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Abstract

Lightning Network (LN) is designed to amend the scalability and privacy issues of Bitcoin. It is a 

payment channel network where Bitcoin transactions are issued off the blockchain and onion routed 

through a private payment path with the aim to settle transactions in a faster, cheaper, and more 

private manner, as they are not recorded in a costly-to-maintain, slow, and public ledger. In this work, 

we design a traffic simulator to empirically study LN’s transaction fees and privacy provisions. The 

simulator relies only on publicly-available data of the network structure and capacities, and generates 

transactions under assumptions that we attempt to validate based on information spread by certain 

blog posts of LN node owners. 

Our findings on the estimated revenue from transaction fees are in line with the widespread opinion 

that participation is economically irrational for the majority of the large routing nodes who currently 

hold the network together. Either traffic or transaction fees must increase by orders of magnitude to 

make payment routing economically viable. We give worst-case estimates for the potential fee increase 

by assuming strong price competition among the routers. We also estimate how current channel 

structures and pricing policies respond to a potential increase in traffic, how reduction in locked funds 

on channels would affect the network, and show examples of nodes who are estimated to operate with 

economically feasible revenue.

Our second set of findings considers privacy. Even if transactions are onion routed, strong statistical 

evidence on payment source and destination can be inferred, as many transaction paths only consist of 

a single intermediary by the side effect of LN’s small-world nature. Based on our simulation 

experiments, we (1) quantitatively characterize the privacy shortcomings of current LN operation; and 

(2) propose a method to inject additional hops in routing paths to demonstrate how privacy can be 

strengthened with very little additional transactional cost.

1. Introduction

Bitcoin is a peer-to-peer, decentralized cryptographic currency [1]. It is a censorship-resistant, 

permissionless, digital payment system. Anyone can join and leave the network whenever they would 

like to. Participants can issue payments, which are inserted into a distributed, replicated ledger called 

blockchain. Since there is no trusted central party to issue money and guard this financial system, 

payment validity is checked by all network participants. The necessity of full validation severely limits 

the scalability of decentralized cryptocurrencies: Bitcoin could theoretically process  transactions 

per second (tps) [2]; however, in practice its average transaction throughput is  tps [3]. This is in stark 
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contrast with the throughput of mainstream payment providers; for example, in peak hours Visa is 

able to achieve 47 000 tps on its network [4].

To alleviate scalability issues, the cryptocurrency community is continuously inventing new protocols 

and technologies. A major line of research is focused on amending existing currencies without 

modifying the consensus layer by introducing a new layer, i.e., off-chain transactions [5][6][7]. These 

proposals are called Layer-2 protocols: they allow parties to exchange transactions locally, without 

broadcasting them to the blockchain network, updating a local balance sheet instead and only utilizing 

the blockchain as a recourse for disputes. For an exhaustive review of off-chain protocols, refer to [8].

Among these proposals, the most prominent ones are payment channel networks (PCNs), in which 

nodes have several open payment channels, being able to connect to all nodes, possibly through 

multiple hops. The most popular instantiation of a PCN is Bitcoin’s Lightning Network (LN) [9], a 

public, permissionless PCN, which allows anyone to issue Bitcoin transactions without the need to wait 

for several blocks for payment confirmation and currently with transaction fees orders of magnitude 

lower than on-chain fees. LN is suitable for several application scenarios, for instance, micropayments 

or e-commerce, with the intent to make everyday Bitcoin usage more convenient and frictionless. LN’s 

core value proposition is that Bitcoin users can send low-value payments instantly in a privacy-

preserving manner with negligible fees, which has led to quite a widespread adoption of LN among 

Bitcoin users.

The main difficulty with analyzing how LN operates is that the exact transaction routes are 

cryptographically hidden from eavesdroppers due to onion routing [10]. LN can only be observed 

through public information on nodes and channel openings, closings, and capacity changes. The actual 

amount of Bitcoins circulated in LN is unknown, although in blog posts, some node owners publish 

high-level statistics, such as their revenue [11][12], which can be used as grounds for estimation.

To analyze LN efficiency and profitability, we designed a traffic simulator for LN to analyze the 

routing costs and potential revenue at different nodes. We assigned roles to nodes by collecting 

external data,1 labeling nodes as wallet services, shops, and other merchants. Using node labels, we 

simulated the flow of Bitcoin transactions from ordinary users towards merchants over time, based on 

the natural assumption that transactions are routed through the path that charges the minimum total 

transaction fee. By taking the dynamically changing transaction fees of the LN nodes into account, we 

designed a method to predict the optimal fee pricing policy for individual nodes in case of the cheapest 

path routing.

To the best of our knowledge, there has been no previous empirical study on LN transaction fees. 

Our traffic simulator hence opens the possibility for addressing questions of transaction routes, 

amounts, fees, and other measures otherwise depending upon strictly private information, based 
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solely on the observable network structure. By releasing the source code of our tool, we allow node 

owners to fit various parameters to their private observation(s) on LN traffic. In particular, in this 

paper, the simulator enables us to draw two major conclusions:

The rest of the paper is organized as follows. In Section 2, we review the growing body of literature on 

PCNs and specifically on LN. In Section 3, we provide a brief background on LN and its fee structure. In 

Section 4, our traffic simulator is presented. We discuss our experimental results in three sections. We 

investigate the price competition and the potential to increase fees, under various assumptions in 

Section 5. We estimate the profitability of the central router nodes under estimated current and 

potentially increased future traffic in Section 6. Finally, we estimate the amount of privacy 

shortcomings due to too short paths and potential mitigations in Section 7. We conclude our paper in 

Section 8.

2. Related Works

To the best of our knowledge, we have conducted the first empirical analysis on LN transaction fees, 

similar to the way empirical and theoretical studies on on-chain transaction fees have been conducted 

during the early adoption of cryptocurrencies. Möser and Böhme conducted a longitudinal study on 

Bitcoin’s nascent transaction fee market [14]. Kaskaloglu asserted that near-zero transaction fees 

cannot last long as block rewards diminish [15]. Easley et al. developed a game-theoretic model to 

explain the factors leading to the emergence of transactions fees, and provided empirical evidence on 

the model predictions [16]. Recently, BitMEX, using a single LN node, has experimented with setting 

different transaction fees to measure the effect on routing revenue [12], which shows a similar pattern 

to our simulation experiments.

Economic incentives: Currently, LN provides little to no financial incentive for payment routing. 

Low routing fees do not sufficiently compensate the routing nodes that essentially hold the network 

together. Our results show that in general, transaction fees are underpriced, since for many possible 

payments there is no alternative path to execute the transaction. We also give estimates of how the 

current network and fee structure responds to increase in traffic and decrease in channel capacities, 

thus assessing the income potential in different strategies. We provide an open source tool for nodes 

to experimentally design their channels, capacities, and fees by incorporating all possible 

information that they privately infer from the traffic over their channels.

