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ABSTRACT
Incomplete pairwise comparison matrices offer a natural way of
expressingpreferences indecision-makingprocesses. Althoughordi-
nal information is crucial, there is a bias in the literature: cardinal
models dominate. Ordinalmodels usually yield nonunique solutions;
therefore, an approach blending ordinal and cardinal information
is needed. In this work, we consider two cascading problems: first,
we compute ordinal preferences, maximizing an index that com-
bines ordinal and cardinal information; then, we obtain a cardinal
ranking by enforcing ordinal constraints. Notably, we provide a suffi-
cient condition (that is likely to be satisfied in practical cases) for the
first problem to admit a unique solution and we develop a provably
polynomial-time algorithm to compute it. The effectiveness of the
proposed method is analyzed and compared with respect to other
approaches and criteria at the state of the art.
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1. Introduction

Pairwise comparisons are applied in several areas among which decision theory and
decision support, preference modeling, multi-criteria decision making, voting, ranking,
scoring and estimating subjective probabilities of future events. We focus on multiplica-
tive or reciprocal (Aij = 1/Aji) pairwise comparison matrices, where the elements are
chosen from a ratio scale, usually composed by the values 1/9, 1/8, . . . , 1/2, 1, 2, . . . , 8, 9.
The use of such matrices has become popular due to the Analytic Hierarchy Process (AHP)
(Saaty 1977), see Golden, Wasil, and Harker (1989), Ho (2008), Saaty and Vargas (2012),
Subramanian and Ramanathan (2012), Vaidya and Kumar (2006) for a wide variety of
applications. Another important and relevant class of decision problems involves incom-
plete pairwise comparisonmatrices (e.g. seeHarker 1987; Fedrizzi andGiove 2007; Bozóki,
Fülöp, and Rónyai 2010), which allow the absence of ratios among some couples of
alternatives.
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In both cases, obtaining a weight vector w from the (incomplete) pairwise compar-
ison matrix A is a fundamental task in the decision making process. In the literature,
approaches able to obtain a vector of absolute weights from rations matrices are divided
into two fundamental classes. The first class includes a set of approaches based on the
eigenvalues and the associated eigenvectors of the pairwise comparison matrices. Start-
ing from the preliminary results of Wei (1952), Saaty (1988) and Cogger and Yu (1985)
propose their approaches based on the principle eigenvector of the pairwise comparison
matrix. The main issue of this class of approaches is related to the inconsistency in the
filling process of the matrices. An accurate analysis about the data sensitivity problem
in AHP is presented in Huang (2002). The second class of approaches for the identifi-
cation of absolute weights involves the methods based on optimization problems. Such
problems aim at minimizing a distance function between the entries of the pairwise
comparison matrix and the absolute weights. One of the most common approach in lit-
erature is the Direct Least Squares (DLS) proposed in Chu, Kalaba, and Spingarn (1979),
Barzilai and Golany (1990). The author aims to find a vector of weights in order to min-
imize the Euclidean distance form the pairwise comparison matrix. The same author
proposes a modified version of this approach, the Weighted Least Squares (WLS). WLS
is a nonlinear optimization problem based on the minimization of the L2 distance. The
Logarithmic Least Squares (LLS) problem (de Graan 1980; de Jong 1984; Crawford and
Williams 1985; Bozóki and Tsyganok 2019), originally defined for complete matrices,
is extended to the incomplete case in a natural way: taking only the known elements
into consideration (Takeda and Yu 1995; Kwiesielewicz 1996). The Incomplete Logarith-
mic Least Squares problem has been applied for weighting criteria (Benítez et al. 2019)
and ranking (tennis players (Bozóki, Csató, and Temesi 2016), chess teams (Csató 2013)
and Go players (Chao et al. 2018)). Other relevant approaches are: the Geometric Mean
Method (Kułakowski 2019), where the weights are assessed using geometric means and
taking into account the lack of some comparison, the Fuzzy Programming Method (FPM)
(Mikhailov 2000; Büyüközkan, Kahraman, and Ruan 2004) which transforms the problem
to find the vector of weights into a fuzzy programming problem, that can easily be solved
as a standard linear program, the Robust Estimation Method (REM)(Lipovetsky and Con-
klin 2002) able to provide solution vectors not prone to influence of possible errors among
the elements of a pairwise comparison matrix, the Singular Value Decomposition (Gass
and Rapcsák 2004) approach which considers a matrix of shares starting from the pair-
wise comparisonmatrix and solves an associated eigenproblem, theCorrelation Coefficient
Maximization Approach (CCMA)(Wang, Parkan, and Luo 2007) based on two optimiza-
tion problems, one of which leads to an analytic solution, and the Linear Programming
Models (LPM)(Chandran, Golden, and Wasil 2005) based on a linear programming for-
mulation, and finally, Srdjevic (2005) suggests to combine different prioritization methods
for deriving the weights vector. Notably, in Brunelli (2016) a set of desirable properties
that characterize indices able to capture cardinal consistency and transitivity are formally
defined, and it is demonstrated that no continuous index may exist able to satisfy all such
properties at once. Finally, it is worth mentioning that there are methods in the litera-
ture that aims at reconstructing the missing entries of the pairwise comparison matrix;
for instance in Bozóki, Fülöp, and Rónyai (2010) the missing entries that minimize the
dominant eigenvalue are chosen, and then the classical dominant eigenvector criterion is
adopted to compute the ranking.
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1.1. Contribution of the paper

The largest part of the previously described approaches for the identification of a weights
vector is focused on the minimization of a distance between the ratios, given by the pair-
wise comparison matrix, and the set of absolute weights. This kind of methods does not
guarantee the fulfillment of constraints about the relative preferences. Inmore details, these
approaches provide a solution able to approximate the ratios but, at the same time, con-
sidering any two alternatives, there is no guarantee to respect the ordinal preferences that
are encoded by the pairwise comparison matrix entries. In other terms, such approaches
implicitly discard the relevance of the ordinal information with the goal to identify a solu-
tion which approximates the relative ratios. In some situation, such assumptions are not
acceptable. To this end, the models and solutions proposed in our paper consider ordinal
information as constraints to the cardinal ordering problem. In more details, the proposed
approach consists of an extension of the LLS problem with a procedure composed by two
complementary steps (optimization problems). The first problem aims at maximizing the
satisfaction of ordinal constraints, weighting more the satisfaction of constraints corre-
sponding to large cardinal preference values. The second problem aims at finding cardinal
preferences with additional constraints that reflect the result of the first step.

The outline of the paper is as follows. Notations and preliminaries are given in Section 2.
In Section 3, we propose our approach to solve the incomplete AHP problem by preserving
ordinal constraints. Moreover, we introduce the Weighted Ordinal Satisfaction Index, this
measure captures the inconsistencies due to ordinal violations in the solutions of the sparse
AHPproblem. The proposedmethod is presented on numerical examples in Section 4with
an accurate comparison with alternative methods in literature. Finally, Section 5 collects
some conclusive remarks and future work directions.

