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Exact Distribution-Free
Regression Function of
Conditional Kernel

Ambrus Tamas™~ and Balazs Csanad Csa3ji

Abstract—In this letter we suggest two statistical hypoth-
esis tests for the regression function of binary classifica-
tion based on conditional kernel mean embeddings. The
regression function is a fundamental object in classifi-
cation as it determines both the Bayes optimal classifier
and the misclassification probabilities. A resampling based
framework is presented and combined with consistent
point estimators of the conditional kernel mean map, in
order to construct distribution-free hypothesis tests. These
tests are introduced in a flexible manner allowing us to
control the exact probability of type | error for any sample
size. We also prove that both proposed techniques are con-
sistent under weak statistical assumptions, i.e., the type I
error probabilities pointwise converge to zero.

Index Terms—Pattern recognition and classification, sta-
tistical learning, randomized algorithms.

[. INTRODUCTION

INARY classification [1] is a central problem in super-

vised learning with a lot of crucial applications, for
example, in quantized system identification, signal process-
ing and fault detection. Kernel methods [2] offer a wide
range of tools to draw statistical conclusions by embedding
datapoints and distributions into a (possibly infinite dimen-
sional) reproducing kernel Hilbert space (RKHS), where we
can take advantage of the geometrical structure. These non-
parametric methods often outperform the standard parametric
approaches [3]. A key quantity, for example in model valida-
tion, is the conditional distribution of the outputs given the
inputs. A promising way to handle such conditional distri-
butions is to apply conditional kernel mean embeddings [4]
which are input dependent elements of an RKHS. In this
letter we introduce distribution-free hypothesis tests for the
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regression function of binary classification based on these con-
ditional embeddings. Such distribution-free guarantees are
of high importance, since our knowledge on the underlying
distributions is often limited.

Let (X, X) be a measurable input space, where X is a
o-field on X, and let Y = {—1, 1} be the output space. In
binary classification we are given an independent and identi-
cally distributed (i.i.d.) sample {(X;, ¥;)}_; from an unknown
distribution P = Py y on X ® ). Measurable X — Y functions
are called classifiers. Let L : Y x Y — R™ be a nonneg-
ative measurable loss function. In this letter we restrict our
attention to the archetypical 0/1-loss given by the indicator
L(y1, y2) = L(y1 # y») for y1, y2 € Y. In general, our aim is to
minimize the Bayes risk, which is R(¢) = E [L(¢ (X), Y)] for
classifier ¢, i.e., the expected loss. It is known that for the 0/1-
loss, the Bayes risk is the misclassification probability R(¢) =
P(¢(X) # Y) and a risk minimizer (Px-a.e.) equals to the sign
of the regression function f;(x) = E[Y|X = x], i.e., classifier!
¢« (x) = sign(fi(x)) reaches the optimal risk [1, Th. 2.1]. It
can also be proved that the conditional distribution of Y given
X is encoded in f, for binary outputs.

One of the main challenges in statistical learning is that
distribution P is unknown, therefore the true risk cannot
be directly minimized, only through empirical estimates [5].
Vapnik’s theory quantifies the rate of convergence for several
approaches (empirical and structural risk minimization), but
these bounds are usually conservative for small samples. The
literature is rich in efficient point estimates, but there is a high
demand for distribution-free uncertainty quantification.

It is well-known that hypothesis tests are closely related
to confidence regions. Distribution-free confidence regions
for classification received considerable interest, for example,
Sadinle et al. suggested set-valued estimates with guaran-
teed coverage confidence [6], Barber studied the limitations
of such distribution-free region estimation methods [7], while
Gupta et al. analyzed score based classifiers and the con-
nection of calibration, confidence intervals and prediction
sets [8].

Our main contribution is that, building on the distribution-
free resampling framework of [9] which was motivated by
finite-sample system identification methods [10], we suggest
conditional kernel mean embeddings based ranking functions
to construct hypothesis tests for the regression function of
binary classification. Our tests have exact non-asymptotic

et the sign function be defined as sign(x) = I(x > 0) — I(x < 0).
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guarantees for the probability of type I error and have strong
asymptotic guarantees regarding the type II error probabilities.