Privacy: We quantitatively analyze the privacy provisions of LN. Despite onion routing, we observe 

that strong statistical evidence can be gathered about the sender and receiver of LN payments, since 

a substantial portion of payments involve only a single routing intermediary, who can easily de-

anonymize participants. We find that using deliberately suboptimal, longer routing paths can 

potentially restore privacy while only marginally increasing the cost of an average transaction, as it 

is partially already incorporated in other implementations of the Lightning protocol [13].
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Unlike on-chain transactions, the LN transaction fee market is not yet consolidated. Some actors 

behave financially rationally, while the vast majority exhibit altruistic behavior, which parallels the 

early days of Bitcoin [14]. Similarly to on-chain fees, we expect to see more maturity and a similar 

evolution in the LN transaction fee market in the future.

Even before the launch of LN, many works studied the theoretical aspects of PCNs. Branzei et 

al. studied the impact of LN on Bitcoin transaction costs [17]. They conjectured a lower miner income 

from on-chain transaction fees as users tend to use and issue transactions on LN. In [18], the 

transaction fees of various payment channels are compared, however, without reference to the 

underlying network dynamics.

Depleted payment channels account for many efficiency issues in PCNs. Khalil and Gervais devised a 

handy algorithm to revive imbalanced payment channels without opening new ones [19].

PCNs can also be considered to be creation games. A user might decide to create a payment channel to 

a destination node or just route the payment in the already existing PCN. The former is more 

expensive; however, repeated payments can amortize the on-chain cost of opening a payment channel. 

Avarikioti et al. found that given a free routing fee policy, the star graph constitutes a Nash 

equilibrium [20]. In a similar game-theoretic work, the effect of routing fees was analyzed [21]. It was 

again found that the star graph is a near-optimal solution to the network design problem.

Even though transactions in LN are not recorded on the blockchain, they do not provide privacy 

guarantees. As early as 2016, Herrera et al. anticipated the privacy issues emerging in a PCN [22]. 

Single-intermediary payments do not provide privacy, although they have higher utility. Tang et 

al. asserts that a PCN either operates in a low-privacy or a low-utility regime [23]. Although a recently 

devised cryptographic protocol solves the privacy issues of single-intermediary routed payments [24], 

the protocol is not yet in use due to its complexity of implementation.

After the launch of LN, several studies have investigated the graph properties of LN [25][26][27]. They 

described the topology of LN at an arbitrarily chosen point in time and found that LN exhibits a hub 

and spoke topology, and its degree distribution can be well approximated with a scale-free 

distribution [25][26]. Furthermore, these works assessed the robustness of the network against 

various types of attack strategies: they showed that LN is susceptible to both node [25][27] and 

channel [26] removal-based attacks. These works are restricted to a static snapshot of LN. The lack of 

temporal data has largely limited the insights and results of these contributions.

In a Youtube video [28], an estimate of the routing income is given based on the assumption that the 

payment probability between any node pair is the same. As it is easy to see, under this assumption the 

routing income of a node is proportional to its betweenness centrality. In our simulation experiments, 
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we will explicitly compare our prediction with the one based on betweenness centrality and show how 

the finer structure of our estimation procedure yields more plausible results.

At the time of writing, four research groups published results on payment channel network 

simulators, each serving purposes very different from ours. Out of them, the simulator of Branzei et 

al. [17] is the only one that has pointers to publicly available resources. Their simulator only considers 

single bidirectional channels or a star topology, and its main goal is to analyze channel opening costs 

and depletion. This simulator is extended in [29] to generate and analyze Barabási-Albert graphs as 

underlying networks. CLoTH [30] is able to provide performance statistics (e.g., the probability of 

payment failure on a given PCN graph); however, it does not analyze transaction fees, profitability, 

optimal fee policy, and privacy provisions of LN. In contrast, our LN traffic simulator can produce 

insights in those areas as well. Finally, the simulator in [31] is a distributed method to minimize the 

transaction fee of a payment path, subject to the timeliness and feasibility constraints for the success 

ratio and the average accepted value of the transactions.

3. Routing and Fees in Lightning Network Payment Channels

In this section we provide a light background on LN and how transaction fee mechanism in LN is 

structured.

3.1 Notations

Throughout the paper we are using the following notations.  denotes a weighted multi-

graph, where  is the set of nodes and  is the set of edges   being nodes and  is the 

capacity of the edge  between said nodes. Let  and  denote the number of edges and nodes 

at time  respectively. Sometimes we omit the time parameter. Let  denote the length of the 

shortest path between a node  and another node  The transitivity or global clustering coefficient of a 

network is the ratio of present triangles and all possible triangles. To assess centrality we calculated 

the central point dominance (CPD): 

 where  is the largest value of betweenness centrality in the network. The CPD of a complete 

graph is , while it is  for a star graph.

3.2 Payment Channel Networks (PCNs)

A payment channel allows users to make multiple cryptocurrency transactions without committing 

all of the transactions to the blockchain. In a typical payment channel, only two transactions are added 

to the blockchain, but theoretically, an unlimited number of payments can be made between the 

participants. Parties can open a payment channel by escrowing funds on the blockchain for subsequent 

G = (V ,E)

V E e = (u, v, c), u, v c

e E(t) N(t)

t d(i, j)
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CPD = (B −
N−1
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use only between those two parties. The sum of the individual balances on the two sides of the channel 

is usually referred to as the capacity.

We illustrate the operation of a payment channel by an example. Let Alice and Bob escrow 1 and 2 

tokens respectively, by committing a transaction to the blockchain that sets up a new channel. Once 

the channel is finalized, Alice and Bob can send escrowed funds back and forth by revoking the 

previous state of the channel and digitally signing the new state updated by the transacted tokens. For 

example, Alice can send 0.1 of her 1 token to Bob, so that the new channel state is (Alice=0.9, Bob=2.1). 

Once the parties decide to close the channel, they can commit its final state through another 

blockchain transaction.

Maintaining a payment channel has an opportunity cost since users must lock up their funds while the 

channel is open, and funds are not redeemable until the channel is closed. Hence, it is not practical to 

expect users to maintain a channel with every individual with whom they may ever need to transact.

In a payment channel network (PCN), nodes have several open payment channels between each 

other; however, not necessarily with all other nodes. The network of bidirectional payment channels 

allows two parties to exchange funds even if they do not have a direct payment channel. For example, 

if  Alice has a balance of 1 token with Ingrid, and Ingrid has a balance of 2 tokens with Bob locked in a 

payment channel, then Alice can route payments to Bob through Ingrid up to the maximum of the 

balances of Alice and Ingrid. Assuming that Alice sends 0.2 tokens to Bob, after routing we have the 

following channel balances: Alice=0.8, Ingrid=0.2 on the first channel and Ingrid=1.8, Bob=0.2 on the 

second channel.

In a payment channel, cryptographic protections are used to ensure that channel updates in both 

directions are executed atomically, i.e., either both or neither of them are performed [8]. In addition, 

incentive-based protections are also implemented to prevent users from stealing funds in a channel, 

e.g., by committing a revoked state. Similar techniques allow payment routing for longer paths. 

Furthermore, payment router intermediaries are financially motivated to relay payments as they are 

entitled to claim transaction fees after each successfully routed payment.

