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Parameter Identification Based on Conditional Expectation

Elmar Zander,“* Noémi Friedman?® and Hermann G. Matthies*

Parameter identification is an important issue in many scientific and technical disciplines. We
present here a technique that updates our knowledge of the system parameters based on the so-
called conditional expectation. It will be shown that for linear systems with normally distributed
uncertainties this reproduces exactly the Bayes’ posterior and is thus a non-linear extension of the
Kalman filter.

4.1 Introduction

Estimation of model parameters is a very common problem in the natural and technical sciences.
To eliminate problem specific details we can cast it into the following abstract form: Let g be a
vector of parameters and u the complete state of the system; then there is a relation

Aluiq) =0 (4.1)

where A is a model of the system, given, for example, by a set of algebraic or differential equations.
If the model is well-posed in the sense of Hadamard [84], then there is a unique solution for u given
the parameters ¢ and this dependence is continuous in ¢ — that is, small changes in ¢ invoke only
small changes in u.

In many cases of interest, the full state of the system u is not directly observable. Rather, we
can observe some measurements performed on the system that give us data

y=M(u;q) +e (4.2)

which depends on the state v and possibly also on the parameters ¢ and is usually contaminated
by measurement noise €. Here, M signifies a mathematical model of the measurement process.

Example 7 A simple example for demonstration is the flow of groundwater where parameters like
permeability or boundary conditions shall be inferred from measurements inside of the domain. A
standard linear model for groundwater flow is given by Darcy’s equation

-V (kVu) = f
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on the domain D with Neumann conditions
kVu =g

on the boundary OD. Here, u is the hydraulic head, f describes the sinks and sources inside the
domain, and g denotes the inflow and outflow via the boundary.

Let the hydraulic head be measured at N locations x1,...,xn in D and the parameters to be
inferred q = (k, f,g), which are assumed to be constant on the domain for simplicity. The system

model is then given by
oy (-V - (kVu) - f
a0 = (oY)

and the measurement operator by'

M(“? Q) = (U($1)7 cee ’u(xn))

Using the system model A, the measurement model M, and values of the parameters g we
can make predictions about the expected outcome of the measurements. We call this prediction the
system response or response surface G(q). However, given some actually observed measurements y,, ,
most likely they will not be identical to the predicted measurements y = G(q). This disagreement
between measurement and prediction can have multiple causes of which the most important ones
are the aforementioned measurement error €, wrong values for the parameters ¢ not consistent
with the true parameters ¢ue, numerical errors in computing v or y, and finally, an inadequate or
inaccurate model for A or M, maybe omitting important physical effects.

In this chapter, we will only deal with errors of the first and second kind, that is, we assume the
models are adequate for the process under investigation and the computational errors are negligible
compared to the other types of errors. For the treatment and incorporation of modelling errors we
refer the interested reader to the literature; see, for example [179, 170].

The disagreement between y and y,, can be seen as nuisance, but also as an opportunity to
infer better knowledge about the true values of the parameters. In classical parameter estimation
procedures we can use this information to update our belief about the value of the parameters q.
A common approach is to choose a new set of parameters ¢’ by minimising the distance between
the predicted value y and y,, with respect to some loss or cost function. However, this is very often
an ill-posed problem as the minimiser is usually not uniquely determined. A typical way to go is to
use some regularisation scheme, for example, restricting ¢’ in some norm or the difference between
q and ¢’ in another.

Though those schemes can turn the problem into a well-posed one, they suffer from being
somewhat arbitrary and there is usually no good reason to choose one regularisation scheme over
another — at least from a modelling point of view, maybe from a computational viewpoint there is.

In this chapter, we choose the Bayesian point of view to which this book is also devoted,
acknowledging our lack of knowledge by modelling the parameter not as a single, deterministic
value, but as a random variable (see Section 4.1.1). Our uncertainty about the true value is then
determined by the variance of the random variable. Point estimates for ¢ can then be given by the
mean or median of the random variable.

In order to distinguish deterministic values from random variables we will use small letters for
the former and capital letters for the latter. So, @ would denote the random variable corresponding

IFor a more realistic and elaborate example see Chapter 8.
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to the parameters and Y the one for the measurements. The aim of the present chapter is therefore
to present a method to compute a new random variable ', such that actual measurements ¥,,, of
Y are taken into account and the probability distribution of @’ is adjusted accordingly.