Il. REPRODUCING KERNEL HILBERT SPACES
A. Real-Valued Reproducing Kernel Hilbert Spaces

Let k : X x X — R be a symmetric and positive-definite
kernel, ie., foralln e N, x1,...,x, € X,ay,...,a, € R:

Z k(x;, xj)aiaj > 0. (D)

ij=1

Equivalently, kernel (or Gram) matrix K € R™", where
Kij = k(xj,xj) for all i, j € [n] = {I,...,n}, is required
to be positive semidefinite. Let F denote the corresponding
reproducing kernel Hilbert space containing X — R func-
tions, see [2], where ky(-) = k(-,x) € F and the reproducing
property, f(x) = (f, k(-,x))r, holds for all x € X and f € F.
Let/: Y x Y — R denote a symmetric and positive-definite
kernel and let G be the corresponding RKHS.

B. Vector-Valued Reproducing Kernel Hilbert Spaces

The definition of conditional kernel mean embeddings [4]
requires a generalization of real-valued RKHSs [11], [12].

Definition 1: Let H be a Hilbert space of X — G type func-
tions with inner product (-, -)7, where G is a Hilbert space. H
is a vector-valued RKHS if for all x € X and g € G the linear
functional (on ‘H) h — (g, h(x))g is bounded.

Then by the Riesz represelltation theorem, for all (g, x) €
G x X there exists a unique h € H for which (g, h(x))g =
(h,h)1. Let 'y be a G — H operator defined as I'yg = h.
The notation is justified because Iy is linear. Further, let £(G)
denote the bounded linear operators on G and let I' : Xx X —
L(G) be defined as I'(x1, x2)g = (I'y,8)(x1) € G. We will use
the following result [11, Proposition 2.1]:

Proposition 1: Operator I' satisfies for all x1, x; € X:

1) Vgi,82 € G: (g1, ['(x1,x2)8)g = (I'x 81, Txu82)g-

2) T'(x;,x) € L(G), T'(x1,x2) = I'(xp, x1), and for all

x € X operator I'(x, x) is positive.
3) Forall n e N, {(x)}i_, € X and {(gj)}]’.‘=1 cgq:

n
> (g T(xi, x)gj)g = 0. )
ij=1
When properties 1) — 3) hold, we call T' a vector-
valued reproducing kernel. Similarly to the classical Moore-
Aronszjan theorem [13, Th. 3], for any kernel I', there
uniquely exists (up to isometry) a vector-valued RKHS, having
I as its reproducing kernel [11, Th. 2.1].

IIl. KERNEL MEAN EMBEDDINGS
A. Kernel Means of Distributions

Kernel functions with a fixed argument are feature maps,
i.e., they represent input points from X in Hilbert space F
by mapping x +— k(-,x). Let X be a random variable with
distribution Py, then k(-, X) is a random element in F. The
kernel mean embedding of distribution Py is defined as puy =
E[k(-, X) ], where the integral is a Bochner integral [14].

It can be proved that if kernel k is measurable as well as
E[Vk(X, X)] < oo holds, then the kernel mean embedding
of Py exists and it is the representer of the bounded, linear

expectation functional w.r.t. X, therefore uy € F and we have
(f, ux) 7 = E[f(X)] for all f € F [15]. Similarly, for variable
Y let uy be the kernel mean embedding of Py.

B. Conditional Kernel Mean Embeddings

If the kernel mean embedding of P, exists, then Iy =
[(0,Y) € L1(R2, A, P; G), that is Iy is a Bochner integrable
G-valued random element, hence for all B € A the condi-
tional expected value can be defined. Let B = o(X) be the
o-field generated by random element X, then the conditional
kernel mean embedding of Py|x in RKHS G is defined as

pyix = px(X) = E[l(o, Y)|X], 3

see [16], where . is a Px-a.e. defined (measurable) con-

ditional kernel mean map. It is easy to see that for all
g€y

a.s.

E[eMIX] "= (g, Ell(o, V)|X])g, “)

showing that this approach is equivalent to the definition

in [12]. We note that the original paper [4] introduced

conditional mean embeddings as F — G type operators.