2. Notation and preliminaries

2.1. General notation

We denote vectors via boldface letters, while matrices are shown with uppercase letters.
We use Aij to address the (i, j)th entry of a matrix A and xi for the ith entry of a vector x.
Moreover, we write 1n and 0n to denote a vector with n components, all equal to one and
zero, respectively; similarly, we use 1n×m and 0n×m to denote n × m matrices all equal to
one and zero, respectively.We denote by In the n × n identity matrix.We express by exp(x)
and ln(x) the component-wise exponentiation or logarithmof the vector x, i.e.a vector such
that exp(x)i = exi and ln(x)i = ln(xi), respectively. Finally, we adopt the notation sign(A)

to denote the entry-wise sign of a matrix A, i.e. a matrix sign(A) having (i, j)-th entry
that corresponds to (sign(A))ij = sign(Aij), where sign(Aij) = 1 if Aij > 0, sign(Aij) = 0
if Aij = 0 and sign(Aij) = −1, otherwise.

2.2. Graph theory

Let G = {V ,E} be a graph with n nodes V = {v1, . . . , vn} and e edges E ⊆ V × V \
{(vi, vi) | vi ∈ V}, where (vi, vj) ∈ E captures the existence of a link from node vi to node
vj. A graph is said to be undirected if (vi, vj) ∈ E whenever (vj, vi) ∈ E, and is said to be
directed otherwise.
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In the following, when dealing with undirected graphs, we represent edges using
unordered pairs {vi, vj} in place of the two directed edges (vi, vj), (vj, vi).

A graph is connected if for each pair of nodes vi, vj there is a path over G that connects
them. Let the neighborhoodNi of a node vi in an undirected graphG be the set of nodes vj
that are connected to vi via an edge {vi, vj} in E. The degree di of a node vi in an undirected
graphG is the number of its incoming edges, i.e. di = |Ni|. The degreematrix D of an undi-
rected graph G is the n × n diagonal matrix such that Dii = di. The adjacency matrix Adj
of a directed or undirected graph G = {V ,E} with n nodes is the n × n matrix such that
Adjij = 1 if (vi, vj) ∈ E and Adjij = 0, otherwise. A well-known property of adjacency
matrices is that Adj2ij > 0 if and only if there is at least one path (respecting the edge’s ori-
entation if the graph is directed) from node vi to node vj via an intermediate node vk (see,
for instance, Godsil and Royle (2001)). The Laplacianmatrix associatedwith an undirected
graph G is the n × nmatrix L, having the following structure.

Lij =

⎧⎪⎨⎪⎩
−1 if {vi, vj} ∈ E,
di, if i = j,
0, otherwise.

It is well known that L has an eigenvalue equal to zero, and that, in the case of undirected
graphs, the multiplicity of such an eigenvalue corresponds to the number of connected
components of G (Godsil and Royle 2001). Therefore, the eigenvalue zero has multiplicity
one if and only if the graph is connected.

A cycle over a directed graph G is a cyclic sequence of edges {(v1, v2), (v2, v3), . . . , (vm,
v1)}. Two cycles are said to be edge-disjoint if they have no edge in common. The density ρ

of an undirected graph G = {V ,E} is defined as

ρ = 2|E|
n(n − 1)

,

i.e. the ratio between the cardinality |E| of the edge set and n(n − 1)/2, that is, the
cardinality of the edges in a complete graph with n nodes.

2.3. Convex constrained optimization

We now review the first-order Karush–Kuhn–Tucker (KKT) necessary and sufficient opti-
mality conditions (Zangwill 1969).Note that, in viewof the later developments of the paper,
we only review the conditions where linear constraints are involved.1 Let us consider a
constrained minimization problem having the following structure:

min
x∈Rn

f (x)

subject to gi(x) ≤ 0, ∀i ∈ {1, . . . , q}
hi(x) = 0, ∀i ∈ {q + 1, . . . , s}.

(1)

where f : Rn → R is a convex function and all gi : Rn → R and all hi : Rn → R are linear.
We now review the KKT first-order necessary and sufficient optimality conditions.
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Theorem2.1 (KKTFirst-orderNecessaryConditions): Consider a constrained optimiza-
tion problem as in Equation (1) and let the Lagrangian function be defined as follows:

L(x, ζ ) = f (x) +
q∑

i=1
ζi gi(x) +

s∑
i=q+1

ζi hi(x)

where ζ = [ζ1, . . . , ζs]T collects the Lagrangian multipliers. A necessary and sufficient
condition for a point x∗ ∈ R

n to be a global minimum is that there is ζ ∗ ∈ R
s such that

(1) ∇xL(x, ζ )|x=x∗, ζ=ζ ∗ = 0;
(2) ζ ∗

i gi(x
∗) = 0, ∀i = 1, . . . , q;

(3) gi(x∗) ≤ 0, ∀i = 1, . . . , q.
(4) hi(x∗) = 0, ∀i = q + 1, . . . , s.
(5) ζ ∗

i ≥ 0, ∀i = 1, . . . , q.

2.4. Incomplete analytic Hierarchy process

In this subsection, we review the Analytic Hierarchy Process (AHP) problem when the
available information is incomplete. Specifically, we review the problem and discuss the
Logarithmic Least Squares approach for solving it.

Let us consider a set of n alternatives, and suppose that each alternative is characterized
by an unknown utility or value wi > 0. Within the AHP problem, the aim is to compute
an estimate of the unknown utilities, based on information on relative preferences. In the
incomplete information case, we are given a valueAij = εijwi/wj for selected pairs of alter-
natives i, j; such a piece of information corresponds to an estimate of the ratiowi/wj, where
εij > 0 is a multiplicative perturbation that represents the estimation error. Moreover, for
all available Aij, we assume that Aji = A−1

ij = ε−1
ij wj/wi, i.e. the available terms Aij and

Aji are always consistent and satisfyAijAji = 1.
We point out that, while traditional AHP approaches (Saaty 1977; Crawford 1987; Barzi-

lai, Cook, and Golany 1987) require knowledge on every pair of alternative, in the partial
information setting we are able to estimate the vector w = [w1, . . . ,wn]T of the utili-
ties, knowing just a subset of the perturbed ratios. Specifically, let us consider a graph
G = {V ,E} with |V| = n nodes; in this view, each alternative i is associated with a node
vi ∈ V , while the knowledge of wij corresponds to an edge (vi, vj) ∈ E. Clearly, since we
assume to know wji whenever we know wij, the graph G is undirected. LetA be the n × n
matrix collecting the termsAij, withAij = 0 if (vi, vj) 
∈ E.

Notice that, in the AHP literature, there is no universal consent on how to estimate
the utilities in the presence of perturbations (see for instance the debate in Dyer (1990),
Saaty (1990) for the original AHPproblem). This is true also in the incomplete information
case, see, for instance, Bozóki, Fülöp, and Rónyai (2010), Oliva, Setola, and Scala (2017),
Menci et al. (2018). While the debate is still open, we point out that the logarithmic least
squares approach appears particularly appealing, since it focuses on error minimization.

For these reasons, in Section 2.5, we review the Incomplete Logarithmic Least Squares
(ILLS) Method (Bozóki, Fülöp, and Rónyai 2010; Menci et al. 2018), which represents an
extension of the classical Logarithmic Least Squares (LLS) Method developed in Crawford
(1987), Barzilai, Cook, and Golany (1987) for solving the AHP problem in the complete
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information case. Moreover, for the sake of completeness, we summarize the main aspects
of the Incomplete Direct Least Squares (Section 2.6), the Incomplete Weighted Least
Squares (Section 2.7), and the Incomplete Eigenvector Approach (Section 2.8). These
methods are compared with our proposed approach in Section 4.2.

