Learning-based feedforward augmentation for steady state rejection of residual dynamics on a nanometer-accurate planar actuator system

Proimadis, J and Broens, Y and Tóth, Roland and Butler, H (2021) Learning-based feedforward augmentation for steady state rejection of residual dynamics on a nanometer-accurate planar actuator system. Proceedings of Machine Learning Research, 144. pp. 1-12. ISSN 2640-3498

[img]
Preview
Text
Proimadis_1_32112886_ny.pdf

Download (44MB) | Preview
Item Type: Article
Subjects: Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
Divisions: Systems and Control Lab
SWORD Depositor: MTMT Injector
Depositing User: MTMT Injector
Date Deposited: 27 Jul 2021 07:49
Last Modified: 17 Nov 2021 13:44
URI: https://eprints.sztaki.hu/id/eprint/10107

Update Item Update Item