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1 Introduction
In this report we present our collected multimodal SZTAKIBudapest Benchmark, a bench-
mark to carry both onboard Lidar vehicle measurement (OBM) data and mobile laser
scanning (MLS) high density 3D city maps at the same places for the purpose of evaluat-
ing Lidar based point cloud segmentation, multimodal registration and change detection
algorithms in urban environments.

2 Data acquisition
The onboard Lidar measurement sequences of the benchmark have been captured by
SZTAKICar, a test car of our research institute in various main city roads of Budapest
Hungary. The measurement platform has been equipped with a Velodyne HDL64E1 64-
beam Rotating Multi-beam (RMB) Lidar scanner and a GPS receiver fixed on the roof
top which provided rough global position estimations of the recorded point clouds.

LIDAR
Top

CAM
Front right

CAM
Front left

CAM
Rear left

GPS

CAM
Rear right

Velodyne HDL 64E Lidar
• 64 laser beams
• 26.8° vertical FoV
• 0.4° vertical resolution

Figure 1: SZTAKICar: The measurement platform.

The Velodyne HDL-64E sensor was originally designed to help real-time perception
of autonomous robots and vehicles. It provides a stream of relatively sparse (6-10× 104

points/frame) point clouds with a temporal frequency of 15 fps. The spatial accuracy
is around 1-2 cm in the sensor’s own coordinate system, but the point density quickly
decreases as a function of the distance from the sensor and it shows typical ring patterns.

The Mobile Laser Scanning (MLS) measurements have been recorded with a Riegl
VMX4502 mobile mapping system by the Budapest Road Management company (Bu-
dapest Közút Zrt.). The Riegl VMX450 MLS system is highly appropriate for city map-
ping, urban planning and road surveillance applications. It integrates two Riegl laser
scanners, a well-designed, calibrated camera platform and a high performance Global
Navigation Satellite System (GNSS), providing extremely dense, accurate (up to global

1http://velodyneLidar.com/
2http://www.riegl.com/

http://velodyneLidar.com/
http://www.riegl.com/
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accuracy of a few centimetres) and feature rich data with a quite uniform point distribu-
tion.

3 Challenging tasks and datasets
In this section, we describe challenging point cloud segmentation, registration and change
detection tasks on our Benchmark, and we provide two different datasets for evaluating
evaluate such algorithms.

3.1 Automatic segmentation of MLS data (SZTAKI-CityMLS)
Introduction SZTAKI-CityMLS has been created for the purpose of evaluating 3D
semantic point cloud segmentation algorithms in urban environments, based on mobile
laser scanning (MLS) measurements of a Riegl VMX-450 mobile mapping system. Test
data has been provided by Budapest Közút Zrt, an industrial partner of the research
institute SZTAKI.

Figure 2: Sample point cloud data from urban environment. Raw point clouds (left),
annotations (right). Annotation classes: phantom, pedestrian, tram/bus, vehicle,
vegetation, tall column (including traffic sign holders and tree trunks), street fur-
niture (various further street objects such as benches, dustbins, short columns),
ground, building facade.

Motivation Recent deep learning based point cloud classification approaches such
as the PointNet++ [2] or SPLATNet [3] show promising way to semantically segment
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various sorts on artificial or real laser scanning based point clouds. However, dealing
with urban MLS data, a number of particular challenges appear – such as the phantom
effect caused by independent object motions –, which are not handled by general point
clouds segmentation algorithms efficiently enough. For this purpose, we created a new
hand labeled dataset, called SZTAKI-CityMLS.

Technical details Our MLS dataset contains in total around 327 Million annotated
points from challenging urban scenes in Budapest, including main roads with both heavy
and solid traffic, public squares, parks, and sidewalk regions, various types of cars, trams
and buses, several pedestrians and diverse vegetation. The annotation was manually
constructed by a user friendly 3D point cloud annotator tool developed in our laboratory
[1]. With this tool we manually labeled around 327M points over a 30.000 m2 area of
the city, with more than 50 m elevation differences, using the following nine classes:
phantom, pedestrian, tram/bus, vehicle, vegetation, tall column (including traffic sign
holders and tree trunks), street furniture (various further street objects such as benches,
dustbins, short columns), ground, building facade. As ground truth (GT), we provide
the same point clouds as the raw MLS measurements, assigned with color information to
the corresponding class.

Access and contact Data and demo results [1] are available at the following link:
http://mplab.sztaki.hu/geocomp/SZTAKI-CityMLS-DB.html
For more information, please contact Balázs Nagy (nagy.balazs@sztaki.hu, balazs.
nagy.it@gmail.com) or Csaba Benedek (benedek.csaba@sztaki.hu).

http://mplab.sztaki.hu/geocomp/SZTAKI-CityMLS-DB.html
nagy.balazs@sztaki.hu
balazs.nagy.it@gmail.com
balazs.nagy.it@gmail.com
benedek.csaba@sztaki.hu


6

3.2 Real-time Lidar only global localization and change de-
tection (SZTAKI-CityCDLoc)

Introduction SZTAKI-CityCDLoc has been created for the purpose of evaluating
multimodal 3D semantic point cloud registration and change detection algorithms in
urban environments, based on mobile laser scanning (MLS) data of a Riegl VMX-450
mobile mapping system and onboard vehicle measurements captured by a Velodyne HDL
64E rotating multi-beam Lidar sensor.