LN as a PCN consists of nodes representing users and undirected, weighted edges representing 

payment channels. Users can open and close bidirectional payment channels between each other and 

route payments through these connections. Therefore, LN can be modeled as an undirected, weighted 

multigraph since nodes can have multiple channels between each other. The weights on the edges 

correspond to the capacity of the payment channels.

In LN only capacities of payment channels are known publicly, individual balances are kept secret. 

This is because if individual balances are known, balance updates would reveal successful 
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transactions, hence preventing transaction privacy.

3.3 Routing in LN and Fee Mechanism

LN applies source routing, meaning that it is always the sender who decides the payment route 

towards the intended recipient. Packets are onion routed, which means that intermediary nodes only 

know the identity of their immediate predecessor and successor in the route. Therefore, from a 

privacy perspective, nodes are incentivized to avoid single-intermediary paths, as in those cases 

intermediaries are potentially able to identify both the sender and the receiver.

LN provides financial incentives for intermediaries to route payments. In LN there are two types of 

fees that a sender pays to the intermediaries in case the transaction involves more than one payment 

channel. Nodes can set and charge the following fees after each routed payment:

Therefore, the total transaction fee to an intermediary can be obtained as:

We note that the base fee and fee rate is set by individual users, thus forming a fee market for 

payment routing. Furthermore, we remark that Equation 1 does not hold for all routing algorithms. 

However, we do not consider other fee structures in our simulator, as alternative routing algorithms 

are currently not widely adopted throughout the network.

3.4 Data

Throughout our work, we analyze two main data sources that are both available online.2 First, we 

gathered an edge stream data that describes every payment channel opening and closure from block 

height 501 337 (in December 28, 2017) to 576 140 (in May 15, 2019). Second, we collected snapshots of the 

public graph using the lnd client and utilized snapshots taken by Rohrer et al.[26], as well. We highlight 

that only the latter dataset contains transaction fee information. Thus, the experiments in Section 4 

through Section 7 are only based on 40 consecutive LN graph snapshots from February and March, 

2019.

We note that according to some estimates, 28% of all channels are private [32], meaning that their 

existence can only be recognized by the two ends. In our analysis, we have no information about 

private payment channels; however, the same holds for all the other network participants as well. 

Base fee: a fixed fee denoted as baseFee, charged each time a payment is routed through the 

channel.

Fee rate: a percentage fee denoted as feeRate, charged on the value txValue of the payment.

(1)txFee = baseFee+ feeRate⋅ txV alue.
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Hence, we do not expect a significant bias in our results, as presumably those channels have private 

use and do not participate in carrying the global network traffic.

We labeled LN nodes by relying on the tags provided by the node owners.3 This allows us to distinguish 

between ordinary users and merchants. We assume that merchants receive payments more often 

than regular users. This is essential in understanding how popular payment channels are depleted 

throughout LN by repeated use in one direction. The number of merchant nodes in the union of all 40 

snapshots is 169.

First we describe the graphs defined based on the 40 consecutive LN graph snapshots from February 

and March, 2019. We consider a minimum meaningful capacity  (approximately US $5) and 

exclude edges with capacity less than  in  as they cannot be used in payments with value .4 

Although LN channels are bidirectional, in our experiments we consider two directed edges, so that we 

can use channels in one direction if the capacity is exhausted in the other direction. We also ignore 

edges in the direction where they are flagged as disabled in the data. The properties of the LN 

network, averaged over the 40 daily snapshots, are as follows:

The degree distribution of LN follows power law. The effect of preferential attachment, the 

phenomenon that new edges tend to attach to high degree nodes, is clearly seen in Figure 3. Ever since 

LN was launched, its popularity has grown steadily (Figure 1). This growth in popularity has caused the 

average degree increasing and the diameter decreasing over time, a “densification” phenomenon 

observed for a wide class of general networks in [33]. The average degree steadily increases, while the 

effective diameter decreases only after a first initial expansion phase (Figure 2), following the 

densification power law (Figure 4).

α = 60 000

α G α

Number of the union of all nodes: 4787;

Average number of nodes in a day: 3358;

Non-isolated nodes after filtering disabled edge directions and edges with capacity less than 60 000 

SAT: 3132;

Size of the largest strongly connected component: 2206;
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Figure 1: LN’s increasing popularity and adoption in its first 17 months.
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Figure 2: Average degree and effective diameter in LN, as the function of time.

Figure 3: Preferential attachment in LN. The higher a node’s degree, the higher the 

probability that it receives a payment channel.
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We observe that the higher its degree, the longer a node participates in LN see Figure 5. Additionally, 

the channels adjacent to merchants have a shorter average lifetime (5198 blocks) than the average 

channel lifetime (5474 blocks); see the difference of the full distribution in Figure 6. We suspect that 

subsequent payments deplete the channels of the merchants, who then close these channels, collect 

their funds, and open new channels.

Figure 4: LN follows the Densification Power Law relation with exponent  

Goodness-of-fit: 

a  =  1.55634117.
R   =2  0.98.
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We observe strong central point dominance in LN (Figure 7), which indicates that LN is more 

centralized than a Barabási-Albert or an Erdős-Rényi graph of equal size. This is in line with the 

predictions of [20][21], affirming that PCNs lean to form a star graph-like topology to achieve Nash 

equilibrium.

Figure 5: Node lifetime distribution in days, separately for four node degree groups.

Figure 6: Channel lifetime distribution of merchants and others (merchant average: 5198; overall 

average: 5474).
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Counterintuitively, LN also exhibits high transitivity, also known as global clustering coefficient, see 

Figure 8. One would expect that nodes have no incentive to close triangles, as they might as well just 

route payments along already existing payment channels. However, we observe that the vast majority 

(68.76%) of all created payment channels connect nodes only 1 hop (distance 2) away from each other, 

see Figure 9. We believe that in most cases this is caused by replacing depleted payment channels. The 

high transitivity in LN is especially striking when it is compared to other social graphs. LN has roughly 

the same clustering coefficient as the YouTube social network [34].

Figure 7: Central Point Dominance of LN as the function of time, compared to that of an Erdős-

Rényi (ER) and a Barabási-Albert (BA) graph of equal size at the given time.



Cryptoeconomic Systems A Cryptoeconomic Tra�c Analysis of Bitcoin’s Lightning Network

15

Figure 8: Transitivity of LN, compared to that of an Erdős-Rényi (ER) and a Barabási-Albert (BA) 

graph of equal size at the given time.
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4. Lightning Network Traffic Simulator

In this section, we introduce our main contribution, the LN Traffic Simulator, which we designed for 

daily routing income and traffic estimation of network entities. Simulation is necessary to analyze the 

fine-grained structure, since the key concept of LN is privacy: data will never include transaction 

amounts, sources, and targets in any form, and it is very unlikely that it will give information on the 

capacity distribution over the channels, since that would leak information on the actual transactions. 

Hence we need a simulator to understand the capabilities and limitations of the network to route 

transactions.

By simulating transactions at different traffic volumes and transaction amounts, we shed light on the 

fee pricing policies of major router entities as well as on privacy considerations, as we will describe in 

Section 5 through Section 7.