2.5. Incomplete logarithmic least squares (ILLS) approach to AHP

Within the ILLS algorithm, the aim is to find a logarithmic least squares approximationw∗
to the unknown utility vector w, i.e.to find the vector that solves

w∗ = argmin
x∈R

n+

⎧⎨⎩1
2

n∑
i=1

∑
j∈Ni

(
ln(Aij) − ln

(
xi
xj

))2
⎫⎬⎭ . (2)

An effective strategy to solve the above problem is to operate the substitution y = ln(x),
where ln(·) is the component-wise logarithm, so that Equation (2) can be rearranged as

w∗ = exp

⎛⎝argmin
y∈Rn

⎧⎨⎩1
2

n∑
i=1

∑
j∈Ni

(
ln(Aij) − yi + yj

)2⎫⎬⎭
⎞⎠ , (3)

where exp(·) is the component-wise exponential. Let us define

κ(y) = 1
2

n∑
i=1

∑
j∈Ni

(
ln(Aij) − yi + yj

)2 ;
because of the substitution y = ln(x), the problem becomes convex and unconstrained,
and its global minimum is in the form w∗ = exp(y∗), where y∗ satisfies

∂κ(y)
∂yi

∣∣∣
y=y∗ =

∑
j∈Ni

(ln(Aij) − y∗
i + y∗

j ) = 0, ∀i = 1, . . . , n.

Let us consider the n × nmatrixP such thatPij = ln(Aij) ifAij > 0 andPij = 0, otherwise;
we can express the above conditions in a compact form as

Ly∗ = P1n, (4)

where L is the Laplacian matrix associated with the graph G. Notice that, since for hypoth-
esis G is undirected and connected, the Laplacian matrix L has rank n−1 (Godsil and
Royle 2001). Therefore, a possible way to calculate a vector y∗ that satisfies the above
equation is to fix one arbitrary component of y∗ and then solve a reduced size sys-
tem by simply inverting the resulting nonsingular (n − 1) × (n − 1) matrix (Bozóki and
Tsyganok 2019).

Vector y∗ can also bewritten as the arithmeticmean of vectors calculated from the span-
ning trees of the graph of comparisons, corresponding to the incomplete additive pairwise
comparison matrix lnA (Bozóki and Tsyganok 2019).
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Finally, it is worth mentioning that, when the graph G is connected, the differential
equation

ẏ(t) = −Ly(t) + P1n

asymptotically converges to y∗ (see Olfati-Saber, Fax, and Murray 2007), and represents
yet another way to compute it. Notably, the latter approach is typically used by the con-
trol system community for formation control of mobile robots, since the computations are
easily implemented in a distributed way and can be performed cooperatively by different
mobile robots. Therefore, such an approach appears particularly appealing in a distributed
computing setting.

2.6. Incomplete direct least squares (IDLS)

In this section, we illustrate an alternative approach as solution for AHP. Starting from the
theory of the DLS method (Chu, Kalaba, and Spingarn 1979; Barzilai and Golany 1990;
Barzilai 1997), we now summarize the approach applicable in an incomplete informa-
tion scenario. The objective of this method is the minimization of the Euclidean distance
between the solution and the distribution of the relative weights in the incomplete pairwise
comparison matrix. That is:

Problem 2.1: Find the vector w that solves

min
n∑
i=1

n∑
j=1

sign(Aij)

(
Aij − wi

wj

)2

subject to
n∑

i=1
wi = 1

(5)

Note that solving the Incomplete Direct Least Squares (IDLS) is a rather difficult task,
since the objective function is nonlinear and usually nonconvex; moreover, the problem
might not admit a unique solution. Finally, approximation schemes such as the Newton’s
method may require a good initial point to be successfully applied (see Bozóki 2008 and
references therein for a more detailed discussion on this issue).

2.7. Incomplete weighted least squares (IWLS)

Starting from the classic formulation of the WLS (Blankmeyer 1987), in this section, we
summarize the main characteristics of the Incomplete Weighted Least Squares (IWLS)
which is applicable in an incomplete information setting. More precisely, a solution for
the AHP problem is given by the solution to the following problem:

Problem 2.2: Find the vector w that solves

min
n∑
i=1

n∑
j=1

sign(Aij)

(
Aijwj − wi

)2
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subject to (6)
n∑

i=1
wi = 1

2.8. Eigenvector approach (EV)

This approach (Harker 1987) is a generalization of the original eigenvector approach from
Saaty. For notational convenience, we review the approach following the equivalent for-
malism in Oliva, Setola, and Scala (2017) where the matrix involved in the computation
is based on the available comparisons, rather than on the missing ones as in the original
formulation by Harker (1987).

Specifically, in the Eigenvector Approach (EV), assuming the underlying graph is con-
nected, the ranking is approximated by the dominant eigenvector of the incomplete
matrix

D−1(A − In)

where D is the degree matrix, i.e. a diagonal matrix such that Dii is equal to the degree di
of node i over G (i.e. the amount of available comparisons involving node i).

2.9. Evaluation Criteria

As introduced in Section 1, the main methods for the identification of the weights vector
from the pairwise comparison matrices, disagree on the definition of the result, because
each method is focused on a different aspect of the problem (although there is recent
work in the literature aimed at allowing for tunable performance indices (Brunelli and
Fedrizzi 2019)). To this end, with the aim to compare the effectiveness of multiple results
frommultiple approaches, we summarize themain aspect of the following comparison cri-
teria (the interested reader is referred to Brunelli (2018) for a comprehensive survey on this
topic).

2.9.1. Minimum violations (MV)
Minimum Violations (MV) (Golany and Kress 1993, p. 213) also known as the Number of
Judgment Reversals (NJR) in Abel, Mikhailov, and Keane (2018, p. 217) was introduced to
check whether relationsAij > 1 and xi > xj are fulfilled together. Specifically, each pair of
alternatives i, j such that i is preferred to j butAij < 1 contributes with a score equal to one
to theMV indicator, while each pair of equally important alternatives i, j such thatAij 
= 1
(or vice versa) contributes with a score 1/2 (but it is added twice, once for i, j and once for
j, i, so it gives the same penalty in total as the other one, where 1 is added once); in other
words, considering a set of n alternatives, the MV index is defined as

MV =
n∑

i=1

n∑
j=1

Vij, (7)
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where

Vij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if wi > wj and Aij < 1,
1
2 if wi = wj and Aij 
= 1,
1
2 if wi 
= wj and Aij = 1,
0 otherwise.

In this view, the larger is MV, the larger the number of ordinal violations in the vector
of utilities w. Note that, the approach presented in this paper aims at minimizing this kind
of metrics in order to respect the preferences expressed in the pairwise comparison matri-
ces. With the aim to apply such criterion also in the incomplete context we propose the
following modification of Equation (7):

MVs =
n∑

i=1

n∑
j=1

sign(Aij)Vij (8)

In this way, we avoid to consider ordinal violations due to the absence of preferences in the
pairwise comparison matrix.

