Learning-based feedforward augmentation for steady state rejection of residual dynamics on a nanometer-accurate planar actuator system
Proimadis, J and Broens, Y and Tóth, Roland and Butler, H (2021) Learning-based feedforward augmentation for steady state rejection of residual dynamics on a nanometer-accurate planar actuator system. Proceedings of Machine Learning Research, 144. pp. 1-12. ISSN 2640-3498
|
Text
Proimadis_1_32112886_ny.pdf Download (44MB) | Preview |
Official URL: http://proceedings.mlr.press/v144/proimadis21a/pro...
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |
Divisions: | Systems and Control Lab |
SWORD Depositor: | MTMT Injector |
Depositing User: | MTMT Injector |
Date Deposited: | 27 Jul 2021 07:49 |
Last Modified: | 17 Nov 2021 13:44 |
URI: | https://eprints.sztaki.hu/id/eprint/10107 |
Update Item |