In our simulator, we make the assumption that the sender nodes always choose the cheapest route to 

execute their transactions. Due to the source routing nature of LN, nodes are expected to possess the 

knowledge of network structure and current transaction fees to make price-optimal decisions. Note 

that in the LN client,5 the source node selects the routing for their transactions. For example, the 

sender node may choose the shortest instead of the cheapest path to the target if  speed is more 

important than the transaction cost, and our simulator can be modified accordingly.

Figure 9: The distance of LN nodes in the network at the time before a payment channel is 

established between them, shown separately for all nodes and for merchants only. If nodes were 

in different connected components before establishing a payment channel between them, then 

we define their distance as ∞.
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The main goal of our traffic simulator is to generate a certain number of transactions, given as an input 

parameter, by using only the information on the edges and their capacities in a given LN snapshot. To 

generate transaction sources and targets, we predefine the fraction of the transactions that lead to 

merchants based on the assumption that the majority of the transactions correspond to money spent at 

shops and service providers. We fix the amount as constant to reduce the complexity of the simulation 

model.

We acknowledge that using constant payment amounts is a strong assumption. One could consider 

various distributions such as Pareto, power law, or Poisson, as in previous works [23]. However, 

assumptions on the distributions as well as their parameter settings greatly increase the complexity of 

the experimentation, and cannot be empirically validated, since payment values are not public. We 

found the necessity to incorporate correlations of the amounts with node sizes and roles particularly 

troublesome. We note that constant amounts are also capable of capturing larger values by repeated 

payments from the same node. Finally, any time some entities obtain reliable estimates on the 

payment value distribution, they can conduct the corresponding experiments with our open source 

simulator.

Formally, we use the following notation:

The available data only includes the total channel capacity but not its distribution between the 

endpoints. Thus, before simulation we randomly initialize the capacity between the channel 

endpoints. For example, if   is the total capacity of the channel between nodes  and , we let 

 and  denote the maximum value in Satoshis, which can be routed from 

 to  and vice versa. Both  and  change after each transaction that uses this channel while 

maintaining  at all times.

If an edge has capacity less than  in a direction (that is, ), the edge direction  is depleted. 

In the simulation, a depleted edge  cannot be used before a payment is made in the opposite 

direction  in which case  will hold. Optionally, in Section 6, we will also investigate the 

effect of removing this constraint and allowing the simulation to use an edge direction without limits. 

We also note that routers can balance payment channels without closing and reopening existing ones 

 a daily graph snapshot of the LN with channels represented by pairs of edges in both directions; 

disabled directions and too low capacity edges are excluded;

G,

 the set of merchant nodes defined in Section 3.2;M ,
 the number of random transactions to sample;τ ,

 the (constant) value of each transaction, in Satoshis;6α,
 the ratio of merchants in the endpoints of the random transactions.ϵ,

Γ u v

0 ≤ γ(uv) ≤ Γ 0 ≤ γ(vu) ≤ Γ

u v γ(uv) γ(vu)

γ(uv) + γ(vu) = Γ

α γ(uv) < α uv

uv

vu, γ(uv) ≥ α
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by finding cycles containing a depleted channel and route funds on a circular payment path [19], 

however, this option is not implemented in the current version of our simulator.

We start the simulation by first sampling  transactions, each of amount  First we select  senders 

uniformly at random from all nodes. Recipients are selected by putting emphasis on merchants  we 

choose  merchants with probability proportional to their degree in addition to  

recipients that are selected uniformly at random from all nodes including both merchants and non-

merchants. Finally, we randomly match senders and recipients.

Given the transactions, we are ready to simulate traffic by finding the cheapest paths 

 from sender  to recipient  with the capacity constraint 

 for  Then, node statistics (e.g., routing income, number of routed 

transactions) are updated for each intermediary node  with respect to the latest 

transaction. Finally, for  the value of  is decreased while  is 

increased by the transaction amount  in order to keep available node capacities up to date. As we 

work with daily graph snapshots, the simulation mimics the daily traffic on LN.

The simulated routing income of a node will arise as the sum of the payment costs of its inbound 

channels. The cost of a payment can be obtained by substituting txValue  in the transaction fee 

Equation 1; we obtain the transaction fee of an edge as  We note that in this 

work we give no estimate on the cost of opening the channels, instead, we stop using depleted edges as 

long as a payment in the opposite direction reactivates them. We will assess the effect of channel 

depletion on routing income in Section 6, where we will allow the simulation to use an edge direction 

without capacity limits.

Due to several random factors in the simulation, including source and target sampling and capacity 

distribution initialization, we run the traffic simulator ten times. We use 40 consecutive daily 

snapshots in our data. We always report the mean node statistics (e.g., node routing income, daily 

traffic) of LN entities over our sets of 400 simulations for each parameter setting.

4.1 Feasibility Validation and Choice of Parameters

We validate our simulation model by comparing published information with our estimates for the 

income and traffic of the most relevant LN router entities. These nodes are responsible for keeping the 

network operational by routing most of the transactions. Our key source of information is the blog 

post [11] on LNBIG, the most relevant routing entity who owns several nodes on LN as well as 

approximately half of the total network capacity:

τ α. τ

M :

ϵ ⋅ τ (1 − ϵ) ⋅ τ

P = (s = u ,u ,u ,… ,u =0 1 2 k t) s t

γ(u u ) ≥i i+1 α i = 0… k − 1.

{u ,u ,… ,u }1 2 k−1

i = 0… k − 1 γ(u u )i i+1 γ(u u )i+1 i

α

= α

baseFee + feeRate ⋅ α.

In a typical day, LNBIG serves 200–300 transactions through all of its nodes, rarely exceeding 600 in 

a single day.

https://lnbig.com/#/
https://lnbig.com/#/
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We managed to reproduce daily traffic and routing income similar to LNBIG by sampling  

transactions with  satoshis (approximately US $5) and merchant ratio  The 

estimated revenue, as the function of the parameters, is shown in Figure 10, also showing the target 

daily income and traffic ranges stated by LNBIG [11].

On routing commissions, LNBIG earns 5000–10 000 satoshis per day.

τ = 5 000

α = 60 000 ϵ = 0.8.

https://lnbig.com/#/
https://lnbig.com/#/
https://lnbig.com/#/
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To summarize, simulating a few thousand micro-payments with mostly merchant recipients resulted 

in similar traffic and revenue as described over the nodes of LNBIG. We choose , 

, and  as default parameters of our traffic simulator in order to draw some conclusions on LN 

node profitability and transaction privacy in Section 5 through Section 7.

4.2 Traffic Simulator Response to Parameter Changes

Next we examine the stability of our traffic simulator for different ratios of merchant endpoints . We 

note that the set of transaction recipients can be sampled uniformly at random by choosing  

while in case  every sampled transaction has merchant endpoints. Thus, by increasing the 

value of  the traffic can be centralized towards LN service providers. As determined in the previous 

subsection, we set the remaining parameters  and 

Our goal is to observe stable traffic characteristics throughout a sequence of days, measured as the 

correlation of node statistics across days. Towards this end, we measure the following node level 

summaries of the simulated traffic every day:

In Figure 11, the Spearman, Kendall, and unweighted and weighted Kendall-tau correlations of routing 

traffic and income are shown for  and  For the definitions, see [35].

