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Abstract

The problem of designing a trajectory tracking controller for a quadcopter UAV is ad-
dressed in this document. The motivation is to use the quadrotors in an industrial en-
vironment, where reliable, fast and precise execution of the flight tasks is mandatory.
The goal therefore is to develop a control architecture that is able to satisfy these strict
requirements. The control architecture consists of a trajectory designer and a controller
part.

Two trajectory designing algorithms are going to be introduced, both of them presents a
solution for fitting a trajectory on desired points in the 3D space. The methods have to
give a feasible trajectory (for the quadcopter) for which the requirements originate in the
dynamical and also in the motor and rotor properties of the UAV.

The first solution for the trajectory design fits a third order spline on the desired trajectory
points. The quadcopter accelerates to a constant speed, with which the trajectory is feasible
and is safe to complete. At the end of the path, the quadcopter decelerates to zero speed
and remains in a hovering position. The velocity profile is designed so, that the path will be
carried out under the shortest possible time subject to the actuator and plant constraints.

The second solution connects the desired points with straight lines. The smoothness and
hence the feasibility of the path is achieved with a carefully chosen velocity profile which
is also is also designed so that the path will be carried out under a priori given completion
time.

For the control, three different solutions are going to be introduced, the performance of
which was analyzed via numerical simulations on a high fidelity nonlinear model of an
experimental quadcopter aircraft. The three methods are briefly introduced as follows:

Successive input/output linearization: This method introduces a two level control
architecture based on successive linearization and LQR regulation. The method has
been proposed in [1].

Jacobi linearization and LQG control: Based on the Jacobi linearized model of the
quadcopter around a trim-point, an LQG control can be developed. It can be then
further improved in order to achieve trajectory following capability.

Feedback linearization: Through a change in the input variables, a system can be ob-
tained which than can be feedback linearized. For the feedback linearized system, an
LQR controller can be applied, making the controller capable of trajectory following
in such way.

The performance of the controllers was analyzed via simulations in the MATLAB-Simulink
environment. In these simulations, the controllers were tested on the different types of
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trajectories with different speeds. Simulations with changed quadcopter properties, such
as mass and inertia, were also carried out in order to check the robustness of the controllers.
3D visualization is solved in V-REP and in MATLAB-figure as well.
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Kivonat

A szakdolgozat egy autonóm quadcopter trajektória követő szabályzásának tervezését mu-
tatja be. A motiváció a quadcopter használata ipari környezetben, ahol a repülési feladatok
megbízható, gyors és pontos kivitelezése elengedhetetlen. A cél ebből kifolyólag egy olyan
szabályzó architektúra tervezése, ami kielégíti ezen szigorú követelményeket. A control
architektúra magába foglalja a trajektória tervező és a control software-t is.

Kétféle trajektória tervező algoritmus kerül bemutatásra, melyek a 3D térben előre megadott
pontokra illesztenek pályát. Az elkészült trajektóriáknak teljesíthetőeknek kell lenniük a
quadcopter által, ennek feltételeit a quadcopter dinamikája valamint a rotor és motor
tulajdonságai határozzák meg.

Az első trajektória tervező megoldás egy harmadfokú spline-t illeszt a meghatározott pon-
tokra. A quadcopter a pálya elején felgyorsul egy konstans sebességre, amivel biztonsá-
gosan kivitelezhető a teljes repülés. Az utolsó pont előtt pedig lelassul nulla sebességre és
egy helyben lebeg. A sebességprofil úgy kerül megtervezésre, hogy a pálya teljesítési ideje
a lehető legrövidebb legyen miközben az aktuátor és a rendszer által felállított korlátok
nem sérülnek.

A második megoldás egyenes vonalakkal köti össze a meghatározott pontokat a térben.
A trajektória kellő simaságát és így teljesíthetőségét a megfelelően választott sebességpro-
fillal lehet elérni. A sebességprofil megtervezésénél ebben az esetben a szempont az előbb
említetteken kívül, hogy a pálya egy előre meghatározott idő alatt legyen teljesítve.

Ebben a dokumentumban háromféle szabályzó van bemutatva, amelyek működését és
teljesítményét numerikus szimulációval elemeztem a quadcopter nagy részletességű mod-
elljén. A három szabályozót a következőképpen lehet röviden jellemezni:

Több lépéses input/output linearizáció: Ez a módszer egy két szintű szabályzási
stratégiát mutat be amelynek alapja egy több lépéses linearizálás és az így kapott
rendszerre alkalmazott két szintű LQR típusú szabályzó. A módszer [1] cikken ala-
pul.

Jacobi linearizálás és LQG szabályzás: A quadcopter egy trim-pont körüli linearizált
modelljére LQG szabályzó alkalmazható. Az így kapott szabályzó tovább fejleszthető
a trajektória követő képesség elérése érdekében.

