An optimization based algorithm for
conflict-free navigation of autonomous
guided vehicles

B. Csutak"?, T. Péni?, G. Szederkényi':?

IFaculty of Information Technology and Bionics, Pazmany Péter
Catholic University, Prater 50/a, H-1083 Budapest, Hungary (e-mail:
csutak.balazs@hallgato.ppke.hu,szederkenyi@itk.ppke.hu)
2Gystems and Control Laboratory, Institute for Computer Science and
Control (MTA SZTAKI), Hungarian Academy of Sciences, Kende
13-17, H-1111 Budapest, Hungary

Abstract: A novel optimization based route design approach
for autonomous guided vehicle transport systems is presented
in this paper, followed by the analysis and implementation of
an algorithm capable to provide suboptimal solutions for route
planning problems in real time providing conflict-, collision-
and deadlock-free navigation by design.

Introduction

Optimal route planning based on transport demands is an intensively
investigated topic in several engineering fields. Depending on the ap-
plied model and assumptions, the computational complexity of such
task moves on a wide scale. Route planning problems are commonly
modeled as optimization problems, which can indeed give us an optimal
solution, but scale badly as the size of the map or the number of agents
increases. This means that the real time operation of such methods is
often non-realistic due to the need of re-planning.

In [1], a mixed integer optimization based distributed route-planning
method is proposed for multiple mobile robots using Dijkstra’s algo-
rithm with a special cost function considered to manage vehicle inter-
dependence. The idea of routing with high resource utilization appears
in [2, B], where the deadlock avoidance is addressed, but lacks the abil-
ity to handle routes that became unrealizable meanwhile. In [4], a
similar routing strategy is introduced for airport taxiways, though it
works with different assumptions and optimization goals.



In this line of research, an efficient dynamic real-time algorithm is
proposed in [5] [6] [7], where time windows and resource reservation are
used to ensure conflict-free navigation by design.

Following the ideas presented in [, [0} [7], we investigate optimal route
planning for multiple types of automated guided vehicles in a micro-
scopic routing environment, where the size of the vehicles in the system
is comparable to the size of the underlying network. For this reason,
the route planning algorithm should be prepared to avoid collisions
and handle congestion and even deadlock problems. Moreover, the al-
gorithm should be able to address additional arising problems, such as
vehicles unable to follow their previously planned routes.

As for the optimization, we are trying to find a solution for two
common optimization tasks: the on-line shortest dynamic disjoint path
problem (OSDDPP), and the on-line quickest disjoint path problem
(OQDPP).

This research is motivated by its possible applications in automated
guided vehicle (AGV) routing systems, mostly aimed for industrial ap-
plication in a research-oriented experimental factory cell in Gy®ér.

Dynamic routing

Formal problem statement

To present the problem in a formal way, following the author of [6],
we model the routing environment with a graph G = (V, E) with nodes
V = {1,2,...,N} and edges E = {(v1,v2,0)]1 < vy1,v2 < N}. The
graph is directed, and has no multiple or loop edges. The weight of the
edges (representing length) is denoted by [. Agents can have different
traversal times, based on their maximal speeds.

Transportation tasks are continuously arriving for the agents, and are
assigned to the vehicles by a higher level dispatching system.

Definition 1. A request is a tuple r = (s,t,0), where s is the source
node (from where the agent starts), t is the target node, and 0 is the
earliest time, when execution of the requests can begin.

Definition 2. A dynamic path in a graph G is defined as a sequence

P = ((vo,60), (v1,01), ..., (vx, 0k))

of v1,...vx nodes and 01, ...,0; timestamps. Timestamp 0; is called a
reservation of node v;, i.e. it constitutes the earliest time when node v;
can be entered. Similarly, interval (0;_10;) is called a reservation of the



edge between v;_1 and v;. The duration of a dynamic path is defined
as Ap = 05, — 0y.

The aim of the algorithm is to compute a set of disjoint dynamic
paths (having no overlapping time intervals between reservation times
of the contained edges) in order to serve the dispatched requests, while
minimizing specific cost functions.

Definition 3. The Online Shortest Dynamic Disjoint Path Problem
is defined as follows: Being given a sequence of requests (s;,t;,0;),1 =
1,...,k find a sequence of disjoint paths Py, ..., P,, for which Z Ap;
is minimal.

