equation (.146) depends linearly on
cM−1. Following some experimental results, the constitutive model depends on the stress state of
the seabed. The Poisson’s moduli can be fixed to a constant value but the oedometric compressibility
and thus the Young’s modulus was observed to depend on the vertical component of the effective
stress, σ′z by a power relation

cM (σz) = cM0

(
σ′z
f0

)−λ
, (.149)

where f0 is a fixed value of stress enabling a dimensionless form, and λ and cM0 are material
coefficients estimated via measurements. For more detail about this experimental constitutive law,
the reader is directed to [173].
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.2 Appendix B: Hermite polynomials

.2.1 Generation of Hermite Polynomials
The univariate Hermite polynomials H are orthogonal polynomials with respect to the standard
Gaussian distribution [71], that is they satisfy the orthogonality condition

E[Hi(ξ)Hj(ξ)] =
∫
R
Hi(ξ)Hj(ξ)πΞ(ξ)dξ = hiδij , (.150)

where δij is the Kroenecker delta, πΞ(ξ) is the standard Gaussian distribution

πΞ(ξ) = 1√
2π
e−

ξ2
2 , (.151)

and hi is the squared norm of the polynomials, that is

hi = E[Hi(ξ)Hi(ξ)]) = i!. (.152)

The Hermite polynomials can be generated by starting with the monomial basis {1, ξ, ξ2, ξ3 . . . } and
determine the Hermite polynomials by the Gram-Schmidt orthogonalization. However, for numerical
purposes it is more convenient to use the three term recurrence formula [71]

Hn+1(ξ) = (Anξ +Bn)Hn(ξ)− CnHn−1(ξ), n ≥ 0, (.153)

where the first two polynomials are set to

H−1 = 0
H0 = 1.

For Hermite polynomials, the generating sequences are An = 1, Bn = 0 and Cn = n. For example,
the first few Hermite polynomials are

H0 = 1 H1 = ξ H2 = ξ2 − 1 H3 = ξ3 − 3ξ H4 = ξ4 − 6ξ2 + 3. (.154)

The generation of multivariate polynomials from the univariate Hermite polynomials is straight-
forward. The polynomials are generated by taking products of the univariate Hermite polynomi-
als. The easiest is to generate the products by the so-called multi-index set, tuples of indices
α = (i1, i2, ...ij , ...) defining which indexed univariate polynomials are to be multiplied together. As
an example, the multi-index set for polynomials with two variables of max total degree 3 and the
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corresponding Hermite polynomials read

index multi− index Deg. of polyn. The αth multiv. polyn.
i α = (i1 i2) |α| =

∑
j ij Φi = Φα = Hi1(ξ1)Hi2(ξ2)

0 0 0 0 Φ0 = H0(ξ1)H0(ξ2) = 1 · 1 = 1
1 1 0 1 Φ1 = H1(ξ1)H0(ξ2) = ξ1 · 1 = ξ1
2 0 1 1 Φ2 = H0(ξ1)H1(ξ2) = 1 · ξ2 = ξ2
3 2 0 2 Φ3 = H2(ξ1)H0(ξ2) = (ξ2

1 − 1) · 1 = ξ2
1 − 1

4 1 1 2 Φ4 = H1(ξ1)H1(ξ2) = ξ1ξ2
5 0 2 2 Φ5 = H0(ξ1)H2(ξ2) = 1 · (ξ2

2 − 1) = ξ2
2 − 1

6 3 0 3 Φ6 = H3(ξ1)H0(ξ2) = (ξ3
1 − 3ξ1) · 1 = ξ3

1 − 3ξ1
7 2 1 3 Φ7 = H2(ξ1)H1(ξ2) = (ξ2

1 − 1) · ξ2 = ξ2
1ξ2 − ξ2

8 1 2 3 Φ8 = H1(ξ1)H2(ξ2) = ξ1 · (ξ2
2 − 1) = ξ2

2ξ1 − ξ1
9 0 3 3 Φ9 = H0(ξ1)H3(ξ2) = 1 · (ξ3

2 − 3ξ2) = ξ3
2 − 3ξ2

.