The presented approach is more natural and has theoretical

advantages as its existence and uniqueness is usually ensured.

C. Empirical Estimates of Conditional Kernel Mean Maps

The advantage of dealing with kernel means instead of the
distributions is that we can use the structure of the Hilbert
space. In statistical learning, the underlying distributions are
unknown, thus their kernel mean embeddings are needed to
be estimated. A typical assumption for classification is that:
A0 Sample Dy = {(X;, Y¥;)}i_; is i.i.d. with distribution P.

The empirical estimation of conditional kernel mean map
s : X — @G is challenging in general, because its depen-
dence on x € X can be complex. The standard approach
defines estimator [t as a regularized empirical risk minimizer
in a vector-valued RKHS, see [12], which is equivalent to the
originally proposed operator estimates in [4].

By (4) it is intuitive to estimate w4 with a minimizer of the
following objective over some space H [12, Eq. 5]:

Ew = sup E[[. ElgNIX] = (g, s L] (5)

lgllg=1

Since E[g(Y)|X] is not observable, the authors of [12] have
introduced the following surrogate loss function:

& =E[ e, V) = n 0113 ©)

It can be shown [12] that £(u) < E(w) for all u : X — G,
moreover under suitable conditions [12, Th. 3.1] the minimizer
of £(u) Px-a.s. equals to the minimizer of & (u), hence the
surrogate version can be used. The main advantage of & is
that it can be estimated empirically as:

~ 1 <&
E(w) = = 3 i, i) — n(X)II3. ©

i=1
To make the problem tractable, we minimize (7) over a vector-
valued RKHS, H. There are several choices for H. An intuitive
approach is to use the space induced by kernel I'(xy, xp) =
k(x1,x2)Idg, where x1, x € X and Idg is the identity map
on G. Henceforth, we will focus on this kernel, as it leads to
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the same estimator as the one originally proposed in [4]. A
regularization term is also used to prevent overfitting and to
ensure well-posedness, hence, the estimator is defined as

L =D = [y, = argmin &, () ®)
neH
where a(u) = [E}(M) +)\/n||/L||%_[]. An explicit form of & can
be given by [11, Th. 4.1] (see representer theorem):
Theorem 1: If 11 minimizes &, in H, then it is unique
and admits the form of &t = Y i, 'x,c;, where coefficients
{(c)}!_,, ci € G for i € [n], are the unique solution of

n

Z(F(X[,)(j)+)»ﬂ(i:j)ldg)c/ = (o0, Y;) for i€ [n].

j=1
By Theorem 1 we have: ¢; = ) ., W;;l(o,Y)) for i € [n],
with W = (K 4+ AI)~!, where I is the identity matrix.

IV. DISTRIBUTION-FREE HYPOTHESIS TESTS

For binary classification, one of the most intuitive kernels
on the output space is I(y1, y2) = I(y1 = y») for y;, y2 € Y,
which is called the naive kernel. It is easy to prove that / is
symmetric and positive definite. Besides, we can describe its
induced RKHS G as {a; - (o, 1) + ap - (o, —1)|a;, ap € R}.
Hereafter, [ will denote this kernel for the output space.

A. Resampling Framework
We consider the following hypotheses:

Hy : fi =f (Px-as.)
H{ : -=Hy )

for a given candidate regression function f, where — Hj
denotes the negation of Hy. For the sake of simplicity, we
will use the slightly inaccurate notation f, # f for Hy, which
refers to inequality in the L;(Px)-sense. To avoid misunder-
standings, we will call f the “candidate” regression function
and f the “true” regression function.

One of our main observations is that in binary classification
the regression function determines the conditional distribution
of Y given X, i.e., by [1, Th. 2.1] we have

fX) +1
2

Notation P, is introduced to emphasize the dependence of the
conditional distribution on f;. Similarly, candidate function f
can be used to determine a conditional distribution given X.
Let Y be such that ]P’f(l_/ = 1X) = fXO + 1/2 = pX).
Observe that if Hy is true, then (X, Y) and (X, Y) have the
same joint distribution, while when H; holds, then Y has a
“different” conditional distribution w.r.t. X than Y. Our idea
is to imitate sample Dy = {(X;, Y;)} by generating alternative
outputs for the original input points from the conditional dis-
tribution induced by the candidate function f, i.e., let m > 1
be a user-chosen integer and let us define samples

'Dj = {(X;, Yi,j)}lr‘lzl for j€[m—1].