Definition 4. The Online Quickest Disjoint Path Problem is defined
as follows: Being given a sequence of requests (s;,t;,0;),i = 1..k find a
sequence of disjoint paths Py, ..., P, with minimal maximum completion
time over all paths (so that max 0; is minimal)

These problems do not have a common solution, in practice however,
the same suboptimal algorithm turns out to be suitable for both cases.
It must be noted as well, that finding the optimal solution is not possible
due to the continuously arriving requests.

The routing algorithm

Following the ideas presented in [5] 6] [7], we propose an improved
greedy algorithm, which, instead of minimizing the overall cost function
of the system, it focuses on minimizing the route completion time for
the individual agents as the requests arrive, without disturbing the
routes already computed.

To achieve this behavior, the algorithm introduces time windows for
the graph edges, so agents can reserve all the edges in their path at
the very beginning. In this way, the unnecessary waiting or deadlocks
can be completely avoided, as the planning algorithm considers these
reservations, and looks for the quickest route.

Formally, this goal can be described as follows:

Definition 5. The Quickest Path Problem with Time Windows: It
is given a graph G = (V, E), a set of time windows for the edges, a
request v = (s,t,0) and an agent in s. Compute a dynamic path with
minimal completion time, which uses the edges of the graph in the free
time windows only.



For this task, an algorithm is given in [6], which resembles Dijkstra’s
simple route planning algorithm, but instead of a single cost value being
stored for a graph node, it is based on multiple labels (a,b, ...) being
assigned to edges, representing the time intervals, in which the agent
can arrive to the respective edge. The algorithm is initialized with
labels (t,00) on the edges having s as tail, and they are expanded to
neighbouring labels iteratively (like in Dijkstra’s algorithm), taking in
consideration the free time windows.

Handling agent delays

As the system is aimed to be suitable in a real environment, practical
considerations must be made. Due to the nature of such environments,
there are several factors that can influence the routes planned, and
cause already planned routes to become impossible to complete.

Minor time differences, arising from uncertainties in vehicle control
can be easily solved, by reserving an interval slightly longer than nec-
essary for the traversed edges. When this safety interval is not enough,
and an agent can not free the resource until it would be obliged to,
re-planning must take place.

In case of a severe latency, we decided to stop all vehicles in the
system, and then all agents are required to re-plan their routes sequen-
tially one after another taking into consideration the eventual changes
in the graph (eg. a broken vehicle permanently blocking an edge). As a
consequence, all edges where the agents are actually located (and then
stopped) should be reserved until they can leave that edge. Though the
algorithm can handle the computations in real time, a difficulty is that
the agent, who is planning first cannot foresee when will the edges be
released where the other agents are still waiting for the possibility to
re-plan their routes. On the other hand, the agent, who is planning last
may face the problem that all neighbouring edges are already reserved,
thus it cannot leave its position until a certain time. Generally, it is
not straightforward how to determine the length of the time window
for each initially occupied edge. This interval must be chosen carefully,
since, if we consider a short time window, the agent planning last might
not be able to leave the edge until the end of this time window, and
thus causing another delay.

In our solution, a simple heuristics was applied: for all agents stopped
at time Tj, a reservation for the interval (T, Ty + AT) was made, and
the route planning system assumed, that the agents can leave their
position in that interval. This behavior was further aided by initializ-



ing the route planning algorithms with starting labels containing this
interval, so all agents try to leave their place as soon as possible.

If an agent is unable to leave its location until the and of this time
window, that delay is handled by another severe latency, causing a
repeated recalculation of all routes in the system (eventually with a
higher AT value).

Test cases

The simulation environment

To extensively test the implemented framework system for verifica-
tion, and check the usability of the implemented algorithm in the sce-
narios needed, an exact model of the experimental factory cell from
Gy6r was realised in the simulation system. This process involved
loading and transforming the data acquired from measurements of the
place, so that a three dimensional representation of walls and objects
would appear. Next, a directed graph based on the loaded floorplan
was created, followed by the generation of nodes and edges in the air,
suitable for quadcopters only. Finally, after generating a planner graph
and defining some parking places / workstations (nodes, from which
and to which transportation requests are arriving), two ground AGVs
and two quadcopters were loaded and launched. The floorplan of the
graph, together with the planned routes, can be observed in Figure

The experiment was carried out using MATLAB 2018b, on a Dell
Vostro 5471, having processor model Intel Core i7-8550U (4 cores, 8
threads, up to 4GHz) and 8 GB RAM. The planner graph resulting
from the scene had 158 vertices and 506 edges.