2.9.2. Total deviation (TD)
A large number of approaches for the definition of the utility vector w is formulated in
terms of an optimization problem characterized by the minimization of some distance
measure between the ratios wi/wj and the corresponding entries of the pairwise compari-
son matrixAij. Considering n alternatives, the error between the two measures is defined
by Takeda, Cogger, and Yu (1987) and is computed as

TD =
n∑

i=1

n∑
j=1

(
Aij − wi

wj

)2
(9)

This criterion measures the Euclidean distance between the ratios obtained from the
entries of the weights vector and the initial relative measures. With the aim to apply this
criterion also in the incomplete case, we take into account the distances only ifAij 
= 0:

TDs =
n∑
i=1

n∑
j=1

sign(Aij)

(
Aij − wi

wj

)2
(10)

3. ILLS problemwithminimumweighted ordinal violations

In this section, we develop a novel framework, namely Incomplete Logarithmic Least
Squares with Minimum Weighted Ordinal Violations (ILLS-MWOV) applicable in both
complete and incomplete settings. Specifically, let us consider a situation where we are
given a possibly incomplete matrix A for n alternatives, corresponding to a connected
undirected graphGwithnnodes. The proposed framework consists of two complementary
steps: first of all, we find an ordinal ranking taking into account also cardinal information;
then, we find a cardinal ranking that does not violate the ordinal one defined during the
first step.
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3.1. Weighted ordinal ranking

In view of the developments in this paper, it is convenient to provide the following
definitions.

Definition 3.1 (Pairwise ordinal preference): A pairwise ordinal preference for a pair of
alternatives i, j is expressed by the pair xij, xji ∈ {0, 1}, where

xij =
{
1, if i is preferred to j;
0, if no choice on the preference of i over j is specified

and it holds

xij + xji ≤ 1. (11)

Notice that the condition in Equation (11) guarantees to avoid inconsistent situations
where the ith alternative is preferred to the jth one and the jth one is preferred to the ith
one. Moreover, we point out that Equation (11) allows situations where

xij = 0 and xji = 0,

i.e. where no preference is specified for the pair i, j. Notice that, due to the definition
of xij and to Equation (11), the variables xij and xji can be combined to provide overall
information on the preference expressed for the pair i, j; in fact, it holds

xij − xji =

⎧⎪⎨⎪⎩
1 if i preferred to j
−1 if j preferred to i
0 if no preference is specified for the pair i, j.

Let us now develop a weighted indicator of ordinal violation that will be the basis for the
proposed optimization problem. Notice that the proposed metric generates a penalty with
magnitude equal to | ln(Aij)|whenever the variables xij, xji are in contrast with the ordinal
information encoded in the ratioAij; moreover, it considers a rewardwithmagnitude equal
to | ln(Aij)| whenever the variables xij, xji agree with the ordinal information encoded in
the ratioAij. This penalty/reward scheme fundamentally differs from the MVs approach,
in that pairs corresponding to largest ratios correspond to largest rewards/penalties, while
in the case of MV the rewards and penalties are independent on the numerical value of the
ratios. As a consequence, the proposed optimization formulation will prioritize the satis-
faction of ordinal information corresponding to large relative preference values. Moreover,
as it will be made clear later in this section, this choice allows for the existence of a unique
solution even in the presence of cycles, under mild hypotheses on the available data.

Definition 3.2 (Weighted Ordinal Satisfaction Index): Suppose that a pairwise ordinal
preference, expressed in terms of the pair xij, xji ∈ {0, 1}, is defined for all pairs i, j of alter-
natives and denote by {xij} the set collecting all such variables xij. The weighted ordinal
satisfaction index σ is defined as

σ =
∑

{vi,vj}∈E
ln(Aij)(xij − xji).
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Notice that the above index takes into account only those pairs of alternatives for which
a pairwise comparisonAij 
= 0 is available. Notice further that for each pair {vi, vj} of alter-
natives such thatAij 
= 0we consider a contribution ln(Aij)(xij − xji), i.e. a reward equal to
| ln(Aij)|when the ordinal preferences xij, xji match with the ordinal information encoded
in the ratioAij (e.g.Aij is above one and xij = 1) and a penalty equal to −| ln(Aij)| when
xij, xji are in disagreement with Aij (e.g.Aij > 1 and xji = 1). Notably, we consider zero
reward/penalty when both xij = 0 and xji = 0.

Notice that, when the weighted ordinal satisfaction index σ is used as a guide to choose
the variables xij, we assign zero penalty/reward to ties, i.e. to those pairs i, j such thatAij =
1 (i.e. because ln(Aij) = ln(Aji) = 0). To avoid this issue, we now define the following
function.

Definition 3.3 (Tie Index): Suppose that a pairwise ordinal preference, expressed in terms
of the pair xij, xji ∈ {0, 1}, is defined for all pairs i, j of alternatives and denote by {xij} the
set collecting all such variables xij. The tie index τ is defined as

τ = −δ
∑

{vi,vj}∈E |Aij=1

(xij + xji)

with δ > 0.

The above index assigns a penalty equal to δ whenever a variable xij corresponding to a
tie is set to one.

Based on the above indices, we now define the following optimization problem.

Problem 3.1: Find the set {x∗
ij} that solves
max

{xij} | xij∈{0,1}
σ+τ

subject to{
xij + xji ≤ 1, ∀i, j s.t. i 
= j
xij ≥ xikxkj, ∀i, j, k s.t. i 
= j 
= k

(12)

The above problem aims at finding the set of pairwise ordinal preferences for all pairs of
alternatives (not just for the ones for whichAij 
= 0) that maximizes the weighted ordinal
satisfaction index σ and guarantees transitivity of the ordinal preferences. Notice that the
first constraint is required for xij, xji to represent a pairwise ordinal preference. This con-
straint directly derives from the relation discussed in Definition 3.1 and it is necessary to
prevent the case xij = xji = 1 from happening. Moreover, the constraint xij ≥ xikxkj mod-
els the requirement that the ordinal ranking encoded by the variables {xij} is transitive. In
other words, if the ith alternative is preferred to the kth one and the kth one is preferred
to the jth one, then alternative imust be preferred to alternative j (we reiterate that xij = 0
does not imply j is preferred to i but represents the situation where the preference of i over
j is not explicitly decided).

Notably, for sufficiently small δ (e.g. for 0 < δ < mini,j |Aij>1{ln(Aij)}/|E|) the contri-
bution of τ to the objective function σ + τ is negligible but the presence of τ prevents
unnecessary ties to be set to one.
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Before discussing the second problem, let us rearrange Problem 3.1 as an Integer Linear
Programming (ILP) formulation; this is done by transforming each nonlinear constraint in
the form xij ≥ xikxkj into a set of linear constraints featuring additional Boolean variables
zijk and by suitably expressing σ as a linear combination of the variables xij, as shown in
Problem 3.2.

Problem 3.2: Find the sets {xij} and {zijk} that solve

max
{xij} | xij∈{0,1}, {zijk} | zijk∈{0,1}

∑
{vi,vj}∈E

ln(Aij)(xij − xji) −δ
∑

{vi,vj}∈E |Aij=1

(xij + xji)

subject to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xij + xji ≤ 1, ∀i, j s.t. i 
= j
xij ≥ zijk ∀i, j, k s.t. i 
= j 
= k
zijk ≥ xik + xkj − 1, ∀i, j, k s.t. i 
= j 
= k
zijk ≤ xik, ∀i, j, k s.t. i 
= j 
= k
zijk ≤ xkj, ∀i, j, k s.t. i 
= j 
= k

(13)

Notice that Problem 3.1 features O(n2) variables, while the ILP formulation in Prob-
lem 3.2 requires O(n3) variables. However, the amount of constraints in the ILP formula-
tion remains O(n3) in both formulations.