4.1.1 Preliminaries—basics of probability and information

Note, that a thorough treatment of the topics discussed here would need some familiarity with
measure theory, which we do not assume here and only give an intuitive (mathematicians would
call it sloppy) introduction to the definitions and ideas, that are needed in later sections. For more
formal definitions and exact theorems see, for example, [80].

The mathematical definition of a probability space consists of three ingredients: a set of elemen-
tary events 2, a set of events F — mathematically this is a structure called a o-algebra — and a
probability measure IP. The elementary events w € () are the singular outcomes that will happen by
chance or are the possible underlying events that characterise our insufficient knowledge, depending
on whether we model with the probability space truly random events (aleatory uncertainty) or lack
of knowledge (epistemic uncertainty).

For practical purposes it is often not necessary — and often also not possible — to know which
elementary event exactly happened, but rather whether it lay in some specific subset of Q or not.
Such a set is commonly called an event. As the notion of an “event” is not really suitable for the case
that the set describes uncertain knowledge, we call it here a “hypothesis”, meaning the proposition
whose true but unknown value lies inside the given set.

This also simplifies the definition of the probability measure, as it has to be defined only for
those events in F. Mathematically, the probability measure P : F — R* is thus a function from
the set of events F to the positive real numbers. Since from all possible events in {2, one must have
happened (or equivalently, one value of w must be the true value), we have the condition P(Q) =1,
which is also called the normalisation condition.

The notion of hypotheses or events as subsets of the sample space € is also connected with that
of information. Practically, we are usually not interested in which elementary event exactly will
happen, but rather in the answer to questions like “Will it rain tomorrow?” or “Will the structure
withstand the load?” If we put all outcomes w for which the answer is “yes” into a set, say A, we
can only answer questions about the probability of those hypotheses, when this set A is an element
of F. From this it becomes clear, that the more refined the subsets in F are, the more detailed
questions we can answer within our probability model.

4.1.1.1 Random variables

In most elementary texts on probability, a random variable is a variable that “somehow” takes on
different values according to some probability distribution. Though for basic results in probability,
such a casual notion will suffice, we need a more formal approach here.

In the formal, axiomatic treatment of probability after Kolmogorov [112] a random variable, say
X, is a so-called measurable function from the probability space (€2, F,P) into the real numbers.
That means that every “sensible” subset of the real numbers? U has a preimage in F, that is, there
is a set A € F such that X(A) = U, or equivalently X }(U) € F.

By collecting all preimages of a random variable, we can thus also define a sigma algebra. This
is often denoted by o(X), the sigma algebra generated by the random variable X. The sets in

2Mathematically, those sets are called the Borel sets, but we don’t need that kind of mathematical rigour here.
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0(X) define thus what kind of information can be differentiated by observing values of the random
variable X.

In some contexts, random variables that take values in a finite dimensional vector space are called
random vectors or if the target space is a more general topological vector space (like a Banach or
Hilbert space) they are called random elements. We will generally not make this distinction here
and call all of them random variables.

4.1.2 Bayes’ theorem

Although a detailed introduction to Bayes’ theorem and Bayesian inverse problems was provided
in Chapter 1, a summary is provided here for the sake of consistency and unified notation.

As discussed in Chapter 1, epistemic uncertainties due to a lack of knowledge are not intrinsic to the
natural or technical system under investigation itself, but rather characterise our state of knowledge
about that system. We encode that knowledge into specifying probabilities for different hypotheses
over that state or over the parameters describing the system. Gaining knowledge by observing
or performing measurements using the system will consequently increase our knowledge and thus
modify the probability we will assign to these hypotheses H € F. We will call the probability
measure before we have the new information of the prior probability and after incorporation of the
information of the posterior probability.

Let us say that the information that we have — maybe from gathering data by performing
measurements on the system — is codified in some set F € F, also called the evidence. We are
interested now in the probability of some hypothesis H, given that we have already learned the
evidence E — this probability will be denoted by P(H|E). Now, all events for which H is true,
given that we have the additional information E, have to be in the intersection H N E, and thus
the probability of the hypothesis H given knowledge of the evidence E must be proportional to
that of H N E. Because the probability of E given that F is known must trivially be 1, it becomes
obvious that the constant of proportionality must be 1/P(FE). Thus, we can define the conditional
probability of H given E by
P(HNE)

P(H|E) = 4.
As this relation must also be true when the roles of H and E are interchanged, that is,
P(ENH)
P(E|H) = ——— 4.4
(BIH) = =5 (1.4)
it follows easily that
P(E|H)P(H)
P(H|IE)= ——~———+ 4.
(H1E) = ==, (45)

which is the well-known Bayes’ theorem. In the Bayesian framework, the terms appearing in Equa-
tion (4.5) have special meanings: P(H) is called the prior probability or just the prior, which is the
state of knowledge before any measurements are available, while P(H|E), the posterior probability
represents the state of knowledge after having learned the evidence. P(E|H) is called the likelihood
and denotes the probability of measuring the evidence given that the hypothesis H is true.