Figure 10: Mean estimated routing income and number of routed payments of LNBIG entity with

respect to traffic simulator parameters. The default parameter setting (daily transaction count 

single transaction amount  Satoshis, and merchant endpoint ratio � ) is marked by vertical

black dotted lines. The daily income and traffic ranges stated by LNBIG (LNBig) are marked by horizontal

red dashed lines.

LNBig. Guy makes $20 a month from locking $5 million bitcoin on the lightning network. (n.d.). Retrieved from 

https://www.trustnodes.com/2019/08/20/guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network

τ = 5000,
α= 60 000 ϵ = 0.8

τ = 5000 α = 60 000

ϵ = 0.8

ϵ

ϵ = 0.0,

ϵ = 1.0,
ϵ

τ = 5 000 α = 60 000.

Routing traffic: the number of transactions that are forwarded by a given node;

Routing income: the sum of all transaction fees that a given node charges for payment routing;

Sender traffic: the number of transactions that are initiated by a given node;

Sender fee: the sum of all transaction fees that a given node has to pay for his transactions to be 

forwarded by intermediary nodes.

ϵ = 0.0, 0.2, 0.5, 0.8, 1.0.

https://lnbig.com/#/
https://lnbig.com/#/
https://lnbig.com/#/
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We observe high weighted Kendall-tau correlation, which means that the set of nodes with the highest 

routing income and traffic are very similar regardless of the ratio of merchants  among transaction 

recipients.

By contrast, we observe low values of (unweighted) Kendall-tau. Since the set of nodes is dominated 

by low-traffic ones, the Kendall-tau value also depends mostly on the simulated traffic amount of 

these nodes. Hence, low Kendall-tau implies that nodes with low traffic and income fluctuate as 

transaction endpoints are selected at random. Most of these nodes have probably no traffic when 

transactions are centralized towards service providers 

In Figure 12, we assess the stability of the simulation by showing the mean correlation of four different 

node statistics over 10 independent simulations for each snapshot. Two of the statistics, routing 

income and routing traffic, show high correlation for all values of  which means that nodes with high 

daily routing income and traffic are stable across independent experiments. By contrast, sender 

transaction fees and sender traffic especially vary highly, which is a natural consequence of uniform 

random sampling for source selection. By our measurements, ratio  only affects the sender 

transaction fee. By increasing the value of  more and more transactions are centralized towards 

Figure 11: Correlation of simulated daily node routing traffic (top three) and income (bottom three) with respect to different 

ratio of merchants among transaction endpoints ϵ.

ϵ

(ϵ = 1.0).

ϵ,

ϵ

ϵ,
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merchants. Thus, sender nodes pay the transaction fees to more or less the same set of intermediary 

nodes, which results in higher sender transaction fee correlations.

Finally, we compare our simulated routing income with simple estimates based on the properties of 

the nodes in LN as a graph. In a Youtube video, Pickhardt [28] shows the routing income of a node is 

proportional to its betweenness centrality in case the payment probability between any node pair is 

the same. In Figure 13, we observe that our simulated routing income with parameters  

  is well correlated with the betweenness centrality of a 

node. However, the Spearman correlation decreases with larger  which means that since payment 

endpoints are biased towards merchants, we need a more accurate estimation method. In Figure 14, 

we show two more node statistics, degree and total node capacity, both correlating much weaker to our 

prediction than betweenness centrality.

Figure 12: Mean Spearman, unweighted and weighted Kendall-tau cross correlation of node statistics over the 10 independent 

simulations with respect to the ratio of merchants as transaction endpoints (ϵ  ∈  {0.0,  0.5,  0.8,  1.0}).

α = 60 000,

τ = 5000, ϵ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

ϵ,
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In summary, the set of nodes with high routing income and traffic are consistent across independent 

simulations regardless of the ratio of merchants among sampled transaction endpoints, while 

randomization naturally has a big influence on the low traffic end of the network. The low traffic end 

Figure 13: Spearman correlation of predicted daily routing income (or traffic) and Betweeness 

centrality of LN nodes. The correlation decreases in case of high simulated merchant ratio ϵ.

Figure 14: Spearman correlation of predicted daily routing income and graph centrality measures with regard to the 

merchant ratio  among payment endpoints.ϵ
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can be estimated by incorporating the role of a node in the simulation, as we do in a very simple way 

by controlling traffic towards merchants with the parameter 

5. Transaction Fee Competition

Our first analysis addresses the observed and potential profitability of LN, which is questioned in 

several blog posts [12][11]. A core value proposition of LN is that Bitcoin users can execute payments 

with negligible transaction fees. This feature may be cherished by payment initiators, but in case of 

insufficiently low network traffic, it could be unprofitable for router entities.

Our goal is to assess how transaction costs depend on topology and to what extent they are targets to 

competition. To measure transaction fee price competition, we use our traffic simulator to estimate 

daily node routing income and traffic volume for the  consecutive LN snapshots in our data. Our 

findings on how revenue from routing depend on transaction fees shows a similar shape as 

experimented for BitMEX, a single LN node [12].

We use the parameters of the simulator that we calibrated based on published information on the 

income of certain nodes [11] in Section 4.1. Our analysis in this section confirms that transaction fees 

are indeed very low, and they are potentially underpriced for relevant router nodes.

To analyze the competition that a node  faces in the network, we compare the simulated traffic in a 

daily LN snapshot  and in the graph  that we obtain by removing node  from  By attempting to 

route the same set of  transactions on  and  first of all we measure the number of failed 

payments  that were originally routed through  but are incapable of reaching their destination 

when  is out of service. For each node  the failure ratio of individual node traffic is  where  

denotes the number of transactions through  in the original simulation.

In Figure 15, we show the average ratio of the traffic of a node that has no alternate routing path, for 

five income groups defined as the top 1–10, 11–20, 21–50, 50–100, and 101– router nodes with highest 

simulated income. For each group, the average is taken over its nodes  considering the fraction of 

transactions  that cannot be routed anymore after removing  It is interesting to observe that for 

the first three groups, the average ratio of traffic with no alternate path is at least 0.3. This means that 

even if the 100 routers with highest simulated traffic increased their transaction fees close to on-chain 

fees, the majority of payment sources would have no less expensive option to route their payments.
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 In the next experiment, we estimate the extent to which transaction prices are potentially limited by 

the competition among alternate routes in LN. We take a highly pessimistic view by assuming that a 

transaction that can only be routed by relying on an intermediary node  will select a payment method 

outside LN immediately if  increases its transaction fees. For other transactions, we search for the 

next cheapest route that avoids  and assume that  could increase its fees to match the second 

cheapest option. In other words, our analysis ignores the failed transactions  and is based on the 

remaining  where payment routing avoiding node  is available. For each of these 

transactions, the difference of the total fee  can be calculated from the fees of the original path in  

and the alternative route in 

Our assumption is that if  node  increases its base fee by  transactions with  are still willing to 

pay for the additional costs, while for  payments will be routed on the cheaper alternative path, 

where  is the fee difference to the cheapest path avoiding  Thus, by observing  at different 

thresholds, we propose an optimal  base fee increment for each router node.