Pu(Y = 1]1X) = = px(X). (10)

(11)

An uninvolved way to produce I_/l-,j forie[n],jem—1]is
as follows. We generate i.i.d. uniform variables from (—1, 1).
Let these be U;; for i € [n] and j € [m — 1]. Then we take

Yij=1U;; < f(XD) = 1(Uij > (X)), (12)

for (i, j) € [n] x [m — 1]. The following remark highlights one
of the main advantages of this scheme.

Remark 1: If Hy holds, then {(Dj)}]’.":_o1 are conditionally
iid. wrt {(X;)}!_,, hence they are also exchangeable.

The suggested distribution-free hypothesis tests are carried
out via rank statistics as described in [9], where our resam-
pling framework for classification was first introduced. That
is, we define a suitable ordering on the samples and accept
the nullhypothesis when the rank of the original sample is not
“extremal” (neither too low nor too high), i.e., the original
sample does not differ significantly from the alternative ones.
More abstractly, we define our tests via ranking functions:

Definition 2 (Ranking Function): Let A be a measurable
space. A (measurable) function ¥ : A™ — [m] is called a
ranking function if for all (ay, ..., a,) € A™ we have:

P1 For all permutations v of the set {2, ..., m}, we have

w(al’aZa . -aav(m))’

that is the function is invariant w.r.t. reordering the last
m — 1 terms of its arguments.
P2 For all i,j € [m], if a; # a;, then we have

¥ (ai {adizi) # ¥ (aj, {adiz)

where the simplified notation is justified by P1.

Because of P2 when ay, ..., a, € A are pairwise different v
assigns a unique rank in [m] to each a; by ¥ (a;, {ar}k=+i)). We
would like to consider the rank of Dy w.r.t. {D,-};"Z_]l, hence we
apply ranking functions on Dy, ..., D;;—1. One can observe
that these datasets are not necessarily pairwise different caus-
ing a technical challenge. To resolve ties in the ordering we
extend each sample with the different values of a uniformly
generated (independently from every other variable) random
permutation, 7, on set [m], i.e., we let

D]’»Ti(Dj,n(j)) for j=1,....,m—1

Sam) = V(a1 av), ..

13)

(14)

and Df = (Do, m(m)). Assume that a ranking function
¥: X xY)" x [m] - [m] is given. Then, we define our
tests as follows. Let p and ¢ be user-chosen integers such that
1 < p < g < m. We accept hypothesis Hy if and only if

pSW(,D(;)Tﬂvtl)Z,_l)qu

i.e., we reject the nullhypothesis if the computed rank statistic
is “extremal” (too low or too high). Our main tool to deter-
mine exact type I error probabilities is Theorem 2, originally
proposed in [9, Th. 1].

Theorem 2: Assume that Dy is an i.i.d. sample (AO). For
all ranking function ¥, if Hy holds true, then we have

q—p+1
m

5)

P(p < y(Df..... D) <q) =

The intuition behind this result is that if Hy holds true
then the original dataset behaves similarly to the alternative
ones, consequently, its rank in an ordering admits a (discrete)
uniform distribution. The main power of this thoerem comes
from its distribution-free and non-asymptotically guaranteed
nature. Furthermore, we can observe that parameters p, g and
m are user-chosen, hence the probability of the acceptance
region can be controlled exactly when Hy holds true, that is
the probability of the type I error is exactly quantified.

The main statistical assumption of Theorem 2 is very mild,
that is we only require the data sample, Dy, to be i.i.d. Even

(16)
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though we presupposed that a ranking function is given, one
can observe that our definition for ¥ is quite general. Indeed,
it also allows some degenerate choices that only depend on
the ancillary random permutation, s, which is attached to the
datasets. Our intention is to exclude such options, therefore
we examine the type II error probabilities of our hypothesis
tests. We present two new ranking functions that are endowed
with strong asymptotic bounds for their type II errors.