The significance of the Bayes’ theorem stems from the fact that it relates quantities that are
easily calculable with quantities that are of interest. For example, it is generally easy to calculate
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the likelihood of getting the evidence E given that the hypothesis is true, since this is a direct
consequence of the modelling assumptions. But what is really of interest (and this is in contrast
to classical statistical methods such as maximum likelihood) is the probability of the hypothesis
being true after acquiring the evidence, and this link can be established by Bayes’ theorem. One
possible drawback is that for the calculation of P(H|E), we need to make assumptions about the
prior probability of the hypothesis P(H). The choice of the prior is often a subjective issue, which
caused some controversy about the objectivity of Bayesian methods. However, in classical statistical
methods there are also hidden assumptions which have to be made explicit in the Bayesian frame-
work. Furthermore, there have been many advances to make the prior assumptions less subjective
by using, for example, uninformative priors or empirical Bayes methods. For detailed accounts see
[36, 74].

Example 8 Referring back to the context given in the introduction where we had parameters q € Q
and measurements y € YV, the hypothesis H could correspond to the event that the parameters q are
in some specific subset of the parameters space Qi C Q, that is, H = {w|Q(w) € Qu} = Q1 Qx).
The evidence E could correspond to the event that the measurements y lie in a specific subset of the
space Y C Y, that is, E = {w|Vp(w) € Yg} =Y 1 (Vg).

In many practical problems we need to condition on single measurements Yz = {y,,}. Unfortu-
nately, if the range of the measurements is continuous, the probability of such an event is zero in
general. Since then the evidence P(E) and the likelihood P(E|H) is zero, the right hand side of Equa-
tion (4.5) is undefined. We can avoid this by conditioning on a finite set Vg = {y|d(y, ym) < Ay},
where d is some distance function, for example, the Euclidean distance. Letting Ay go to zero and
doing the equivalent thing for the hypothesis leads to

_ m(ylg)m(q)
m(qly) = ) (4.6)

where 7 is the probability density of the given random variable. This is called the Bayes’ theorem
for densities.

Note that this limiting process can be somewhat problematic, as the density is not invariant
under non-linear transformations of the measurement variable. For an example, the so-called Borel-
Kolmogorov “paradox”, see, for example, [102]. However, if the limit process is consistent with the
measurement process, that is, the measured values are taken as is or only linearly transformed, the
problems can be circumvented.

4.1.3 Conditional expectation

The paradoxes involved in using conditional probabilities can also be resolved by switching to
conditional expectations instead. The classical way to define the conditional expectation is with
respect to an event.

In the case that @ is a continuous random variable and F C F is an event, the conditional
expectation of @) given F is given by

BQIE] = g [ QPa) (4.7)

Here, P(dw) means the probability of the infinitesimally small set of size dw located at w, which
can also be written as m(w)dw if the P has continuous density 7 on Q.
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In case the event has zero probability, which again happens for events E of the form Y ~*({y,}),
Equation (4.7) also becomes indefinite. The key in generalising this is to first rearrange the formula

into
/ E[Q|E] P(dw) = / Qw)P(dw) (438)
Q E

which is trivially true, if P(E) = 0. Now, we define the conditional expectation as a random variable

Qv by requiring that
[ av@p) = [ ap) (49)
E E

holds for all E € o(Y). The conditional expectation Qy is very often denoted by E[Q|Y], but we
prefer the notation @)y, because it makes it more evident, that this is a random variable and not a
deterministic value.

It is apparent from the last equation that the conditional expectation E[Q|Y] depends only
on the permitted sets @ € o(Y) and is thus independent of transformations of the measurements
Y. Counter-intuitive results such as the Borel-Kolmogorov paradox are thus impossible in this
context and we will thus base our updating strategy rather on the conditional expectation than on
conditional probabilities.

Note, that the definition of the conditional expectation as given above, only implicitly defines
it, but does not say how to compute it. However, there is the closely related notion of the minimum
mean square error estimator which allows efficient numerical approximations as will be shown in
the next section.