We estimate the optimal fee increase  for each node over multiple snapshots and independent 

simulations. For the five node income groups that we previously defined in Figure 15, we show the 

average optimal base fee increment as well as the corresponding routing income gain in Figure 16.

Figure 15: The average failure ratio of individual node traffic for five income groups 

defined as the top 1−10, 11−20, 21−50, 50−100, and 101− router nodes with 

highest simulated income.
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The transaction fee data shows that the current LN fee market is still immature, as the majority of all 

channels apply default base fees (1 SAT) and fee rate (  SAT), while the capacities are usually set 

higher than the default value (100 000 SAT) in the lnd client, see Figure 17.

In our measurements, we find that nodes with high routing income could still increase their base fee 

by a few hundred Satoshis, thus generating an average gain of more than 10 000 Satoshis in their daily 

income. Despite the low gain, our assumption is that it could get orders of magnitude higher if router 

nodes increased their base fee in succession, which could have a major impact on the competition for 

transaction costs.

6. Profitability Estimation of Central Routers
Router entities are an essential part of LN. They are responsible for keeping the network operational 

by forwarding payments. In this section, we estimate the current routing revenue of these central 

nodes, and give predictions how their income will change if the traffic over the current network 

Figure 16: The maximal possible base fee increment (  left), and the corresponding income gain (right) in Satoshis, given the 

price competition assumptions in Section 3.3. Income groups are defined as the top 1−10, 11−20, 21−50, 50−100, and 101− 

router nodes with highest simulated income.

β ,∗

10−6

Figure 17: Distribution of channel capacities (left), base fees (center), and fee rates (right) with regard to their default values in 

the lnd client (100 000 SAT, 1 SAT, and  SAT), respectively.10−6
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increases. Note that our technique can also be used for node owners to predict the effect of opening 

and closing channels as well as changing capacities and transaction fees.

Central routing nodes are binding a huge amount of financial resources in the form of channel 

capacity, which enables them to serve high volumes of traffic. In general, router entities consist of a 

single node, but sometimes they have multiple LN nodes. For example, LNBIG owns 25 nodes in our 

dataset. One of our main motivations was to estimate the annual return of investment (RoI) for 

entities by simulating daily traffic over several snapshots. In our measurements we calculate annual 

RoI as follows: 

By simulating traffic with parameters   and  we estimated the daily 

average income and traffic for each router. From these statistics and additional entity capacity data 

downloaded from 1ML, we estimate annual RoI in Table 1. We present all router entities with at least 

50 Satoshis of simulated income and 10 forwarded transactions per day on average. For each of these 

nodes, the following statistics are presented:

(2)RoI = .total amount of Satoshis bound by channel capacities
estimated daily routing income in Satoshis × 365

τ = 5000,α = 60 000, ϵ = 0.8,

Entity capacity as downloaded from 1ML. Capacity fraction is the fraction of entity capacity and total 

network capacity. Remarkably, half of the total network capacity is bound by the nodes of LNBIG.

Average transaction fee, daily income, and daily traffic, based on the simulated mean cost in Satoshis 

that a given entity charges for each payment routing over his channels during the observed 40 

snapshots, in ten random simulations, as explained in Section 3.3.

Annual RoI calculated from simulated daily income and entity capacity by Equation 2.

Economical fee in Satoshis is the amount required on average to reach an annual 5% RoI. Fee ratio is 

the ratio of the economical and the actual transaction fees. Higher values mean lower profitability.

Three columns show the rank of the nodes in decreasing order of annual RoI, total fee, and traffic.

https://lnbig.com/#/
https://1ml.com/
https://1ml.com/
https://lnbig.com/#/
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Based on our findings, the annual RoI is way below % for almost all relevant entities. Only 

rompert.com achieved a comparable amount of annual RoI (3.45%), who indeed applies orders of 

magnitude higher fees than others. It is interesting to see that despite its high transaction fees, it has 

the highest daily traffic in the simulation. Note that rompert.com applies base fees close to onchain 

fees, which may invalidate the assumptions of our simulator if participants fall back to onchain rather 

than paying rompert.com routing fees.

Compared to the most profitable node rompert.com, the total estimated traffic of LNBIG through its 25 

nodes is only one third. The main reason behind low annual RoI is low transaction fees. Table 1 shows 

that for forwarding  Satoshis, most of these entities ask for less then 100 Satoshis, which is 

less than 0.2% of the payment value. Very low fees may uphold LN’s core value proposition, but they 

are economically irrational for the central routers holding the network together. Based on our 

simulations, for several routers (e.g., LNBIG, Y’alls, ln1.satoshilabs.com, etc.), fees should be in the 

range of a few thousand Satoshis to reach a 5% annual RoI, which is approximately the magnitude of 

on-chain transaction fees (1000-2000 Satoshis)7.

Capacity overprovisioning also causes low RoI. For example, extremely large LNBIG capacities result in 

low RoI, despite the reasonable daily income reported. By using our traffic simulator, we observed that 

the router entities of Table 1 can increase their RoI by reducing their channel capacities. For each of 

these routers, we estimated the changes in revenue (Figure 18) and RoI (Figure 19), after reducing all 

of its edge capacities to 50, 10, 5, 1, 0.5, 0.1% of the original value, with the assumption that all other 

Table 1: Estimated daily income, traffic and annual RoI for relevant router entities. Columns are explained in Section 6. Note that 

currently on-chain transaction fees for a regular transaction (2 inputs, 2 outputs) is in the range of 1000-2000 Satoshis.

5

α = 60 000

https://rompert.com/
https://rompert.com/
https://rompert.com/
https://rompert.com/
https://lnbig.com/#/
https://lnbig.com/#/
https://yalls.org/
file:///tmp/ln1.satoshilabs.com
https://lnbig.com/#/
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routers keep their capacities. In our measurements, LNBIG can significantly improve its RoI by 

bounding only 1% of its original capacity values. In Table 2, we compute the estimated optimal RoI for 

the central routers.

Table 2: Estimated optimal channel capacity reduction for maximal RoI of the routers of Table 1. Capacity fraction is the estimated 

optimal fraction of the original channel capacities and income fraction is the estimated fraction of the original income by using 

reduced channel capacities.

https://lnbig.com/#/


Cryptoeconomic Systems A Cryptoeconomic Tra�c Analysis of Bitcoin’s Lightning Network

30

Figure 18: The remaining fraction of the original estimated daily routing income, after reducing node capacities to the given 

fractions.

Figure 19: RoI gain after reducing node capacities to the given fractions.
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To estimate whether routers can be more profitable with an increase in traffic volume or transaction 

values, we ran simulations with different values of  and  and measured the fraction of unsuccessful 

payments as well as the average length of completed payment paths.