Feedback linearizáció: A bemeneti változók megfelelő megváltoztatásával elérhető egy
rendszer amit feedback linearizálni lehet. Az ilyenképpen linearizált rendszerre LQR
szabályzót lehet alkalmazni, így elérve a kívánt trajektória követő képességet.

A szabályzók teljesítményét numerikus szimulációval elemeztem a MATLAB-Simulink
környezetben. Ezekben a szimulációkban a szabályzókat teszteltem a korábban említett
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trajektória változatokon, különböző sebességekkel is. Ezen kívül a szabályzók robusztussági
tulajdonságait vizsgáltam megváltoztatott tömegű és inerciájú quadcopter modelleken. A
3D vizualizációt V-REP illetve MATLAB-figure segítségével oldottam meg.
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Introduction

There has already been a considerable interest in the use of small unmanned aerial ve-
hicles (UAVs) for several applications including security, search and rescue, agricultural
monitoring and transportation. Furthermore, quadrotor aircrafts are also quite popular
among control researchers due to the simplicity of their dynamics and mechanical design.
However, high cost and technical limitations kept the use of quadcopters relatively limited
until the recent years.

The new trends in the industry, in connection with Industry 4.0 [2, 3], can easily serve
with new application fields for UAVs. The expression Industry 4.0 denotes the current
trend of automation and data exchange in the manufacturing industry. According to [3],
Industry 4.0 has three essential dimensions: ”(1) horizontal integration across the entire
value creation network, (2) end-to-end engineering across the entire product life cycle,
as well as (3) vertical integration and networked manufacturing systems”. These together
allow for faster response to costumer needs and it also improves the speed, flexibility and
quality of the production process [2]. Next to the previously mentioned advantages, [3] also
sees the possibility of achieving more sustainable manufacturing processes with the help
of this new industrial revolution. This would be possible with a more efficient allocation
of resources on the basis of intelligent cross-linked value creation modules.

Autonomous manufacturing serving quadcopters can easily fit in the ideology of Industry
4.0. Of course, the range of application fields of the quadcopters is strongly limited by the
short flight time that can be achieved. In this respect, designing a manufacturing process
that relies on transportation carried out by quadcopters would be surrealistic. However,
the flexibility and speed of these UAVs can be appealing for several other uses. Autonomous
robots running on the ground are already used for transportation within manufacturing
processes. Quadcopters could be used for example as a backup in the event of a sudden
failure of one of these robots. The robot is disabled in the middle of the transportation
process and hence the transported part can not reach its final destination, a following step
in the manufacturing. In this case, the continuity of the whole manufacturing process is
endangered. If such a situation appears, an autonomous quadcopter could be alarmed to
pick up the part from the disabled robot and transport it to its destination. An other
application possibility is to use autonomous UAVs for monitoring the manufacturing site
from the air in certain time periods. Since both previously mentioned application fields take
place in industrial environment, accurately and reliably executed flights are mandatory.
The motivation for the controller design is to fulfill these strict requirements.

The controllers that have been designed for quadcopter UAVs spread in the range from
simple PID controllers [4] through LQG [5] to even Learning Based Model Predictive
Controller (LBMPC) solutions [6]. The simplest controls try only to stabilize the aircraft
around a hovering position meanwhile other solutions, such as receding horizon algorithms,
such as linear and nonlinear MPC [7] or LBMPC controls have spectacular capabilities

9



for wide ranges of applications (Such as trajectory following or catching objects thrown to
them.).

Trajectory generation for UAVs is also of major interest among researchers. Optimization
based solutions for different requirements are introduced for example in [8]. In contrast
to classical two level architectures, which consist of a trajectory designer and a trajectory
follower control part, an other interesting approach is Model Predictive Contouring Control
[9] where trajectory design and control is executed in one optimization step. This for
example could be used in a field, where the UAV has a safe corridor in the air where it is
allowed to fly. An exact trajectory generation would not be necessary in this case.

Although MPC based controls are very appealing due to their high performance, the appli-
cation of them on quadcopters is not very common because of the very high computational
requirements. State feedback control techniques are relatively easy to use and are much
less computationally expensive. Hence, these techniques appear to be a good choice for
the application field mentioned before.

I am going to introduce three different control solutions. All of these methods are based
on linearizing the nonlinear plant of the quadcopter with different methods and than
applying a state feedback controller for the linearized system. The paper also presents
two different trajectory generation methods based on desired points in the 3D space. The
performance of the controllers is than tested in simulation using a high fidelity model of
the quadcopter. The simulations are carried out in the MATLAB-Simulink environment
and 3D visualization is solved in V-REP.