4.2 The Mean Square Error Estimator

We call an estimator any possible function from the space of measurements ) to the space of
unknowns Q. From all of these functions — from which most would not even deserve the name
estimator in the usual sense — we can select one by defining a measure on how close the estimates
©(Y') come to the true value Q.

A common measure of closeness, which also has nice analytical properties, is the mean squared
error, defined in the present setting by

st = E[|Q — o(Y)|?] (4.10)
/ 1Q(w) — o(¥ (@) B(dw) (4.11)

This assigns to each estimator ¢ the mean value of the squared error that is made, when trying to
predict the parameter () from any possible realisation of the measurement random variable Y. The
minimum mean square error estimator ¢ is the one that minimises the mean square error eysg,
and can be written as
¢ = arg min E[[|Q — o (¥)]2). (4.12)
0eL(2,)
Here, £(9Q, ) denotes the space of measurable functions, which includes a large amount of functions,
for example, all the continuous functions from Q to ).
It can be shown that the MMSE estimator ¢ is the conditional expectation of ) given the
measurements Y, that is,
2(Y) = Qy. (4.13)
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REMARK 1.1: A heuristic argument that helps to see the equality in (4.13) is, that for some
random variable X, the real number u that minimises E[(X —u)?] is given by u = E[X]. For simple
random variables, which take on only finitely many different values, this leads directly to the proof
taking X = @ - 1y—, for some y € J and 14 being the indicator function for the set A. For a more
rigorous treatment see, for example, [147] or [191]

4.2.1 Numerical approximation of the MMSE

In Equation (4.12) the minimisation is done over the whole space of measurable functions £(Q, ).
Because this is in general an infinite dimensional space, we have to restrict it to a finite dimensional
subspace V,, C £(Q,)) to make the problem computationally feasible. Let this space be defined
by basis functions ¥, where v C J is an index and J the set of indices. The functions ¥, can be,
for example, some sort of multivariate polynomials and the 7y corresponding mitiindieesy but other
function systems are also possible (e.g. tensor products of sines and cosines). An element ¢ of this
function space has a representation as a linear combination

ey) = 00y (y) (4.14)

yeJ

of these basis functions. Let us suppose for the moment that @ is a scalar-valued random variable
and the coefficients ¢, are therefore scalar-valued, too. Minimising expression (4.11) for ¢ then
becomes equivalent to solving

0

T%E[(Q - 27: @”rglv(Y))Q] =0 (4.15)

for all § € J. Using the linearity of the derivative operator and of the expectation leads to

S 0 B[, (V) 05(Y)] = E[QUs(Y)]. (4.16)

As this is a linear system of equations we can rewrite it in the compact form

Ap=D>b (4.17)

with
[Als = E[,(Y) &s(Y)], (4.18)
[b]s = E[Q ¥s(Y)] (4.19)

coefficients . collected in the vector ¢. Note, that for the actual computation some linear ordering
needs to be imposed on the indices v € J, but this is not essential here and can be left to the
implementation.

If the unknown @ and the measurements Y are given by polynomials — like, for example, a
Wiener polynomial chaos expansion (PCE) or a generalized polynomial chaos expansion (GPC)
[75, 192] — and the function space V,, consists of polynomials, the expectations could in principle be
computed exactly using the polynomial algebra. However, this is computationally very expensive
and non-trivial to implement. More efficient is to approximate A and b by numerical integration
via

E[#, (V) Ws(Y)] & > wels (Y (&) Ts(Y (&) (4.20)
k
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and

E[QWs(Y)] = > wiQ(&k) Us(Y (&))- (4.21)
k

Choosing an integration rule of sufficient polynomial exactness these relations can also be made
exact.

REMARK 1.2: Suppose Y and () are polynomials of total degree py and pq, respectively, and
¢ has total degree p,. Then the maximum degree in the expression for A will be 2pyp, and a
Gauss integration rule of order pyp, + 1 will suffice. For the computation of b a rule of order
[(po + pyp, + 1)/2] will suffice for exactness of the integration. In practice, usually integration
rules of lower degree of exactness have shown to work well.