First we vary the transaction value  with a fixed number of daily transactions  In Figure 20 

and Figure 21, we present statistics for ten central entities based on their service profiles. For example, 

ZigZag is a cryptocurrency exchange service, while ACINQ provides solutions for Bitcoin scalability. 

Additional entity profiles can be found in Table 3. In Figure 20, the income for most of the nodes 

significantly increases with transaction value, while this effect is almost negligible for rompert.com, 

LightningPowerUsers.com, and 1ML node ALPHA, whose behavior can be explained by charging 

almost only a base fee and applying a fee rate close to zero.

τ α

α τ = 5000.

Table 3: LN network entities with related service profiles.

Figure 20: Average simulated daily routing income of some LN router entities as the function of the transaction value α.

https://zigzag.io/#/
https://rompert.com/
file:///tmp/lightningpowerusers.com
https://1ml.com/
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The simulated amount of daily traffic for the ten central nodes is shown in Figure 21. We observe that 

scalability and capacity providers LightningTo.Me, LightningPowerUsers.com, and 1ML node ALPHA 

are responsible for forwarding a significant amount of payments irrespective of  Probably due to the 

lack of high capacity channels, the traffic of rompert.com and 1ML node ALPHA drop at  

satoshis (  US $41). By contrast, the number of payments routed by LNBIG increases with payment 

value due to the fact that this entity owns approximately half of all network capacity, as seen Table 1. 

In Figure 22, we provide an efficiency metric for each entity by dividing estimated income by traffic 

volume. The efficiency of rompert.com and LNBIG are surpassed by ZigZag and Y’alls for  

Satoshis, as these service providers have reasonable routing income relative to the number of daily 

forwarded transactions. On the other hand, LightningPowerUsers.com, 1ML node ALPHA, and 

LightningTo.Me have orders of magnitude lower efficiency than other relevant entities. They are likely 

not considering routing profitability, as their transaction fees are negligible.

α.

α = 500 000

≈

α ≥ 60 000

Figure 21: Average simulated daily routing traffic of some LN router entities as the function of the transaction value α.

https://lightningto.me/
http://lightningpowerusers.com/
https://1ml.com/
https://rompert.com/
https://1ml.com/
https://lnbig.com/#/
https://rompert.com/
https://lnbig.com/#/
https://zigzag.io/
https://yalls.org/
http://lightningpowerusers.com/
https://1ml.com/
https://lightningto.me/
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Next, we estimate the effect of channel depletion, which can be a side-effect of increasing the traffic 

without increasing channel capacities. In a highly simplistic experiment, we compare traffic with 

simulated channel depletion with the case when we allow the simulator to use channel directions 

without limits. We take depletion into account by suspending depleted channels until a reverse 

payment reopens them. On the top of Figure 23, we show the routing income estimate with depletion 

taken into account for the top ten router nodes, as the function of  And on the bottom of Figure 23, 

we show the ratio of the routing income with and without depletion taken into account. At first glance, 

it is surprising that the fraction is above 1 for most of the router nodes. To explain, observe that 

channels with low routing fees are used and depleted first, and these channels will lose revenue 

compared to the optimistic case. However, if  there is an alternate routing path with more expensive 

transaction fees, the owners of these channels will observe an increase in revenue due to the depletion 

of low cost channels.

Figure 22: Average simulated daily routing income per transaction for some LN router entities as the function of the transaction 

value α.

τ .
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 As we simulate more traffic or execute more expensive payments, both the fraction of unsuccessful 

payments and the average length of completed payment paths increase, as we show in Figure 24. 

Transactions can fail in the simulation when there is no path from the source to the recipient such that 

the channels have at least  available capacity. If  is too high, then only a fraction of all channels can 

be used for payment routing, while in the case of an extremely large number of transactions, the 

available capacity of several channel directions becomes depleted. For example, channels leading to 

popular merchants could become blocked in case of heavy one-directional traffic. The growth in 

completed payment path length is in agreement with this scenario.

In Figure 24, we also observe that lower payment amounts do not significantly decrease the probability 

of a payment being successfully routed. Hence, we do not expect that Atomic Multi-path payments 

Figure 23: Average simulated daily routing income (top) and the income divided by the optimistic income when channel depletion 

is ignored (bottom) for some LN router entities as the function of the simulated transaction count  Note that the ratio is above 1 

for most nodes as they can take over routing for depleted channels.

τ.

α α
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(AMP)8 that allow a sender to atomically split a payment flow amongst several individual payment 

flows can significantly increase the success rate of the transactions.

 A final relevant metric is the number of payments that fail if  the given entity becomes unavailable. In 

Figure 25, we show the fraction of unsuccessful payments after removing the given entity. For 

example, after removing the 25 nodes of LNBIG from LN, the rate of failed transactions increases to 

0.417 from the original level of 0.382. Recall from Section 3.2 that a large fraction of the payments 

cannot be routed, since several nodes have only disabled or no outbound channels with capacity over 

the simulated payment value 

Figure 24: Fraction of failed transactions (left) and average length of completed payment paths (right) with respect to the 

simulated transaction value α and the number of sampled transactions τ.

α.

https://lnbig.com/#/
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In this section, we estimated the income of the central router nodes under various settings. Although 

our experiments confirm that at the present structure and level of usage, the participation for most 

routing nodes is not economical, we also foresee a potential in LN to make routing profitable with little 

adjustments in pricing and capacity policies if the traffic volume will increase.

7. Payment Privacy

While LN is often considered a privacy solution for Bitcoin as it does not record every transaction in a 

public ledger, the fundamentally different privacy implications of LN are often misunderstood [8][22]. 

LN provides little to no privacy for single-hop payments, since the single intermediary can de-

anonymize both sender and receiver. In this sense, the privacy guarantees of LN payment routing are 

quite similar in spirit to that of TOR.

Although the intermediary knows the sender and receiver if it knows that the payment is single-hop, 

the onion routing technique [10] used in LN provides a weaker notion privacy called plausible 

Figure 25: The fraction of incomplete payments, out of the simulated  transactions, after removing the given entity from 

LN. The original fraction of failed transactions 0.3823 is marked by the dashed line.

τ  =  5000
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deniability. By onion routing, an intermediary has no information on its position in the path and the 

sender node can claim that the payment was routed from one of its neighbors.

We remark that plausible deniability is also achieved for on-chain transactions by coin mixing 

techniques. In wallets supporting coin-mixing one can regularly observe privacy-enhanced 

transactions with large anonymity sets, where the identity of a sender is hidden by mixing with as 

many as 100 other transaction senders [36]. Hence for LN to provide privacy guarantees stronger than 

on-chain transactions, offering plausible deniability in itself can be insufficient.

Next we assess the strength of privacy for simulated LN payments. By our discussion, high node 

degrees and long payment paths are compulsory for privacy. First, payments from low degree nodes 

are vulnerable, as the immediate predecessor or successor set is too small and can allow privacy 

attacks, for example, by investigating possible channel balances. Second, the majority of payments 

should be long, otherwise an intermediary has strong statistical evidence for the source or the 

destination of a large number its routed payments.