(.155)
The above tuples were generated in such a way that their sum is less or equal to three, corresponding
to a maximal polynomial degree of three. The multivariate polynomials are still orthogonal with
respect to the underlying multivariate Gaussian measure, that is, the orthogonality condition

E[Φi(ξ)Φj(ξ)] =
∫
Rn

Φi(ξ)Φj(ξ)πΞ(ξ)dξ = γiδij , (.156)

holds for multivariate polynomials. In the above equation, γi is the squared norm of the multivariate
polynomial with linear index i. To see why the orthogonality still holds, it is easier to index the
multivariate polynomials with the multi-index set. As an example to show that, let us express
the expected value of the product of two second variate Hermite polynomials with multi-indices
α = (k, `) and β = (m,n):

E[Φα(ξ)Φβ(ξ)] =
∫
R

∫
R

Φ(k,`)(ξ1, ξ2)︸ ︷︷ ︸
Hk(ξ1)H`(ξ2)

Φ(m,n)(ξ1, ξ2)︸ ︷︷ ︸
Hm(ξ1)Hn(ξ2)

πΞ1(ξ1)πΞ2(ξ2)dξ1dξ2

=
∫
R

∫
R
Hk(ξ1)H`(ξ2)Hm(ξ1)Hn(ξ2)πΞ1(ξ1)πΞ2(ξ2)dξ1dξ2

=
∫
R
Hk(ξ1)Hm(ξ1)πΞ1(ξ1)dξ1︸ ︷︷ ︸

hkδkm

∫
R
Hl(ξ2)Hn(ξ2)πΞ2(ξ2)dξ2︸ ︷︷ ︸

h`δ`n

=hkh`δkmδ`n. (.157)

The squared norm γi of the multivariate polynomial Φi with linear index i corresponding to the
multi-index α = (i1, i2, ...) can be computed from the product of the squared norms of the univariate
polynomials that generated the multivariate polynomial, that is

γi = E[Φα(ξ)Φα(ξ)] = hα =
∏
k

hik = i1!i2!.... (.158)

To conclude, the multivariate polynomials are generated from the product of univariate polynomials.
When these univariate polynomials are orthogonal, the multivariate polynomials are also orthogonal
and their squared norms can be computed from the product of the squared norms of the univariate
polynomials.
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.2.2 Calculation of the norms
The squared norms of orthogonal univariate polynomials can be computed from the An and Cn
sequences [71]

hn = E[H2
n(ξ)] = h0C1C2 . . . Cn

An
A0

= n!, (.159)

where
h0 = E[H2

0 (ξ)] = E[1] = 1. (.160)

For the underlying Gaussian measure, for the Hermite polynomials this is simply hn = n!. As
shown above in Equation (.157), the squared norms of the multivariate Hermite polynomials can
be computed from the product of squared norms of the univariate polynomials they were generated
from.

.2.3 Quadrature points and weights
The integration points and the weights can be also computed from the recurrence formula in Equa-
tion (.153) but by first rewriting it to a form, which generates the monic version of the polynomials

φn+1(ξ) =

1ξ + Bn
An︸︷︷︸
αn

φn(ξ)− Cn
AnAn−1︸ ︷︷ ︸

βn

φn−1(ξ), n ≥ 0. (.161)

According to the Golub-Welsch algorithm [71], the integration points and integration weights can
be calculated from the eigenvalues and the eigenvectors of the Jacobi matrix

J =


α0

√
β1

√
β2√

β1 α1
√
β1√

β2 α2
√
β2

. . . . . . . . .

 (.162)

from the eigenvalue problem
Jvi = λivi ||vi|| = 1. (.163)

The integration weights are given by the first component squared of this eigenvector

wi = (vi,1)2 (.164)

and the integration points by:
xi = λi. (.165)
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.3 Appendix C: Galerkin solution of the Karhunen Loève eigenfunction
problem

Here the target is to find an optimal expansion for the mean-free random field Θ̃ in the form

Θ̃(x̂, ŷ, ω) =
∞∑
i=1

σiXi(ω)ri(x̂, ŷ). (.166)

Let’s suppose, that we already have an orthogonal set of basis functions,∫
D
ri(x̂, ŷ)rj(x̂, ŷ)dx̂dŷ = γiδij (.167)

with squared norms γi
γi =

∫
D
ri(x̂, ŷ)ri(x̂, ŷ)dx̂dŷ. (.168)

The σiXi coefficients of the expansion (.166) can be computed by minimizing the squared error

∫
D

(
Θ̃(x̂, ŷ, ω)−

∞∑
i=1

σiXi(ω)ri(x̂, ŷ)
)2

dx̂dŷ. (.169)

As in the orthogonal projection used in the stochastic space for computing the PCE coefficients,
we can proceed here similarly, but in the spatial domain using the inner product

〈a(x̂, ŷ), b(x̂, ŷ)〉L2(D) =
∫
D
a(x̂, ŷ)b(x̂, ŷ)dx̂dŷ. (.170)

Then, the coefficient of the expansion can be computed from

σiXi =
∫
D Θ(x̂, ŷ, ω)ri(x̂, ŷ)dx̂dŷ

γi
. (.171)

However, we would like that we use here a special set of ri basis functions, the one that maximises
the captured variance for a certain truncation of the expansion. Thus, we determine the spatial
functions by the maximisation problem

∑
i

E[(σiXi)2] =
∑
i

E

[(∫
D Θ(x̂, ŷ, ω)ri(x̂, ŷ)dx̂dŷ

)2(∫
D ri(x̂, ŷ)ri(x̂, ŷ)dx̂dŷ

)2
]