3.1.1. Uniqueness of solution
Generally speaking, ordinal problems may have multiple solutions, especially in the pres-
ence of cycles.2 However, we point out that, within Problem 3.1, a blend of ordinal and
cardinal information is used (i.e. the indexσ is weightedwith the ratiosAij); under suitable
assumptions, this feature allows to guarantee uniqueness of solution, even in the presence
of cycles.

In order to characterize a sufficient condition for the existence of a unique solution to
Problem 3.1, it is convenient to introduce the directed graph Gd = {V ,Ed}, where V =
{v1, . . . , vn} is the set of alternatives and Ed is the set of directed edges (vi, vj) (i.e. from
alternative i to alternative j) that correspond to the available ratiosAij ≥ 1. In other words,
for each pair of alternatives i, j for which a ratio is available, we select the edge (vi, vj)
if Aij ≥ 1 and we select the edge (vj, vi) if Aji ≥ 1 (if both Aij = 1 and Aji = 1, we add
either one of the edges (vi, vj), (vj, vi) for the pair i, j). Let us now consider the cycles over
Gd and let us give the following definition.

Definition 3.4: Let us consider a cycle C over Gd and let Amin be the minimum ratio
associated with a link in the cycle.3

The cycle is said to be ambiguous if the multiplicity of the edges in C associated with a
ratio equal toAmin is more than one.

In order to show the relation between ambiguous cycles andmultiple optimal solutions,
let us consider the example reported in Figure 1 (there are two links with associated weight
Amin = 2, represented by a red dotted line). In this case, an optimal solutions will feature
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Figure 1. Example of ambiguous cycle. The problem has two optimal solutions, one featuring x21 = 1
and the other featuring x43 = 1.

x23 = 1, x45 = 1 and x51 = 1. However, to fulfill the transitivity requirements, there is a
need to either set x21 = 1 or x43 = 1, paying a penalty equal to − ln(2); in both cases,
the solution obtained has the same value of σ = ln(7) + ln(5) + ln(3) + ln(2) − ln(2) and
thus this instance has two optimal solutions.

Let us now provide a sufficient condition for the uniqueness of the optimal solution to
Problem 3.1.

Theorem 3.1: Let A be given and let Gd = {V ,Ed} be the directed graph obtained by con-
sidering only the directed edges corresponding to ratiosAij ≥ 1. If Gd has no ambiguous cycle
and the cycles are all edge-disjoint then the solution of Problem 3.1 is unique.

Proof: In order to prove the statement, let us first focus on a single nonambiguous cycle
C withm−1 edges and, without loss of generality, let us denote by (vm, v1) the unique link
corresponding to the minimum weight in the cycle. In this case, it can be noted that the
unique optimal solution corresponds to setting xi,i+1 = 1 for all i = 1, . . . ,m − 1 and, to
fulfill the transitivity requirements, there is the need to set x1m = 1 (paying a penalty equal
to max{Amin, δ}) and xi,i+2 = 1 for all i = 1, . . . ,m − 2. At this point, we observe that,
when Gd satisfies the assumptions of this theorem, it is possible to select the variables xij
corresponding to each cycle (including the additional ones introduced for transitivity) in
the above way, and then the cycles can be conceptually collapsed into a node, thus resulting
in an acyclic graph. To conclude the proof, we observe that, if the graph is acyclic, it is
sufficient to select xij = 1 for all remaining (vi, vj) ∈ Ed such thatAij > 1 and xij = xji = 0
for all remaining ties (i.e. for (vi, vj) ∈ Ed such that Aij = 1); moreover, there is the need
to set to one all variables xij that are required to fulfill the transitivity constraints to obtain
the unique optimal solution. This completes our proof. �

A few remarks are now in order.

Remark 3.1: The proof of Theorem 3.1 is constructive, i.e. it provides an actual algorithm
to find the unique global optimal solution over a graph Gd = {V ,Ed} with edge-disjoint
nonambiguous cycles. The pseudocode of such an algorithm is reported in Algorithm 1.
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Algorithm 1 Solve Problem 3.1 under the assumptions in Theorem 3.1
procedureWeightedOrdinalRanking(A)

Let Adj be an n × n adjacency matrix with Adjij = 0, ∀i, j
Construct directed graph Gd = {V ,Ed}
Find cycles in Gd
for all cycles C in Gd do
Find link (vi, vj) in C with minimum weight
Set Adjji = 1
end
Set Adjij = 1 for all remaining (vi, vj) ∈ Ed such thatAij > 1
for i = 1, . . . , n − 1 do
Adj = sign(Adj+ Adj2)
end
Set X∗ = Adj
return X∗

end procedure

Specifically, Algorithm 1 consists of first finding all cycles and, for each cycle, select-
ing the link (vi, vj) of smallest weight and then setting xji = 1, paying a penalty equal
to max{Amin, δ}. After this operation, the graph conceptually becomes acyclic, and the
algorithm sets to one the variables xij for all remaining edges in Ed such that Aij > 1.
Finally, additional variables xij = 1 are added by transitivity. This is done by exploiting
the properties of adjacency matrices. In particular, collecting the entries xij into an adja-
cency matrix Adj, we have that Adj2ij > 0 if and only if there is a path from node vi
to node vj that passes through a third node vk (Godsil and Royle 2001). Therefore, tak-
ing sign(Adj+ Adj2) we introduce all variables xij = 1 required to satisfy transitivity for
the current variables xij = 1. The procedure is repeated n−1 times to guarantee that also
the newly added terms xij = 1 satisfy transitivity. Notice that, in general, the number of
cycles c in a directed graph can be exponential; however, if the cycles are edge-disjoint,
it can be easily observed that there are at most |Ed|/2, i.e. O(|Ed|) cycles. At this point,
we observe that, using Johnson’s algorithm, computing all cycles has a computational cost
O((|V| + |Ed|)(c + 1)) (Johnson 1975) and for each cycle, we need to scan all edges, i.e.
O(|V|) operations in the worst case. As for the addition of variables for transitivity, we
observe that the matrix product has a computational complexity O(|V|2.373) (Davie 2013)
and that we compute such products O(|V|) times; hence, the overall procedure has a
computational complexity that is

max
{
O((|V| + |Ed|)(|Ed| + 1)|V|),O(|V|3.373)} ≤ O(|V|4)

where the upper bound is obtained noting that |Ed| ≤ n(n − 1)/2. Therefore, under the
assumptions of Theorem 3.1, Algorithm 1 has polynomial time complexity.

Remark 3.2: We reiterate that, given the fact σ uses cardinal information to weight the
ordinal preferences, and due to the presence of τ , Problem 3.1 has a unique solution also
in the presence of cycles (provided they are edge-disjoint and nonambiguous) and ties.
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Figure 2. Example of instance that does not satisfy the assumptions of Theorem 3.1 (because cycles are
ambiguous and not edge-disjoint) but has a unique optimal solution.

Notably, by using an objective function based on purely ordinal information (e.g. the MV
index), one can not guarantee unicity in the presence of cycles.

Remark 3.3: The condition given in the above theorem is just a sufficient condition, hence
the set of instances that correspond to a unique global optimal solution is larger. For
instance, the example in Figure 2 consists of two ambiguous cycles sharing a link; yet, the
global optimal solution is unique and corresponds to setting x32 = 1 (paying a penalty
− ln(3)) and all other xij corresponding to edges in Gd to one.