In the case that @ is a vector-valued random variable, which it usually is, the component func-
tions ¢; of ¢ in expression (4.11) approximating the components @Q; for ¢ € [1...n| are completely
independent. So, the problem of computing the minimiser in Equation (4.15) essentially factors into
n independent problems and can be done component-wise. In order to compute the estimator ¢
now for a vector valued @ the vectors ¢; and b, (defined by Equation (4.19) for each Q;) can be
collected into matrices and the whole system

Alpr,- - pn] = [b1,- -, by (4.22)

solved at once, which makes the process often more efficient, especially if factorisation of the matrix
A is involved.

4.2.2 Numerical examples

In this section, we present two examples for the numerical approximation of the conditional expec-
tation via the MMSE. In the first we take two random variables for Q) and Y — created arbitrarily via
some multivariate polynomials with random coefficients — and approximate the MMSE estimator
from Y to Q. It will be shown that the approximations ¢,(Y") converge to @ if the measurements
Y give enough information about the underlying probability space. If the measurements are not
sufficiently informative it can be seen that only the mean square error is better minimised with
increasing approximation order p. In the second example we have Y given by a non-linear measure-
ment function plus some additive noise, for which the analytical computation of the conditional
expectation and Bayes’ posterior is possible. This allows better comparison and exact computation
of the errors made in the MMSE approximation.

Example 9 In the following examples, the sample space Q is R with a standard Gaussian product
measure, which can be thought of simply as a collection of d independent standard Gaussian random
variables. If the number of parameters is denoted n, then the random wvariable Q) is a function
Jrom Q to R™, which we create artificially as a vector of n polynomials of total degree p, with
randomly generated coefficients in the d standard Gaussian random variables each. The number of
measurements is m and the random variable Y : Q@ — R™ 1is generated likewise as m multivariate
polynomials in d variables up to total degree p,. The non-linear MMSE was then used to approximate
the “unknown” random vector @@ by the “measurements” Y .

Figure 4.1 shows the non-linear MMSE for d = m = n = 2 and different values of p,, the
polynomial degree of the estimator ¢. Since d = m the estimator can be expected to converge for
large values of p,, that is, lim, . ||Q — @(Y;py)|| = 0. This can be seen in the figures by noting
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that the crosses (x), denoting the approximated values Q = ¢(Y;py), are increasingly better centered
in the circles (o), denoting the true values of Q, in the sequence of increasing p,,.

In the two leftmost graphs in Figure 4.2, one can see the MMSEFE estimation with two-dimensional
sample and parameter space, like in the previous example, but only one measurement, that is, m = 1.
As expected, the estimate can be only a one-dimensional subset, which is in the left figure for p, =1,
the linear estimator, a straight line. For the cubic estimator with p, = 3 in the middle figure, the es-
timate is non-linear, and matches better the shape of the original distribution. However, convergence
cannot be achieved as there is just not enough information available in the measurements.

In the rightmost figure the parameters are m = n = 3, d = 5 and p, = 4. FEven though, the
number of measurements is the same as the number of parameters to estimate and the polynomial
degree is relatively high, there is no apparent convergence, since the dimension of the sample space
d is higher than m. In this setting, a measurement y is not sufficient to determine the exact event
w but only some subset of Q that can have led to it, and thus the determination of the corresponding
parameter q has still some remaining uncertainty. So, even for high value of p, no convergent
approximation can be expected.
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Figure 4.1: MMSE estimation with increasing polynomial degrees p, = 1, 2, and 3 from left to right
(for m = n = d = 2). Shown are the true parameter values ¢; in the @-plane (marked by o’s) and
the MMSE estimates §; = ¢(y;) (marked by x’s).
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Figure 4.2: MMSE estimation with m = 1,p, = 1 (left), m = 1,p, = 3 (middle), and m = 3,d =
5,p, = 4 (right). True values ) are marked by o, and estimated values Q= ©(Y') are marked by x.
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Example 10 In this example, the measurement function is non-linear, but still conditional prob-
abilities and conditional expectation can be computed analytically. Let Q@ have a uniform prior
Q ~ U[-1,1]. Let E have a uniform distribution E ~ U[—0,d] with § = 0.5. Let the system re-
sponse G be given by y = M(q) = sin(q), such that Y = sin(Q) + E. Then the MMSE is given
by

q = ¢(y) = 1 (arcsin(min(sin(1), y + 6)) + arcsin(max(—sin(1),y — 4))) (4.23)
The MMSE and polynomial approximations of degree 1, 3, and 5 (even degree terms are zero since
& is an odd function) are shown in Figure 4.3 (left). The discontinuities in the prior and the error
probability density functions introduce kinks in the MMSE at +(sin(1) — §), where the polynomial
approximation is not very good. This can also be seen in Figure 4.3 (right), where the error is
displayed, by reduced convergence at those points. This behaviour is mitigated for smooth prior and
error distributions with much faster convergence of the polynomial approximations.