In Figure 26, we plot the fraction of nodes with sufficiently high degree to plausibly hide its payment 

as to be originating from one of its neighbors. We observe that half of the nodes have five or less 

neighbors, which makes their transactions vulnerable for attacks based on information either directly 

obtained from its neighbors, or inferred through investigating channel capacities. Furthermore, 

privacy guarantees are worsened as the value of the payment increases, since we can exclude payment 

channels from payment source candidates with capacity less than the payment value.

Figure 26: The probability that a node has more channels with at least the given capacity than the degree threshold. Observe that 

larger payment amounts increase the risk of yielding more statistical evidence for tracing the source or destination of a payment.
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Next, we investigate the possible length of payment paths and the tradeoff between length and cost. 

Note that the source has control over the payment path, hence it can deliberately select long paths to 

maintain its privacy, however this can result in increased costs.

The topological properties of LN, namely, its small-world nature, allow for very short payment path 

lengths. The average shortest path length of LN is around 2.8 [25], meaning that most payment routes 

involve one or two intermediaries. This phenomenon is further exacerbated by the client software, 

which prefers choosing shortest paths,9 resulting in a considerable fraction of single-hop transactions. 

However, we note that newer advancements in LN client softwares, e.g., c-lightning, incorporate 

solutions to decrease the portion of single-hop payments.10

Loosely connecting to merchants and paying them only via routing facilitated by intermediaries is 

advantageous not just for privacy considerations but also for reducing the required number of 

payment channels, and thus limiting the amount that needs to be committed. By contrast, our 

measurements in Figure 9 show that nodes seem to prefer opening direct links to other nodes and 

especially to merchant nodes. The figure is obtained by computing the shortest path length between  

and  for each new edge  immediately before the new edge was created. If there is no such path, 

i.e.,  and  lie in different connected components, we assign  to the edge.

Simulations reveal that on average 16% of the payments are single-hop payments, see Figure 28. By 

increasing the fraction of merchants among receivers, this fraction increases to 34%, meaning that 

strong statistical evidence can be gathered on the payment source and destination through the router 

node for more than one-third of the LN payments. We note that in practice, the ratio of de-

anonymizable transactions might be even larger, since payments with longer routes can also be de-

anonymized if all the router nodes correspond to the same company.

Figure 27: Plausible deniability in LN. Alice can plausible deny being the source of a payment. Similarly, router cannot be sure 

whether Bob is the recipient of the payment or one of Bob’s neighbors.
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In our final experiment, we estimate the payment fee increase by using longer paths in the existing 

network, based on the assumption that privacy-enhanced routed payments could be achieved by 

deliberately selecting longer payment routes. While paths of length more than a predefined number 

can be found in polynominal time [37], the algorithm is quite complex and, in our case, needs 

enhancements to use the edge costs. Hence, to simplify the experiment, we implemented a genetic 

algorithm that injects additional hops into initial lowest-cost paths generated by our simulator, and 

finally selects the lowest-cost path it finds for a prescribed length. In Figure 29, we observe that we can 

find routing paths that only marginally increase the median cost of the transactions by selecting paths 

of length up to six.

Figure 28: Distribution of simulated path length with respect to the ratio of merchants as transaction endpoints 

(ϵ  ∈  {0.0,  0.5,  0.8,  1.0}).
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 In summary, we observed the very small world nature of LN, which is in contrast to the fact that 

privacy-aware payment routing could be achieved by deliberately selecting longer payment routes. 

The fact that many channel openings are triangle closing could suggest the unreliability of payment 

routing in LN. Another reason for the creation of triangle-closing payment channels can also be the 

possibility to inject additional hops to preserve transaction privacy, which, by our simulation, is a low 

additional cost solution to enhancing privacy.

Overall, we raised questions about the popular belief of the LN community that LN payments provide 

superior privacy than on-chain transactions. We believe that deliberately longer payment paths are 

required to maintain payment privacy, which does not drastically increase costs at the current level of 

transaction fees.

8. Conclusion

In this work, we analyzed Lightning Network, Bitcoin’s payment channel network, from a network 

scientific and cryptoeconomic point of view. Past results on the Lightning Network were unable to 

analyze the fee and revenue structure, as the data on the actual payments and amounts is strictly 

private. Our main contribution is an open-source LN traffic simulator that enables research on the 

cryptoeconomic consequences of the network topology without requiring information on the actual 

financial flow over the network. The simulator can incorporate the assumption that the payments are 

mostly targeted towards the merchants identified by using the tags provided by node owners. We 

validated some key parameters of the simulator, such as traffic volume and amount, by simulating the 

revenue of central router nodes and comparing the results with information published by certain node 

Figure 29: Median sender costs in satoshis for fixed path length routing.
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owners. By using our open source tool, we encourage node owners to build more accurate estimates of 

LN properties by incorporating their private knowledge on usage patterns.

Our simulator provided us with two main insights. First, the participation of most router nodes in LN 

is economically irrational with the present fee structure; however, signs of sustainability are seen with 

increased overall traffic volume over the network. By contrast, at the present level of usage, if  routers 

start acting rationally, payment fees will rise significantly, which might harm one of LN’s core value 

propositions—namely, negligible fees. Second, the topological properties of LN make a considerable 

fraction of payments easily de-anonymizable. However, with the present fee structure, paths can be 

obfuscated by injecting extra hops with low cost to enhance payment privacy.

We release the source code of our simulator for further research at 

https://github.com/ferencberes/LNTrafficSimulator.
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Footnotes

�. 

Source: 

 https://1ml.com ↩

�. 

See 

 https://github.com/ferencberes/LNTrafficSimulator ↩

�. 

Source:

 https://1ml.com ↩

https://github.com/ferencberes/LNTrafficSimulator
https://1ml.com/
https://github.com/ferencberes/LNTrafficSimulator
https://1ml.com/
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�.  Note that at the time of writing, atomic multipath payments (AMPs) are not implemented. AMPs 

would allow one to split a payment value into multiple smaller amounts and subsequently send 

those payments to the receiver via multiple payment paths through different intermediaries. The 

AMP protocol will guarantee that either all sub-payments are executed or none of them. ↩

�. 

See

https://github.com/lightningnetwork/lnd

and

 https://github.com/ElementsProject/lightning. ↩

�. 

Each Bitcoin (BTC) is divisible to the 8th decimal place, so each BTC can be split into 100 000 000 

units. Each unit of Bitcoin, or 0.00000001 Bitcoin, is called a Satoshi. A satoshi is the smallest unit of 

Bitcoin, see

 https://satoshitobitcoin.co/. ↩

�. 

See 

 https://bitcoinfees.info/. ↩

�. 

See

 https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html ↩

�. 

Source:

 

https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routin

g/pathfind.go ↩

��. 

Source:

 

https://github.com/ElementsProject/lightning/commit/d23650d2edbfe16a21d0e637e507531a60dd2d‑

https://github.com/lightningnetwork/lnd
https://github.com/ElementsProject/lightning
https://satoshitobitcoin.co/
https://bitcoinfees.info/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go
https://github.com/ElementsProject/lightning/commit/d23650d2edbfe16a21d0e637e507531a60dd2ddd
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