3.2. ILLS rankingwith prescribed pairwise ordinal preferences

Let us assumeA satisfies the assumptions in Theorem 3.1 and let {x∗
ij} be the optimal solu-

tion to the first subproblem. Within the second subproblem, our aim is to find a utility
vector w∗ = exp(y∗), where y∗ solves the following problem.

Problem 3.3: Let 0 < ε � 1 be given. Find y∗ ∈ R
n that solves

min
y∈Rn

n∑
i=1

∑
j∈Ni

(
ln(Aij) − yi + yj

)2
subject to{
yi ≥ yj+ε, ∀i, j, i 
= j s.t. x∗

ij = 1.

(14)

The above quadratic optimization problem is essentially the classical logarithmic least
squares problem discussed in Section 2.5, with the additional constraint able to guaran-
tee that wi>wj whenever x∗

ij = 1; the strict inequality in the constraint is implemented by
introducing a small positive ε.

Let us conclude the section by providing a necessary and sufficient global optimality
condition for Problem 3.3.

Theorem 3.2: Let us consider the AHP problem with incomplete information and let us
assume that the graph G corresponding to the ratio matrixA is connected and let {x∗

ij} be the
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optimal solution to Problem 3.1. The global optimal solution y∗ of Problem 3.3 satisfies

L(A)y∗ = 1
2
(
∗ − 
∗T)1n + r (15)

where L(A) is the Laplacian matrix corresponding to the graph G and
∗ is the n × nmatrix
of Lagrange multipliers, such that for each pair of alternatives i, j with x∗

ij = 1 it holds


∗
ij = max

⎧⎨⎩0, 2
∑

k∈Ni, k
=j

(y∗
i − y∗

k) −
∑

k
=j | x∗
ik=1


∗
ik +

∑
k | x∗

ki=1


∗
ki − 2ri + 2ε

⎫⎬⎭ , (16)

while 
∗
ij = 0, otherwise, with ri = ∑

j∈Ni
ln(Aij) and r = [r1, . . . , rn]T.

Proof: Notice that, by construction, the problem is convex and has linear inequality con-
straints. Moreover, since {x∗

ij} is the optimal solution to Problem 3.1, by construction it is
possible to assign values yi that satisfy the constraints in Problem 3.3; we conclude there-
fore, that the set of admissible solutions to Problem 3.3 is nonempty. In order to find the
global optimal solution, we can therefore resort to theKKTfirst-order criterion, which rep-
resents a necessary and sufficient global optimality condition4. The Lagrangian function
associated with the problem at hand is:

L(y,
) =
n∑

i=1

∑
k∈Ni

(
ln(Aik) − yi + yk

)2 +
n∑

i=1

∑
k | x∗

ik=1


ik(yk − yi + ε)

Following standard KKT theory, a necessary and sufficient optimality condition for y∗ to
be the global optimum is that there is 
∗ such that

∂L(y,
)

∂yi

∣∣∣
y=y∗,
=
∗ = 0, ∀i ∈ {1, . . . , n},


∗
ij(y

∗
j − y∗

i + ε) = 0, ∀i, j s.t. x∗
ij,


∗
ij ≥ 0, ∀i, j s.t. x∗

ij.

(17)

Note that, for all i ∈ {1, . . . , n} the fist of the above condition corresponds to

2
∑
k∈Ni

(y∗
i − y∗

k) =
∑

k | x∗
ik=1


∗
ik −

∑
k | x∗

ki=1


∗
ki + 2

∑
k∈Ni

ln(Aik). (18)

Let us now consider the second condition in Equation (17); for all pairs of alternatives i, j
such that x∗

ij = 1 it either holds 
∗
ij = 0 or

yj − yi + ε = 0. (19)

In the latter case, since by combining Equation (18) it holds

2(yj − yi) = 2
∑

k∈Ni, k
=j

(y∗
i − y∗

k) −
∑

k | x∗
ik=1


∗
ik +

∑
k | x∗

ki=1


∗
ki − 2

∑
k∈Ni

ln(Aik),
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Equation (19) is equivalent to requiring that

2
∑

k∈Ni, k
=j

(y∗
i − y∗

k) −
∑

k | x∗
ik=1


∗
ik +

∑
k | x∗

ki=1


∗
ki − 2

∑
k∈Ni

ln(Aik) + 2ε = 0,

i.e.


∗
ij = 2

∑
k∈Ni, k
=j

(y∗
i − y∗

k) −
∑

k
=j | x∗
ik=1


∗
ik +

∑
k | x∗

ki=1


∗
ki − 2

∑
k∈Ni

ln(Aik) + 2ε.

We conclude that, since by the third condition in Equation (17) it must hold 
∗
ij ≥ 0, the

Lagrange multiplier 
∗
ij satisfies Equation (16) for all i, j such that x∗

ij = 1. The proof is
complete. �

4. Experimental results

4.1. Illustrative examples

In order to demonstrate the ILLS-MWOVmethodology, we now consider two illustrative
examples. Let us first consider the example in Csató and Rónyai (2016, Example 3.4), for
which the ILLS approach is known to yield an orderingwILLS that contradicts the ordinally
consistent preferences {xILLSij }, in that A12 > 1 but wILLS

1 < wILLS
2 . Specifically, with refer-

ence to the results in Csató and Rónyai (2016), the example encompasses 7 alternatives
and the graph underlying the available ratios is given in Figure 3(a), concerning the weight
matrix5 A, it is defined as:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 0 0 2 2
1/2 1 2 2 0 0 0
0 1/2 1 2 2 0 0
0 1/2 1/2 1 2 2 0
0 0 1/2 1/2 1 2 2
1/2 0 0 1/2 1/2 1 0
1/2 0 0 0 1/2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 3(b) shows the ranking wILLS and w∗ obtained via the incomplete logarithmic least
squares approach and via the ILLS-MWOV approach (considering ε = 0.1), with blue and
red bars, respectively. Notice that no entry Aij with i 
= j is equal to one; hence, we have
τ = 0. Notice further that the ranking wILLS results in one violation of the ordering, since
A12 > 1 but wILLS

1 < wILLS
2 ; in other words, it holds σ ILLS = 10 ln(2) ≈ 6.931, while the

objective function of Problem 3.3 is equal to 1.6963.
Let us now consider the result of the ILLS-MWOV. Specifically, by solving Problem 3.2,

we obtain a pairwise ordering {x∗
ij} that can be summarized by the n × n matrix X∗ such
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Figure 3. Comparison of the results of ILLS-MWOV and ILLS with respect to the example given in Csató
and Rónyai (2016), for which ILLS is known to result in ordinal violations. (a) Graph representation
of the instance considered in Csató and Rónyai (2016) and (b) Rankings obtained via the Incomplete
Logarithmic Least squares (wILLS) and the proposed approach for the ordinal rankingw∗.

that X∗
ij = x∗

ij, i.e.

X∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that X∗ is in accordance with the pairwise ordinal preferences induced by A.
Moreover, it holds σ ∗ = 11 ln(2) ≈ 7.6246. Notice that, since the graph is acyclic, we are
guaranteed by Theorem 3.1 that the solution found with the proposed approach is unique.
Let us now consider the solution of Problem 3.3, where the constraints depend on the
above choice for {x∗

ij}; the resulting ranking is shown in Figure 3(b). Notice that, in con-
trast to the relation wILLS

1 < wILLS
2 , the result of the proposed ILLS-MWOV approach is

characterized by w∗
1 > w∗

2; hence, it preserves the relations between the two alternatives.
Notably, the objective function of Problem 3.3 is equal to 1.7232, i.e. an increase of just
+1.6% with respect to the results obtained for wILLS. We can affirm that the distribution
of the weights w∗, with respect to the distribution wILLS, is slightly suboptimal but also
preserves the ordinal constraints.