-1 -0.5 0 0.5 1 -1 —0.5 0 0.5 1
Yy Yy

Figure 4.3: Approximation of the conditional expectation for different polynomial degrees (left) and
difference to the true conditional expectation (right).

4.3 Parameter identification using the MMSE

The MMSE as derived in the last sections can be used directly for point estimates of the parameters
q, that is, the posterior mean ¢, = ¢(y,,). However, the mean is often not informative enough,
because it does not tell us anything about how certain this value is or how much trust we can
put into it. In a Bayesian framework, we thus want to have a distribution which characterises the
posterior density.

4.3.1 The MMSE filter

Suppose we have a parameter ¢ € Q and a corresponding measurement value y = M (u;q) € V.
From the section about the MMSE we know that ¢(y) is the best estimate for ¢ in the mean square
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sense. In terms of the random variables, we can therefore restate that as: for each w, the conditional
expectation E(Q|Y)(w), or equivalently ¢(Y (w)), is the best estimate for @ given Y (w). We can
thus decompose @ into two components such that

Q=(Q—-Qy)+Qy
——

= Qy +Qv

where Qy is the conditional expectation and Q¥ is the residual part of Q. Qy and Q¥ are orthog-
onal, that is, uncorrelated, random variables. This can be easily seen, because QQy follows from the
minimisation of E||Q — ¢(Y)[|?, and thus QT = Q — @y must be orthogonal to ¢(Y) for every ¢
including Qy = ¢(Y).?

Two uncorrelated random variables that are known to be (jointly) Gaussian are also independent.
So, if Qy and Q¥ are Gaussian, then they are independent and thus Q7. is also independent of Y and
hence does not contain any information that can be inferred from the measurements Y. In this case
@y can be called the “predictable part” of the parameters @ by Y, and Q% the “unpredictable part”,
as there is no information in Y that can reduce our uncertainty in @)y. If the random variables are
not Gaussian, then this is not strictly true, that is, Q¥ does contain information from Y. However,
in many cases where the random variables are not too far from Gaussianity this assumption is a
good approximation. Quantitative measures or estimates in this case are yet missing but currently
under investigation.

The MMSE filter is now based on the following idea: the “predictable part” of () is the component
of the parameter uncertainty that can be removed by knowledge of an outcome of measurement
Y. That means, if we have a concrete measurement y,, we can replace the Qy in Equation (4.24)
below by the concrete prediction g,, = ¢(ym), the best estimate for the parameters. The new model
Q" with reduced uncertainty is given by best estimate ¢,,, plus remaining uncertainty Q%C, that is,

Q' =aqm+ QY (4.24)
This can be written as an update equation for @ in the form
Q' =Q+ d(ym) — (YY) (4.25)

or using conditional expectations

Q' =Q+E[Q)Y =yn] - E[QIY], (4.26)

which constitutes the so-called MMSE filter.

The implementation is straightforward given that the MMSE has been calculated beforehand.
Depending on how the random variables (Q and Y are represented in the code, the representation
of @' should be chosen accordingly. For example, if Q and Y are given as functions, then Q' could
be defined as a new function that forwards its arguments to @ and Y respectively, like

Q =w— (Q(w) + G — Z oy (Y(w))) (4.27)

yeJ

3This can be visualised in the following way: Suppose in 3D space we have a point and a plane and we are looking
for the point in the plane that minimises the distance to the original point. Then the residual, that is, the vector from
the point to the minimiser is orthogonal to every vector in the plane. In our stochastic setting, the point corresponds
to @, the plane corresponds to the subspace in Q made up by all p(Q) and the Euclidean distance to the mean
squared error. For a rigorous treatment in Hilbert spaces see, for example [123, Classical Projection Theorem].
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If Q and Y are given via GPC expansions, then the GPC for @’ can be attained from the above,
for example, by projection. Before we show numerical examples for the MMSE filter, we will first
show that under certain conditions the filter is equivalent to the well-known Kalman filter, and can
thus be regarded as a non-linear extension of the latter.