B. Conditional Kernel Mean Embedding Based Tests

The proposed ranking functions are defined via conditional
kernel mean embeddings. The main idea is to compute the
empirical estimate of the conditional kernel mean map based
on all available samples, both the original and the alternatively
generated ones, and compare these to an estimate obtained
from the regression function of the nullhypothesis. The main
observation is that the estimates based on the alternatively gen-
erated samples always converge to the theoretical conditional
kernel mean map, which can be deduced from f, while the
estimate based on the original sample, Dy, converges to the
theoretical one only if Hy holds true. We assume that:

Al Kernel [ is the naive kernel.

A2 Kernel k is real-valued, measurable, Cp-universal [17]

and bounded by Cy as well as I' = kIdg.

One can easily guarantee A2 by choosing a “proper” kernel
k, e.g., a suitable choice is the Gaussian kernel, if X = R,

We can observe that if a regression function, f, is given in
binary classification, then the exact conditional kernel mean
embedding wyx and mean map s can be obtained as

unx = (I =pX)i(o, —=1) +p(X)l(o, 1) and
pr@) = (I = p)l(o, =1) + p)l(o, 1) Px-as.,
because by the reproducing property for all g € G we have
(A = pENi(o, —=1) + p(X)i(o, 1), g)g
= (1 —p(X))g(=1) + p(N)g(1) = E[g(¥) | X]. (18)

For simplicity, we denote pf, by 1. We propose two methods
to empirically estimate py. First, we use the regularized risk
minimizer, i, defined in Theorem 1, and let

(1) . o~ .
[L]()—ij for j=0,...,

a7

m—1.

19)

Second, we rely on the intuitive form of (17) and estimate
the conditional probability function p directly by any standard
method (e.g., k-nearest neighbors) and let

AP0 = (1 =pj)l(o, 1) + Pm)l(o, 1),

forj=0,. —1, where p; = pp denotes the estimate of p
based on sample D;. The first approach follows our motivation
by using a vector-v alued RKHS and the user-chosen kernel I’
lets us adaptively control the possibly high-dimensional scalar
product. The second technique highly relies on the used con-
ditional probability function estimator, hence we can make use
of a broad range of point estimators available for this problem.
For brevity, we call the first approach vector-valued kernel test
(VVKT) and the second approach point estimation based test
(PET). The main advantage of VVKT comes from its non-
parametric nature, while PET can be favorable when a priori
information on the structure of f is available.

Let us define the ranking functions with the help of refer-
ence variables, which are estimates of the deviations between

(20)

the empirical estimates and the theoretical conditional kernel
mean map in some norm. An intuitive norm to apply is the
expected loss in |-|lg, ie., for X — G type functions py,
i € Ly (Pyx; G) we consider the expected loss
~ 2
/ |1 0 — @) || g dPy (). (21)
X
The usage of this “metric” is justified by [18, Lemma 2.1],

where it is proved that for any estimator iz and conditional
kernel mean map uy, we have

~ 2 —
/X |1r ) = B0 | g dPx(0) = E@) — Esuy), (22)
where the right hand side is the excess risk of ft. The distri-

bution of X is unknown, thus the reference variables and the
ranking functions are constructed as”

1 n
=3 w0 -
i=1

) -
Zj =

m—1
RY =1+ 312" <x 2) (23)
=1

forj=0,...,m—1 and r € {1, 2}, where r refers to the two
conditional kernel mean map estimators, (19) and (20). The
acceptance regions of the proposed hypothesis tests are defined
by (15) with (DF, ..., D*_ ) = RY. The idea is to reject

f when Z(()r) is too high in which case our original estimate
is far from the theoretical map given f. Hence setting p to 1
is favorable. The main advantage of these hypothesis tests is
that we can adjust the exact type I error probability to our
needs for any finite n, irrespective of the sample distribution.
Moreover, asymptotic guarantees can be ensured for the type II
probabilities. We propose the following assumption to provide
asymptotic guarantees for the tests:

B1 For the conditional kernel mean map estimates we have

1 < N 2 as.
=3 = V0| 5 0.
n 1 g n—oo

That is we assume that the used regularized risk minimizer
is consistent in the sense above. Condition B1, although non-
trivial, is however key in proving that a hypothesis test can pre-
serve the favorable asymptotic behaviour of the point estimator
while also non-asymptotically guaranteeing a user-chosen type
I error probability.