For the sake of completeness, we adopt the criteria described in Section 2.9 in order to
evaluate the performance of the proposed ILLS-MWOV approach with respect to the clas-
sic ILLS method. Concerning the MVs criterion (see Section 2.9.1), it confirms the results
obtained by analyzing the weighted ordinal satisfaction index σ ; in fact, the criterion com-
puted for both the approaches yieldsMVsILLS = 1 (due to the incorrect order between the
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first two alternatives) and MVsILLS−MWOV = 0 (because of the correct ordering between
the first two alternatives).

Let us compare the two approaches in terms of the TDs criterion (see Section 2.9.2). In
this case, we obtain TDsILLS = 5.71, while TDsILLS−MWOV = 6.17. This result is expected
due to the additional constraints introduced in the proposed formulation. Let us now ana-
lyze the element-wise absolute differences �ij for the available entries, which we define
as

�ij =

⎧⎪⎨⎪⎩
∣∣∣∣∣wILLS

i
wILLS
j

− w∗
i

w∗
j

∣∣∣∣∣ , ifAij 
= 0

0, otherwise.

Collecting all entries �ij into the n × nmatrix � we have that

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.133 0 0 0 0.150 0.093
0.124 0 0.042 0.072 0 0 0
0 0.031 0 0.011 0.046 0 0
0 0.028 0.006 0 0.023 0.061 0
0 0 0.016 0.015 0 0.022 0.045

0.017 0 0 0.019 0.010 0 0
0.011 0 0 0 0.023 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
andwe observe that the largest absolute differences are attained for entries that involve v1 or
v2 (in particular, the largest attained values are�16 = 0.15,�12 = 0.133 and�21 = 0.124),
i.e. the pair for which the ordinal preferences encoded in A are violated using the ILLS
approach.

Let us now consider the graph reported in Figure 4(a), i.e. a nonambiguous cycle fea-
turing a tie. With respect to this instance, the ILLS-MWOV solution is such that x21 = 1
(paying a penalty equal to δ � 1) and all other xi,i+1 = 1 (plus the additional terms xij
required to enforce transitivity). In Figure 4(b) we show the results in terms of MVs and
TDs obtained according to ILLS-MWOV, ILLS, EV, IDLS and IWLS. According to the
figure, the proposed approach results in remarkably smaller values ofMVs, which is related
to the satisfaction of ordinal preferences, while the results in terms of TDs (related to car-
dinal preferences) are slightly larger than ILLS and IDLS, but remarkably smaller than EV
and IWLS. Overall, this suggests that the proposed approach has a remarkably better per-
formance with respect to metrics related to ordinal information and good performances
with respect to metrics related to cardinal information.

4.2. Comparisonwith the state of the art

In order to experimentally validate the proposed approach, we compare in this section,
the ILLS-MWOVmethodology with ILLS (see Section 2.5), IDLS (see Section 2.6), IWLS
(see Section 2.7) and EV (see Section 2.8) in terms of metrics related to the ordinal viola-
tions (i.e. σ and MVs) and in terms of cardinal violations (i.e. TDs). Such a comparison
is undertaken by considering the effect of growing levels of inconsistency and varying the
density ρ of the graph (we reiterate that the graph density is the ratio between the cardinal-
ity of the edge set and the cardinality of the edges in a compete graph). In more detail, we
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Figure 4. Results in terms of MVs and TDs for different methodologies with respect to a nonambiguous
cycle featuring a tie. (a) Example of nonambiguous cycle and (b) results in terms ofMVs and TDs obtained
via the proposed approach and using other methods in the literature.

consider random instances encompassing n = 7 alternatives; for each instance, we build
a connected random graph with the desired graph density ρ (i.e. the percentage of links
with respect to those in a complete graph with the same number of nodes) and we gener-
ate a nominal weight vector w, which we use to construct a nominal matrix A such that
Aij = wi/wj whenever (vi, vj) ∈ E. Then, we perturbate each nominal ratioAij by setting

Ãij = Aijeηij ,

ηij being a normal random variable with zero mean and standard deviation γ , which we
refer to as the degree of perturbation. In other words, eηij is a log-normal perturbation
which has the effect to attenuate the ratio Aij (i.e. when ηij assumes negative values) or
to enhance the ratio Aij (i.e. when ηij assumes positive values). Notice that, in order to
ensure local consistency (i.e.consistency at the level of each single pair of alternatives), we
only directly perturbate Ãij, while we set Ãji = 1/Ãij. In the trials, we set the parameters
ε, δ in ILLS-MWOV to ε = δ = 10−4, and we show the results in terms of average and
standard deviation overm = 100 trials for each choice of the parameters ρ and γ .

Let us now consider the performances in terms of the index6 σ (we recall that the larger
is σ , the more the result matches with the ordinal preferences encoded by the ratiosAij),
considering graphswith different values of ρ with fixed γ (Figure 5) and for different values
of γ with fixed ρ (Figure 6). According to the plots, while performances are comparable
with the other methods in the case of small γ , irrespectively of ρ (i.e.Figure 5 and the left-
most plot in Figure 6), as γ grows (see the central and right panels in Figure 6), the divide
with other methods appears more evident, especially with respect to IDLS. Notice that,
according to Figure 5, we observe that when γ is constant and ρ grows, the index σ tends
to grow for all considered methods (this is due to the increased number of links, which
results in an increased number of pairs for which a reward is obtained within σ ). As for
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Figure 5. WeightedOrdinal Satisfaction Indexσ comparisonamong ILLS-MWOV, ILLS, EV, IDLSand IWLS
formultiple values of graph densityρ. For each choice of density, we show the results in terms of average
and standard deviation over m = 100 trials, setting ε = δ = 10−4 and γ = 0.2. The parameters γ , ρ
adopted in each simulation are reported above the corresponding plot.

Figure 6. WeightedOrdinal Satisfaction Indexσ comparisonamong ILLS-MWOV, ILLS, EV, IDLSand IWLS
for multiple values of the degree of perturbation γ . For each choice of γ , we show the results in terms
of average and standard deviation overm = 100 trials, setting ε = δ = 10−4 and the graph density to
ρ = 0.5. The parameters γ , ρ adopted in each simulation are reported above the corresponding plot.

the effect of growing γ with fixed ρ, we observe in Figure 6 that the proposed method out-
performs all others, especiallywhen γ is large. In fact, the increased amount of links is likely
to introduce further violations of the ordinal preferences, thus calling for a methodology
able to deal with ordinal information.

In order to validate the ability of the proposed method to provide a ranking that is in
agreement with the ordinal preferences, we now focus our attention on the MVs metric
(in this case, the smaller is MVs the more the ranking is in accordance with the available
ordinal information), considering the effect of increasing ρ with fixed γ (Figure 7) and the
effect of increasing γ with fixed ρ (Figure 8).