In the first chapter, the dynamical model of the quadcopter and the actuators is intro-
duced. The second chapter details the control methods. (1) First a successive input-output
linearization method is shown, based on the article [1]. This utilizes a two level control
architecture with Linear Quadratic Regulator (LQR) Control. (2) The second method is
based on the Jacobi linearization of the model. The plant and the simulation is charged
with noises as well and hence an LQG control is used. (3) The third approach applies
exact feedback linearization on the model after some changes in the system variables.
The linearized system is than controlled with LQR control. The third chapter details the
trajectory design methods. Both of the solutions generate trajectories for desired points
in the 3D space. The first one fits a spline curve and a sufficient velocity profile on the
points. The velocity profile is designed so that the path would be carried out under the
shortest time that is possible subject to plant constraints. The second trajectory type is
a piecewise linear trajectory between the points with an additional requirement that is,
that the quadcopter must finish the path under a predefined time. In the fourth chapter,
the simulation results for the different setups are shown. These include simulations on
different trajectories with different speeds also with changed weight and inertia in order to
check the robustness properties of the controllers. In the fifth chapter, the 3D visualization
is detailed briefly and then I make the conclusion. The Appendix details the simulation
files.
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Chapter 1

The dynamical model of the
quadcopter

1.1 The equations of motion

The nonlinear dynamical model of the quadcopter is introduced in this section, based
mostly on [1]. First of all we have to define the parent (global, external) and body (vehicle,
quadcopter, attached) coordinate system. The definition of these frames, the Euler-angles,
the individual rotor forces and the main thrust force can be seen on Figure 1.1, which is
taken from [1].

Figure 1.1: Quadcopter configuration scheme, taken from [1]

According to Figure 1.1, the position and orientation of the body coordinate system in
the fixed (central) coordinate frame is given by ξ and η respectively.

ξ =

xy
z

 η =

ϕθ
ψ


The dynamical model of the quadcopter can be obtained as it is in equations (1.1) and
(1.2), from which the former one describes the translational and the latter one the angular
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dynamics.

mξ̈ = Reb

0

0

F

+

 0

0

−mg

 (1.1)

J̃ η̈ = τ − C(η, η̇)η̇ (1.2)

Where m is the mass of the drone, Reb is the rotation matrix between the body and the
central frame, F is the thrust force generated by the four rotors together, C(η, η̇) = JẆn

is the Coriolis term, τ = [τϕ, τθ, τψ]
T is the torque vector generated by the rotors in the

body frame and J̃ = JWn where J is the inetrial matrix. The previously mentioned Reb
and Wn are as follows:

Reb = RxRyRz =

1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (1.3)

Wn =

1 0 − sin θ

0 cosϕ cos θ sinϕ

0 − sinϕ cos θ cosϕ

 (1.4)

Where Wn is the matrix that makes the transformation between Euler-angles and the
angular velocity vector: Wnη̇ = Ω. Here Ω is the angular velocity vector defined in the
body coordinate system. This transformation is necessary since η̇ is just the time derivative
of the Euler angle representation in the fixed frame, meanwhile Ω is a vector defined in
the body frame. The derivation ofWn can be found in [10]. Equation (1.2) can be deduced
keeping in mind the previously defined connection between the angular velocity Ω and the
Euler-angle derivative η̇ and that the angular acceleration comes analytically from Euler’s
equation: τ = JΩ̇ + Ω× JΩ.

An important property can be noticed by the expansion of (1.1) into (1.5: The yaw angle,
ψ, does not appear in the equation of the translational motion. This allows us to generate
a trajectory for ψ independently from the desired translational trajectory ξd.

ξ̈ =

ẍÿ
z̈

 =
1

m

 F sin θ

−F cos θ sinϕ

F cos θ cosϕ−mg

 (1.5)

Suppose each rotor produces fi i = {1, ..., 4} thrust force. As it can be seen on figure
(1.1), rotors 1 and 2 rotate clockwise while 3 and 4 rotate counterclockwise. This makes
the quadcopter capable of keeping and changing its orientation (The role of the tail rotor
of a helicopter). We assume all the 4 rotors to be identical. Hence, the torques and the

12



thrust force produced by the rotors can be expressed as follows:

F =
4∑
1

fi (1.6)

τϕ = (f2 − f1)l (1.7)
τθ = (f4 − f3)l (1.8)

τψ =
b

k
(−f1 − f2 + f3 + f4) (1.9)

where l is the length of the arms of the quadcopter (figure 1.1), b is the drag force coefficient
and k is the thrust force constant. (b and k are rotor parameters, and can be found in
most of the catalogs.) The thrust forces produced by each rotors are proportional to the
square of the rotor velocity with the proportionality factor k. By substituting fi = kω2

i ,
where ωi is the rotor velocity of the ith rotor, the following equations are obtained:

[
F

τ

]
=


1 1 1 1

−l l 0 0

0 0 −l l

− b
k − b

k
b
k

b
k



kω2

1

kω2
2

kω2
3

kω2
4

 (1.10)

We can summarize the dynamical model of the quadcopter now. We can consider the rotor
velocities (ωi) as the inputs of the system. These inputs produce directly the thrust force
and torques which act on the quadcopter in the manner introduced in equations (1.1) and
(1.2). As the thrust force and the torques are just simply linear combinations of the squares
of the rotor velocities, we can consider the [F, τ ]T vector as the input of the system, and
we do so in the followings. (From this input vector the angular velocities of the rotors can
be calculated easily based on equation (1.10).)