=
∑
i

σ2
i → max . (.172)
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In the above term, the expected value of the nominator can be rewritten in terms of the covari-
ance function

E

[(∫
D

Θ(x̂, ŷ, ω)ri(x̂, ŷ)dx̂dŷ
)2
]

=
∫
D

∫
D
E[θ(x̂, ŷ, ω)θ(x̂′, ŷ′, ω)]︸ ︷︷ ︸

=CovΘ̃

ri(x̂′, ŷ′)ri(x̂, ŷ)dx̂′dŷ′dx̂dŷ,

(.173)

which can be shown by the following equality∫
D

∫
D
E[θ(x̂, ŷ, ω)θ(x̂′, ŷ′, ω)]︸ ︷︷ ︸

=CovΘ̃

ri(x̂′, ŷ′)ri(x̂, ŷ)dx̂′dŷ′dx̂dŷ = (.174)

= E
[∫
D
θ(x̂, ŷ, ω)ri(x̂, ŷ)dx̂dŷ

∫
D
θ(x̂′, ŷ′, ω)ri(x̂′, ŷ′)dx̂′dŷ′]

]
. (.175)

Then the term to be maximised is

〈
∫
D CovΘ̃(x̂, ŷ, x̂′, ŷ′)ri(x̂′, ŷ′)dx̂′dŷ′, ri(x̂, ŷ)〉L2(D)

〈ri(x̂, ŷ), ri(x̂, ŷ)〉L2(D)
.

It can be shown that the maximisation problem is equivalent to solving the eigenvalue problem∫
D

CovΘ̃(x̂, ŷ, x̂′, ŷ′)ri(x̂′, ŷ′)dx̂′dŷ′ = σ2
i ri(x̂, ŷ) (.176)

for the ri(x̂, ŷ) eigenfunctions and for the λi = σ2
i eigenvalues. As the ri(x̂, ŷ) eigenfunctions are

in an infinite dimensional space, for a numerical solution one has to discretise this on some finite
dimensional space by approximating ri(x̂, ŷ) by a finite linear combination of some fixed spatial
basis functions Ψj(x̂, ŷ), like, for example, the FEM piecewise linear basis functions used for the
FEM computation. We restrict these basis function to be some nodal basis with the Kronecker
property

i(xj) = δij . (.177)

The approximation of the eigenfunctions reads

ri(x) ≈ rh,i(x) =
n∑
j=1

Ψj(x̂, ŷ)vji = ΨV, (.178)

where Ψ is a row vector with the fixed spatial Ψi(x̂, ŷ) basis functions and V is a matrix with the
vji coefficients of the expansion. The covariance can be also discretised with the help of the Ψi

nodal basis in the form

CovΘ̃(x̂, ŷ, x̂′, ŷ′) ≈ Covh,Θ̃(x̂, ŷ, x̂′, ŷ′) =
∑
l,m

CovΘ̃(xl, yl, xm, ym)︸ ︷︷ ︸
=Clm

Ψl(x̂, ŷ)Ψm(x̂′, ŷ′) (.179)

= ClmΨl(x̂, ŷ)Ψm(x̂′, ŷ′)), (.180)
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where Clm are the elements of the covariance matrix computed from the discrete spatial points. To
solve the eigenproblem (.176), we formulate it in a weak form, using the Galerkin method, that is
by requiring the residual∫

D
Covh,Θ̃(x̂, ŷ, x̂′, ŷ′)rh,i(x̂′, ŷ′)dx̂′dŷ′ − λiri(x̂, ŷ) (.181)

to be orthogonal to the approximating subspace, or in other words orthogonal to all the spatial
basis functions Ψj . This orthogonality condition reads

〈
Ψj(x̂, ŷ),

∫
D

Covh,Θ̃(x̂, ŷ, x̂′, ŷ′)rh,i(x̂′, ŷ′)dx̂′dŷ′ − λirh,i(x̂, ŷ)
〉
L2(D)

= 0 j = 1 . . . n

(.182)〈
Ψj(x̂, ŷ),

∫
D

Covh,Θ̃(x̂, ŷ, x̂′, ŷ′)rh,i(x̂′, ŷ′)dx̂′dŷ′
〉
L2(D)

=
〈

Ψj(x̂, ŷ), λirh,i(x̂, ŷ)
〉
L2(D)

j = 1 . . . n.