Loading AGVs and generating requests

The AGVs were loaded to the following positions: two ground AGVs
to nodes 9 and 18, and two quadcopters to nodes 1 and 16. In this order,
the agents had the targets 18, 16, 9, 20. The route planning took place
in order 16, 18, 9, 1, where the numbers refer to the departure nodes
of the corresponding agents. The routes calculated and followed by
the agents can be seen in Figure One can observe that the agent
starting from node nr. 18 has chosen a route {18,13,17,14,16} instead
of the spatially shorter one {18,13,12,14,16} in order to avoid the
interference with the already scheduled route starting from node nr. 16.
As for the performance of the algorithm, all route planning operations
took place in a time less than 0.1 seconds.



18 3

Figure 1: Routes planned using the algorithm



Further test cases

To assess the performance in a more complex scenario, an extended
version of the experimental factory cell (see Fig. [2)) was created (includ-
ing as part the original one as well). The underlying graph has above
200 nodes, resulting in a planner graph with over 600 nodes 1000 edges.
There were 10 AGVs (4 ground vehicles and 6 quadcopters) loaded, each
of them starting randomly from one of the 11 workstations / parking
places. Targets for the agents were generated randomly. During the
simulation, as soon as one of the agents reached its target, a new one
was randomly assigned to it.

The algorithm had a decent performance, computation times for a
single route remaining below 1 second in any circumstances, which
could be further reduced by some fine-tuning of the implementation.

Figure 2: Extended experimental factory cell

Movement of the AGVs for all the test cases can be seen in the
demonstration videos available online at https://drive.google.com/open?
1d=1-61P1FZd1Af 10fzSWVcLuRQq5ybuvCyd.

Summary

In this work, we briefly presented the operating principle of an al-
gorithm, capable of providing online disjoint autonomous vehicle route
planning for multiple type of AGVs moving in a microscopic routing
environment. The algorithm was implemented and thoroughly tested,
together with our method for handling serious delays of the agents.


https://drive.google.com/open?id=1-6iPlFZdlAf10fzSWVcLuRQq5ybuvCyd
https://drive.google.com/open?id=1-6iPlFZdlAf10fzSWVcLuRQq5ybuvCyd

Acknowledgements

B. Csutak gratefully acknowledge the support of the New National

Excellence Program scholarship (UNKP-18-1-I-PPKE-46). This work
was supported in part by the grant EFOP-3.6.2-16-2017-00013.

1]

(2l
(3]

[4]

(5]

(6]

(7]

References

T. Nishi, M. Ando, and M. Konishi. Distributed route planning for multiple
mobile robots using an augmented lagrangian decomposition and coordination
technique. IEEE Transactions on Robotics, 21(6):1191-1200, Dec 2005.

Thomas Lienert and Johannes Fottner. No more deadlocks - applying the time
window routing method to shuttle systems. In ECMS, 2017.

Kaspar Schiipbach and Rico Zenklusen. An adaptive routing approach for per-
sonal rapid transit. Mathematical Methods of Operations Research, 77(3):371—
380, Jun 2013.

Stefan Ravizza, Jason A. D. Atkin, and Edmund K. Burke. A more realistic
approach for airport ground movement optimisation with stand holding. Journal
of Scheduling, 17(5):507-520, Oct 2014.

Rolf H. Mohring, Ekkehard Kohler, Ewgenij Gawrilow, and Bjorn Stenzel.
Conflict-free real-time AGV routing. In Hein Fleuren, Dick den Hertog, and
Peter Kort, editors, Operations Research Proceedings 2004, pages 18-24, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

Bjorn Stenzel. Online disjoint vehicle routing with application to AGV routing.
PhD thesis, Technical University of Berlin, 2008.

Ewgenij Gawrilow, Ekkehard Kohler, Rolf H. Mohring, and Bjorn Stenzel.
Dynamic routing of automated guided vehicles in real-time, pages 165-177.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.



	Introduction
	Dynamic routing
	Formal problem statement
	The routing algorithm

	Handling agent delays
	Test cases
	The simulation environment
	Further test cases

	Summary