Theorem 3: Assume that AO, A1, A2 and Hy hold true, then
for all sample size n € N we have

B(R)" <q) = . (24)
If AO, Al, A2, B, ¢ < m and Hy hold, then
(vﬂ U{R<‘> < q]) —0. (25)
=1n=1

The tail event in (25) is often called the “lim sup” of events
{R,gl) < g}, where n € N. In other words, the theorem states
that the probability of type I error is exactly 1—g/m. Moreover,
under Hj, Rﬁ,l) < g happens infinitely many times with zero

ZZj(r) < Z(()r) “— Z;r) < Z(()r) or (Zj(r) = Z(gr) and 7 (j) < w(m)).
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Fig. 1. The normalized ranks of VVKTs and PETs are represented with
the darkness of points on a grid based on a sample of size n = 50 with
resampling parameter m = 40. For VVKTs we used a Gaussian kernel
with o = 1/2. For PETs we used kNN with k = | /n] neighbors.

11 | — WKT 200 — WKT
2 PET s PET
so{ |\

0 100 200 300 400 500 0 100 200 300 400 500
Sample size Sample size

(a) Ranks (p = 0.3, A = 1.3) (b) Ranks (p =0.4, A = 1.2)

Fig. 2. The ranks of the reference variables are shown as functions of
the sample size for two arbitrarily chosen “false” candidate functions.

probability, equivalently a “false” regression function is (a.s.)
accepted at most finitely many times. The pointwise conver-
gence of the type II error probabilities to zero (as n — 00) is
a straightforward consequence of (25).
A similar theorem holds for the second approach, where we
assume the consistency of P in the following sense:
Cl For conditional probability function estimator p we
have
1 & o as.
= (X)) —P(X)? == 0. (26)
n pr n—oo
Condition C1 holds for a broad range of conditional proba-
bility estimators (e.g., kNN, various kernel estimates), however
most of these techniques make stronger assumptions on the
data generating distribution than we do. As in Theorem 3
the presented stochastic guarantee for the type I error is
non-asymptotic, while for the type II error it is asymptotic.
Theorem 4: Assume that AO, A1, A2 and H( hold true, then
for all sample size n € N we have

]P’(Rflz) < q) =2
m
If Al, Cl, g < m and H; hold, then

P(ﬁ LNJ{REP < q}) =o.

N=1n=1

27

(28)
The proof of both theorems can be found in the Appendices.

V. NUMERICAL SIMULATIONS

We made numerical experiments on a synthetic dataset to
illustrate the suggested hypothesis tests. We considered the one

dimensional, bounded input space [—1, 1] with binary outputs.
The marginal distribution of the inputs were uniform. The true
regression function was the following model:

Cem G A (] = pyem i)

. Dx
= 2
f*(X) Dx - e_(x_ﬂ])z/)\* + (1 _p*)e_(x_liZ)z/)\* ’ ( 9)
where p, = 05, A, = 1, u;y = 1 and up = —1. This

form of the regression function is the reparametrization of a
logistic regression model, which is an archetypical approach
for binary classification. We get the same formula if we
mix together two Gaussian classes. The translation parame-
ters (u1 and pp) were considered to be known to illustrate
the hypothesis tests with two dimensional pictures. The sam-
ple size was n = 50 and the resampling parameter was
m = 40. We tested parameter pairs of (p, A) on a fine grid
with stepsize 0.01 on [0.2, 0.8] x [0.5, 1.5]. The two hypoth-
esis tests are illustrated with the generated rank statistics for
all tested parameters on Figures 2(a) and 2(b). These nor-
malized values are indicated with the colors of the points.
Kernel £ was a Gaussian with parameter o0 = 1/2 for the
VVKTs and we used kNN-estimates for PETs with k = [ /n]
neighbors. We illustrated the consistency of our algorithm
by plotting the ranks of the reference variables for param-
eters (0.3,1.3) and (0.4, 1.2) for various sample sizes in
Figures 2(d) and 2. We took the average rank over several runs
for each datasize. We can see that the reference variable corre-
sponding to the original sample rapidly tends to be the greatest,
though the rate of convergence depends on the particular
hypothesis.