We point out that, differently from all other methods, IDLS has been specifically
designed to optimize TDs. Notice that none of the considered methods, including the pro-
posed one, has been specifically designed to optimize MVs. According to the figures, in
all cases the proposed ILLS-MWOV approach shows the best performance; the divide is
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Figure 7. Maximum Violations (MVs) comparison among ILLS-MWOV, ILLS, EV, IDLS and IWLS for mul-
tiple values of graph density ρ. For each choice of density, we show the results in terms of average
and standard deviation over m = 100 trials, setting ε = δ = 10−4 and γ = 0.2. The parameters γ , ρ
adopted in each simulation are reported above the corresponding plot.

Figure 8. Maximum Violations (MVs) comparison among ILLS-MWOV, ILLS, EV, IDLS and IWLS for multi-
ple values of the degree of perturbation γ . For each choice of the inconsistency, we show the results in
terms of average and standard deviation overm = 100 trials, setting ε = δ = 10−4 and the graph den-
sity to ρ = 0.5. The parameters γ , ρ adopted in each simulation are reported above the corresponding
plot.

particularly evident as ρ and γ grow. Notice that the performance of all other methods is
comparable, except for the IDLS approach, which yields the worst results.

Let us now consider the results obtained by the different methodologies in terms of
satisfaction of the cardinal information encoded in the ratiosAij; to this end we compare
the methods in terms of the TDs metric, considering the effect of increasing ρ with fixed
γ (Figure 9) and the effect of increasing γ with fixed ρ (Figure 10). It can be noted that,
although the proposed ILLS-MWOV approach is focused on the ordinal dimension, the
results obtained are in all cases comparable to, but slightly worse than ILLS, EV and IWLS.

Overall, these simulations suggest that ILLS-MWOV is very effective inminimizing vio-
lation of ordinal preferences; moreover, it is comparable to most of the approaches in the
literature in terms of violation of cardinal preferences, while being outperformed only by an
approach that explicitly focuses on cardinal information. Figure 11 summarizes such a sit-
uation by providing a synoptic view of the performance of the different algorithms in terms
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Figure 9. Total Deviation (TDs) comparison among ILLS-MWOV, ILLS, EV, IDLS and IWLS formultiple val-
ues of graph density ρ. For each choice of density, we show the results in terms of average and standard
deviation overm = 100 trials, setting ε = δ = 10−4 and γ = 0.2. The parameters γ , ρ adopted in each
simulation are reported above the corresponding plot.

Figure 10. Total Deviations (TDs) comparison among ILLS-MWOV, ILLS, EV, IDLS and IWLS for multiple
values of the degree of perturbation γ . For each choice of the inconsistency, we show the results in terms
of average and standard deviation overm = 100 trials, setting ε = δ = 10−4 and the graph density to
ρ = 0.5. The parameters γ , ρ adopted in each simulation are reported above the corresponding plot.

of ordinal and cardinal violations. Specifically, ILLS, EV and IWLS have substantially com-
parable performance, and represent a tradeoff between ordinal and cardinal effectiveness.
On the other and, as mentioned before, IDLS is focused on cardinal information and con-
sequently it significantly suboptimal in terms of ordinal information. Finally, the proposed
approach exhibits an “opposite” behavior with respect to IDLS, emphasizing the agreement
of the ranking with ordinal information.

To conclude, we show in Figure 12 the results in terms of MVs and TDs of the different
methodologies with respect to instances composed by a single ambiguous cycle with n = 7
nodes and two links with associated weight Amin = 2, while the other links have unique
values in {3, 4, . . . , 6}. In more detail, we report the average values ofMVs and TDs over 21
graphs, which correspond to all possible permutations of the two weights equal to two in
the cycle, while the other weights are assigned to the remaining links by increasing order
of node identifier i. According to the results, ILLS-MWOV outperforms all other methods
in terms of MVs; as for TDs, the proposed method is slightly worse than IDLS and ILLS,
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Figure 11. At-a-glance view of the performance of the consideredmethodologies in terms of bothMVs
and TDs. For each method, we considerm = 100 graphs with fixed density equal to 0.5 and we plot the
results in terms of the average MVs and TDs scores obtained for different levels of inconsistency using
different markers (the continuous curves represent an interpolation of such values).

Figure 12. Comparison of ILLS-MWOV, ILLS, EV, IDLS and IWLS in terms of MVs and TDs with respect to
20 instances obtained by permutation of the links in an ambiguous cycle.

while results are definitely better with respect to SWLS and EV, which shows the worst per-
formance over such instances. Notably, by considering simultaneously the results in terms
of MVs and TDs, the ILLS-MWOV method dominates the EV and IWLS methodologies;
as for the comparisonwith ILLS and IDLS, the proposedmethod results in a large improve-
ment in terms of MVs with a degradation in terms of TDs that is quite small with respect
to ILLS and slightly more evident with respect to IDLS.

5. Conclusions

In this paper, we develop a novel approach to reconstruct the ranking of a set of alternatives
based on incomplete pairwise comparisons. Specifically, the proposed approach blends
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cardinal and ordinal information. This is done by considering two cascading optimization
problems: first, we aim at finding an ordinal ranking that maximizes the accordance with
the available information, then we seek a cardinal ranking via the logarithmic least squares
approach, with the additional constraint that the previously chosen ordinal ranking is sat-
isfied. Simulations show that the proposed approach is able to generate rankings that are
not in contrast with the available information, while traditional approaches from the state
of the art (i.e. incomplete logarithmic least squares, the incomplete direct least squares,
the weighted least squares, and approaches based on the eigenvectors) may fail. The pro-
posed approach has been evaluated and compared, in terms of two common criteria, with
respect to the other approaches from the state of the art. Our approach is able to guaran-
tee the best results in terms of MVs (ordinal violations). Concerning the TDs criterion,
our approach proposes solutions comparable to the classic ILLS approach. In this analysis,
the gap between our solution and the ILLS solution is due to the presence of additional
constraint necessary to preserve the ordinal ranking. The simulation campaigns show that
our approach proposes good solutions by varying both data inconsistency and graph den-
sity (i.e. the number of given ratios in A). Future work will aim at applying the proposed
methodology to real-world situations, as well as considering a distributed computing set-
ting and an axiomatic analysis of the proposed method, e.g. using the set of properties
in Brunelli (2016).

Notes

1. We point out that, in the general case of arbitrary convex constraints, additional constraint quali-
ficationsmight be required (e.g. Slater’s Condition);moreover, in the case of nonconvex objective
functions or constraints, the KKT conditions hold just as necessary conditions. The interested
reader is referred to Zangwill (1969) (and references therein) for a comprehensive overview of
the topic.

2. For instance, we have a cycle when i is preferred to j, j is preferred to k and k is preferred to i. In
this case, the information available is remarkably inconsistent.

3. We reiterate that we consider only links in Gd, i.e. links with associated weightsAij ≥ 1; hence,
it holdsAmin ≥ 1.

4. When the objective function is convex and the constraints are linear, in order to guarantee that
the KKT first-order criterion is a necessary and sufficient global optimality condition, there is
no need to check for constraint qualification conditions such as the Slater’s condition, (see, for
instance, Zangwill 1969); it is sufficient to show that the set of admissible solutions is nonempty.

5. The example in Csató and Rónyai (2016) is given for generic coefficients b, 1/b, in this case, we
set b = 2.

6. In the simulations we always haveAij 
= 1 for i 
= j; hence, τ = 0.
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