(.183)

Using the discretised approximations (8.53) and (.179), the left side of the orthogonality condition
(.183) modifies to〈

Ψj(x̂, ŷ)
∫
D

Covh,Θ̃(x̂, ŷ, x̂′, ŷ′)rh,i(x̂′, ŷ′)dx̂′dŷ′
〉
L2(D)

=

=
∫
D

Ψj(x̂, ŷ)
∫
D

Covh,Θ̃(x̂, ŷ, x̂′, ŷ′)rh,i(x̂′, ŷ′)dx̂′dŷ′dx̂dŷ

=
∫
D

∫
D

Ψj(x̂, ŷ)Covh,Θ̃(x̂, ŷ, x̂′, ŷ′)rh,i(x̂′, ŷ′)dx̂′dŷ′dx̂dŷ

=
∫
D

∫
D

Ψj(x̂, ŷ)
∑
l,m

ClmΨl(x̂, ŷ)Ψm(x̂′, ŷ′)
∑
k

vkiΨk(x̂′, ŷ′)dx̂′dŷ′dx̂dŷ

=
∑
l,m,k

Clmvki

∫
D

∫
D

Ψj(x̂, ŷ)Ψl(x̂, ŷ)Ψm(x̂′, ŷ′))Ψk(x̂′, ŷ′)dx̂′dŷ′dx̂dŷ

=
∑
l,m,k

Clmvki

∫
D

Ψj(x̂, ŷ)Ψl(x̂, ŷ)dx̂dŷ︸ ︷︷ ︸
Gjl

∫
D

Ψm(x̂′, ŷ′))Ψk(x̂′, ŷ′)dx̂′dŷ′︸ ︷︷ ︸
Gmk

=
∑
l,m,k

ClmvkiGjlGmk =
∑

GjlClmGmkvki

= GCGvi, (.184)
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where C is the covariance matrix and G is the Gramian matrix of the Ψi nodal basis and vi is the ith
column of the V matrix. Using the approximation (8.53), the right hand side of the Equation (.183)
reads 〈

Ψj(x̂, ŷ), λirh,i(x̂, ŷ)
〉
L2(D)

=
∫
D

Ψj(x̂, ŷ)λi
∑
k

vikΨk(x̂, ŷ)dx̂dŷ

= λi
∑
k

vik

∫
D

Ψj(x̂, ŷ)Ψk(x̂, ŷ)dx̂dŷ︸ ︷︷ ︸
Gjk

= λiGvi. (.185)

Using the above two forms, the discretised weak form of the eigenvalue problem (8.52) boils down
to the discrete generalized eigenvalue problem

GCGvi = λi︸︷︷︸
σ2
i

Gvi. (.186)
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.4 Appendix D: Computation of the PCE Coefficients by Orthogonal
projection

In the following, we show how to approximate the response y, a function of some random variable
ξ with a linear combination of the orthogonal polynomials Φ1(ξ),Φ2(ξ), ..., such that the approxi-
mation yh minimizes

||εh||2L2(Ω) = E
[
ε2
h

]
= E

[
(y− yh)2

]
=
∫
Rs

(y(ξ)− yh(ξ))2
πΞ(ξ)dξ. (.187)

The above quadratic form is induced by the norm generated from the inner product defined as

〈u, v〉L2(Ω) = E [uv] =
∫
Rs
uvπΞdξ, (.188)

thus, the norm can be written with the help of this inner product

||u||L2(Ω) =
√
〈u, u〉L2(Ω) (.189)

and the value to be minimized is the squared induced norm, that is,

E
[
ε2
h

]
= 〈εh, εh〉. (.190)

The task is to approximate the function y, lying in some infinite dimensional space, in a subspace,
a finite dimensional space spanned by the given orthogonal polynomials. This problem is similar
to approximating let’s say a three-dimensional vector in a plane. The solution to this later task is
to project orthogonally the vector to the approximating plane, which will minimize the projection
error, the distance between the original vector and the projected one. Similarly, in the functional
space, one can do the same thing, only we need to define a proper inner product, with which we
can define orthogonality. By orthogonally projecting to the subspace, the norm generated from the
inner product of the error is minimized.

Returning to our original task, it is easy to show that the minimum of the quadratic form is
attained when the approximation error is orthogonal to each of the stochastic polynomials. This
orthogonality is written by

〈(y− yh) ,Φj〉 = 0 ∀j = 0 . . . (M − 1). (.191)

Plugging in the approximation (8.28) into this orthogonality equation, rearranging it and using the
linearity of inner products and the orthogonality of the PCE polynomials in Equation (.191), the
υi coefficients can be expressed

〈 y−
M−1∑
i=0

υiΦi

)
,Φj〉 = 0 ∀j = 0 . . .M − 1 (.192)

〈y,Φj〉 =
M−1∑
i=0

υi 〈Φi,Φj〉︸ ︷︷ ︸
γiδij

∀j = 0 . . .M − 1 (.193)

υi = 1
γi
〈y,Φi〉 = 1

γi
E [yΦi] = 1

γi

∫
Rs

y(ξ)Φi(ξ)πΞ(ξ)dξ. (.194)
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