V1. CONCLUSION

In this letter we have introduced two new distribution-
free hypothesis tests for the regression functions of
binary classification based on conditional kernel mean
embeddings.

Both proposed methods incorporate the idea that the output
labels can be resampled based on the candidate regres-
sion function we are testing. The main advantages of the
suggested hypothesis tests are as follows: (1) they have a
user-chosen exact probability for the type I error, which is
non-asymptotically guaranteed for any sample size; further-
more, (2) they are also consistent, i.e., the probability of their
type II error converges to zero, as the sample size tends to
infinity. Our approach can be used to quantify the uncertainty
of classification models and it can form a basis of confidence
region constructions.

APPENDIX A
PROOF OF THEOREM 3

Proof: The first equality follows from Theorem 2. When the
alternative hypothesis holds true, i.e., f # fx, let S,(,/ ) — \/?

forj=0,...,m— 1. It is sufficient to show that SS,O) tends to
be the greatest in the ordering as n — oo, because the square
root function is order-preserving. For j = 0 by the reverse
triangle inequality we have

1 2

0 ~(1)

S = - _E] HMJ‘(Xi) = Ky (Xi) ‘g
=
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1 & 2
> = X = e

i=1

2
‘g. (30)

n
_ |1 % — 20 (x,
" Mo (Xi) — g~ (Xi)
i=1
The first term converges to a positive number, as

1 n
p ZHW(XD — ps(X) ||é

i=1

] n
=D I = peXiiCo, 1)

i=1
+ (pu(X) — pXi))l(o, =D

=S [0 — e,

i=1

+ (pu(X) = p(X) (=1, =)

%i[(p(x,-) — ()| > 2E[ 000 — p. ()], (3D

i=1

where we used the SLLN and that /(1, —1) = /(—1,1) = 0.
When f # f, we have that k = E[(p(X) — p+(X))?] > 0. The

second term almost surely converges to zero by B1, hence we
0) as.
can conclude that S;;” —> +/2«.
For j € [m — 1] variable 7" has a similar form as the
second term in (30), thus its (a.s.) convergence to O follows
from B1, i.e., we get AN} Hence, Z(()l) (a.s.) tends to

become the greatest, implying (25) for g < m. |

APPENDIX B
PROOF OF THEOREM 4

Proof: The first part of the theorem follows from Theorem 2
with p = 1. For the second part let f # f,.. We transform the
reference variables as

1 n
zj(z) == > lp&le. 1) + (1 = p(X)l(o, —1)

i=1

— (B X)l(o, 1) + (1 = pi(Xi)l(o, =) I

1 & N
= Z l(p (X)) —Pj(Xi)I(o, 1)

i=1

+ @X) = pX)le, DG

| R
= > (@) =B, D
n i=1
+ GiX) — X)) (=1, —1))
2 < SR
== (X)) = (X)) (32)
i=1
for j =0,...,m — 1. From C1 it follows that Zj(z) goes to

zero a.s. for j € [m — 1]. For j = 0 we argue that Z(()z) — K
for some k > 0. Notice that

2 & N )
= () = Po(Xi)
i=1

=

2« 2« _
=2 (XD = peX)® + = Y (pa (X)) — Po (X))
n n

i=1 i=1

4 N
+ - Z((P(Xi) — P« (X)) (p«(Xi) —po(Xi)))

i=1

holds. By the SLLN the first term converges to a positive
number, E[(p+(X) — po(X))?] > 0. By CI the second term
converges to 0 (a.s.). The third term also tends to O by the
Cauchy-Schwartz inequality and CI1, as for x € X we have
Ip() — p«(@)| < 1. We conclude that if f # f., Z (as.)
tends to be the greatest in the ordering implying (28). |
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