Motivation In dense urban environment, we should expect that the initial position
estimation of a vehicle might be notably inaccurate and the global positioning error of
the vehicles may reach several meters in city regions with poor GPS signal coverage
(Figure 4). Assuming that using an efficient segmentation [1] of the available raw MLS
data, we can construct a subset of the segmented MLS point cloud, which contains
static classes (tall column, street furniture, facade) and represents empty street segments.
Therefore, we can consider it as highly detailed reference models for the vehicles’ onboard
Lidar measurements. In this context, accurate global localization of the vehicle’s Lidar
measurements in the MLS data, and the detection of relevant changes in the vehicle’s
environment based on the static MLS data may appear as challenging tasks.

Figure 3: The data acquisition path and the three test scenarios
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MLS scenario Format Start frame End frame Length [m] Length [s]
Fővám square #frame.pcd 8400 8600 300 13.33
Kálvin square #frame.pcd 9500 9700 300 13.33
Deák square #frame.pcd 11650 11730 200 5.33

Table 1: Lidar measurement sequences

Technical details We provide three test scenarios from the downtown of Budapest
(Figure 3, Table 1). Each scenario contains the following data:

• a geo-referred MLS point cloud (#scenario_MLS.pcd) that is automatically seg-
mented by [1] and it contains class labels regarding the facade, tall column and
street furniture semantic classes (see Section 3.1).

• RMB Lidar measurement sequences. Each frame of the measurement is stored in a
separate .pcd file (#scenario_framenum_timestamp.pcd). The coordinates of each
frame are local to the sensor’s center position. Beside the local XYZ coordinates,
each point contains an intensity attribute as well.

• a separate GPS metadata (gps.eov), which contains timestamp-GPS coordinate
pairs during the whole measurement path for positioning a Lidar frame in the geo-
referred MLS data.

For the global localization, we do not provide any ground truth information, as there is
no determinable "best" alignment between the significantly different point sets. Instead,
we suggest to use error metrics to measure the efficiency of your alignment algorithms,
such as the Modified Hausdorff Distance (MHD) or Median Point Distance (MPD).

(a) Scenario 1, Fővám square (b) Scenario 2, Kálvin square (c) Scenario 3, Deák square

Figure 4: GPS based positioning of the vehicles’ Lidar measurements in the geo-
referenced MLS data’s coordinate system.

For change detection, we annotated uniformly sampled Lidar point cloud measure-
ment frames from each test scenario, and labelled the ground truth information in a
semi-automatic manner. First, we performed an approximate offline registration between
the i3D and MLS frames using the Iterative Closest Point (ICP) [4] algorithm, then we
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applied an automated nearest neighbor search based classification with a small distance
threshold (5 cm) as an initial segmentation result. Thereafter, the labeling of the differ-
ent change regions (especially on the region borders) in the sampled Lidar frames was
manually revised using our previously mentioned 3D point cloud annotator tool [1]. At
the annotation, we distinguished four change classes (Figure 5) by GT labeling:

• Dynamic changes that refer either to moving street objects such as traffic partici-
pants, to temporarily available objects such as barriers, or to changes in static scene
elements such as a re-located bus station or kiosk. These regions are not presented
in the MLS data. At GT labeling, these points are marked with red (r = 255,
g = 0, b = 0).

• Seasonal changes, which regions are typical for vegetation areas. These regions
are segmented as vegetation in the MLS data, and may have modified appearance
during the different time periods/seasons. At GT labeling, these points are marked
with dark green (r = 0, g = 128, b = 0).

• Unchanged regions, which contain static environment parts. These regions are also
present in the MLS data. At GT labeling, these points are marked with blue (r = 0,
g = 0, b = 255).

The annotations are stored in a separate folder in .pcd files with the same name as
the original measurement frame, where the given colors code the corresponding class for
each point.

(a) Scenario 1, Fővám square (b) Scenario 2, Kálvin square (c) Scenario 3, Deák square

Figure 5: Change detection GT labeling samples from each test scenario. Color codes:
dynamic change, seasonal change, no change.

Access and contact For accessing this dataset, please send an e-mail request to
Örkény Zováthi (zovathi.orkeny@sztaki.hu) or to Csaba Benedek (benedek.csaba@
sztaki.hu).

zovathi.orkeny@sztaki.hu
benedek.csaba@sztaki.hu
benedek.csaba@sztaki.hu
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