4.3.2 The Kalman filter

The Kalman filter is a numerical procedure for state estimation in dynamical systems [107]. Tt
consists of a prediction step that describes how the distribution of the state estimate develops over
one time step and a data assimilation step that incorporates new, but uncertain sensor data into
the current state estimate. In the setting of parameter estimation, we are only interested in the data
assimilation step, where the current state of the Kalman filter now corresponds to the parameter
vector we want to estimate.

The model underlying the assimilation part of the Kalman filter can be summarised as follows:
Let the current best estimate for the uncertain parameters be described by the random variable
@ having a Gaussian distribution with mean ¢ and variance Cg, that is, Q@ ~ N(g,Cgq). The
observations shall be given by a measurement model Y = HQ + E where H is the observation
matriz and F is a mean-free Gaussian noise term with covariance Cg, i.e. E ~ N(0,CFg). Then,
after observing y,,, the best new estimate for the mean is given by

¢ =q+K(ym — Hq) (4.28)

where K = C’QHT (Cg +HC’QHT)’1 is the Kalman gain, and the variance of this updated estimate
is given by
Co =(I—-KH)Co(I -KH)" + KCgK ", (4.29)

that is, then Q' ~ N(¢’, Cq). For a more extensive treatment we refer the interested reader to [123]
and [130]. We show now that under the same conditions, that is, a linear observation operator and
Gaussian uncertainties, the MMSE filter leads to exactly the same equations.

Since the Kalman filter is a linear filter, the only functions in the basis will be the constant and
linear polynomials that we assign to the basis ¥; for (i =0...m), that is,

Uo(Y)=1,01(Y)=Y1,...,0,(Y) =Y,,. (4.30)
Since we assume () to be vector valued, we have trial functions of the form
@i(Y) = a; + B Y1, BimYim (4.31)

with i = 0...n. Collecting the ; in a vector & = (a1,...,q,)" and the £;; in a matrix K (the
naming will become clear later) such that (K);; = §;;, we can write this as

oY) =a+KY (4.32)

In this setting, Equation (4.22) becomes

[IIEE[[;]] EI%’YYTT]]] [;TT] - {IE]E[}[’QQTT]}] : (4.33)
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Using the expressions

EYY '] =Cy + Cg + py iy (4.34)
EYQ"] = Cyvq + py o, (4.35)

where Cy = E[(Y — iy )(Y —py') '] is the covariance matrix of Y and Cyq = E[(Y — uy )(Q —pg) ']
is the cross covariance matrix between Y and @, we get

T T T
Mly Cy + CL;Y-F MYN)T/] [;?T] B {CYQ iQuyqu ' (4.36)
From the first row of Equation (4.36), we can express « as
= pug — Kpy (4.37)
and inserting this into the second row we attain
K =Cqy(Cy +Cg)™, (4.38)
whose expression corresponds to the K Kalman gain. The estimator then reads:
H(Y) = no + K(Y — py) (4.39)
and the MMSE filter with the orthogonal decomposition becomes
Q' =Q oY)+ ¢(ym) =Q + K(ym — Y). (4.40)

If we compute the mean and the variance of both sides of the last equation we get the usual update
equations for the Kalman filter

ChL=Cq+KCyK'. (4.42)

This means, in the linear case, the MMSE filter reduces to the Kalman filter, and the former can
thus be seen as a non-linear generalization of the latter. In Section 4.3.3, a comparison of the
performance between the MMSE and the Kalman filter for a simple non-linear example will be
shown.

4.3.3 Numerical examples

In the following, we show two numerical examples for the MMSE filter with quadratic non-linearities.
The examples were chosen such that the action of the filter can well be studied. For a realistic case
study, the reader is referred to Chapter 8.

Example 11 The one-dimensional case is well-suited for comparison to the Kalman filter. Let the
system model be given be the quadratic relation

A(u;q) =u —a(g—qo)* =0 (4.43)
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with qo = —3 and a = 0.03 and a measurement operator given by the identity
M(u; q) = u. (4.44)
Thus, the relation between the parameters and the measurements is given by the response surface
G(q) = alg — q0)*. (4.45)

As a prior, we assume a normal distribution with standard deviation 2, that is, Q ~ N(0,22). The
true value of the parameter is quuwe = 3, of course taken to be unknown, and the measured value
Ym = G(@true) = 1.08, where no measurement error has been added.

As the Bayes posterior is a combination of our prior belief and the information given by the
data, it should be somewhere between the mazimum of the prior (wider curve) and the black vertical
line (the true parameter value) in Figure 4.4. The MMSE posterior for p, = 1,2, 3, and 4 is shown
as the narrower curve in Figure 4.4. It can be observed that in the linear case that corresponds
to the Kalman filter, the posterior overshoots and lies even further away from the truth than the
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Figure 4.4: MMSE filter with different polynomial orders. The system response G(q) is given by the
dashed line, the prior by the wider curve and the MMSE filter posterior for different polynomials
orders, that is, p, = 1, p, = 2, p, = 3, and p, = 4 from left to right and top to bottom, by the
narrower curve. The measurement y,, is indicated by the horizontal black line, and plus and minus
one standard deviation by the parallel grey lines. The corresponding parameter value is indicated
by the vertical black line; again, the horizontal lines indicate one standard deviation.
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prior would indicate. The reason is that the slope for the linear estimator is determined by sampling
of the response surface where the prior is large. Since the response is relatively flat there, the
inverse mapping has a steep slope and so the estimator will overestimate the true MMSE estimates.
The higher-order estimators, taking non-linear terms into account, produce apparently much better
results, especially for p, = 3 and p, = 4.

Example 12 In the second example, we use a two-dimensional response surface and a Gaussian
prior, such that depending on their parameters, the posterior can take very different shapes.

The prior on Q is given by normal distribution with mean at the center (0,0)T and variance
one, depicted by the coloured plane at z = 0 in Figure 4.5. The system model is given by

A(u; q) = u—allg — gl (4.46)

with qo = (1,3) 7 and o = 1.1 and the measurement operator again, like in the last example, by the
identity M (u; q) = u. Thus the relation between the parameters and the response is

G(q) = allg — ql*. (4.47)

The measurement was assumed to be y,, = 12 here. Depending on the location of qqo, the value
of a and the measurement y,,, very different shapes of the posterior distribution can be achieved:
everything from circular shapes, over nearly Gaussian-like bumps, to very long, thin and straight
shapes are possible. For the parameters described here, the resulting posterior is a slightly bent,
“banana”-shaped bump, which can be seen in the left plot of Figure 4.5. The center plot shows sample
points generated by a Metropolis-Hastings MCMC method, which follows the Bayes posterior very
well.

Figure 4.5: Comparison of the MMSE filter with p, = 3 (right) with a true Bayes posterior (left)
and an MCMC simulation (center) for a two-dimensional example. The prior density is a standard
normal indicated on the z = 0 plane. The response surface is given by a paraboloid shown by the
light-blue transparent surface, shifted such a way that the measurement coincides with the zero
plane. That way the set of parameters that are in agreement with the measurement are given by
the intersection of those two surfaces, and the posterior should be close to this set (a circle) and to
the maximum of prior density.
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Figure 4.6: Continuation of Fig. 4.5. On the left the MMSE filter with p, = 1. In the center, the
true posterior density for a Bayes posterior that is more difficult to approximate and on the right
samples form the MMSE filter with p, = 3.

The plot on the right show samples generated from the cubic MMSE filter posterior, which also
captures the center region well, however, it deviates at the bent edges of posterior. In Figure 4.6,
on the left, samples from the linear MMSE filter are displayed. Here, the part of the posterior close
to the center of the prior is also matched quite well; however, there are too many samples in the
center of the response paraboloid than there should be.

The example in the center and on the right of Figure 4.6 shows results for the MMSE filter
for a set of parameters (a = 3.3,qo = (0.3,0.9) 7,4, = 3) which gives rise to a more complicated,
circular posterior. Here, the filter even with higher orders cannot capture the structure of the
posterior density well. This behaviour that is, that the MMSE filter captures the Bayes posterior
around the conditional mean very well, but deviates at the tails if the distribution is strongly curved
or multi-modal, could be observed in other examples as well.

4.4 Conclusion

The MMSE filter has shown good performance in a variety of problems. Its advantage being that
it is a deterministic method with calculable runtime, in contrast to, for example, Monte Carlo
methods, with a non-predictable number of iterations for burn-in and convergence. The performance
is generally superior to Kalman filters that use only linearisations (e.g. the EKF) as the MMSE filter
can also take non-linearities into account. However, the performance can suffer during strongly non-
linear mappings. Here, either different basis functions (like e.g. trigonometric functions or rational
basis functions) should be used or approaches like the ensemble Kalman filter or MCMC methods
could be considered. If only the conditional mean or the conditional variance is of interest, there
are now also more efficient methods available (see e.g. [191]), that do not construct the MMSE as
a function but directly compute its value for a given measurement.