Through equations (1.1) and (1.2), the translational and angular accelerations of the quad-
copter can be calculated and from them the remaining state variables of the quadcopter
can be obtained by integration. These state variables are the translational velocity (ξ̇),
position (ξ), angular velocity (η̇) and orientation (η).

In order to use this model, and hence to build a controller for it, the following parameters
of the quadcopter need to be known: mass (m), inertia, (J), length of an arm (l) and the
rotor constants (b and k).

1.2 Actuator model

The control algorithms in this document are derived by considering the thrust force and
the torques ([F, τ ]), produced by the rotors, to be the inputs of the system. After the
desired inputs for the quadcopter are calculated, the desired rotor velocities for them
can be obtained based on equation (1.10). However, it has to be kept in mind that the
prescribed rotor velocities generated by the controller can not be directly applied to the
drone. The velocity of the rotor is generated by an electric motor which has a non zero
moment of inertia and can not produce infinitely large torques. Therefore the maximal
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angular acceleration of the rotor is limited. The dynamical equation of the rotor is obtained
as follows:

ω̇ =
1

Jact
(Tmot − Tdrag) (1.11)

where:

ω̇ : The angular acceleration of the rotor.
Jact = Jmotor + Jrotor : The moment of inertia of the motor and the rotor together.
Tmot ∈ [−Tmax;Tmax] : The motor torque

Tdrag : The so called drag torque, that is proportional with the
square of the rotor velocity as follows:

Tdrag =
1

2
ρairAv

2 = bω2 (1.12)

Where: ρair is the density of air, A is the frontal area of the rotor and b =
1

2
ρairr

4π is the
drag constant. This is the same drag constant that is used in equations (1.9) and (1.10).
(And it makes sense, because the torque that makes the drone rotate around the yawn
angle ψ has to act on the motor counter-wise.) The derivation of the rotor dynamics and
the origin of these rotor parameters can be found in details in [11].

The simplest way to make the rotor track a given ωr velocity reference is to choose the
motor torque as follows:

Tmot = Jactω̇r + bω2
r + Jactkc(ωr − ω)

Substituting it in (1.11) results in the following error dynamics:

ω̇ − ω̇r = − b

J
(ω + ωr)(ω − ωr) + kc(ωr − ω)

It can be easily checked that this dynamics are asymptotically stable even if k=0, since
ω+ωr > 0 (The rotor can only rotate in one direction, and that is chosen to be the positive
direction.). The gain kc can be tuned to speed up the control loop.

It is assumed that the dynamics of the controlled actuator is much faster than the quad-
copter’s dynamics (The same assumption is taken for example in [[8]]). In this way, the
actuator model is not taken into account during the design of the trajectory following con-
troller. On the other hand, the actuator model is included in the simulation as a saturation
in the quadcopter model:

Tmot = sat(Jactω̇r + bω2
r + Jactkc(ωr − ω)) (1.13)

where sat stands for saturation (Tmot ∈ [−Tmax;Tmax]). Since the saturation of the actu-
ator is included in the model on which the controllers are tested, the simulation results
are more realistic.

As it was mentioned above, the actuator dynamics is not considered during the controller
design. On the other hand, the finite maximal value of Tmot implies constraints on the
maximal thrust force and the torques as well. The maximal velocity of a single rotor
and hence the maximal thrust force it can produce can be obtained based on equation

14



(1.11),(1.12) and (1.13) as follows:

ωmax =

√
Tmax
b

fmax =
kTmax
b

This clearly means a limitation on the inputs, which should be taken into account during
trajectory design. This is further detailed in section 4.

For the actuator model one should know the following properties of the motor and the
rotor: The moment of inertia of the rotor and the motor (Jact = Jmot+Jrot)), the maximum
torque of the motor (Tmax) and the drag coefficient of the rotor (b).
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Chapter 2

Control methods for trajectory
tracking

2.1 Successive input/output linearization

The control design method has been taken from [1]. The algorithms is based on a succes-
sive linearization of the quadrotor dynamics, which results in a simple linear time invariant
tracking error model. Then the error dynamics is stabilized by standard LQR feedback
(detailed in for example [12, 13]). The synthesis procedure in [1] generates a two level
control strategy, where the external loop controls the translational dynamics of the quad-
copter and produces the input trajectory of orientation angles for the inner loop. The
inner loop controls the orientation of the drone and produces desired rotor velocities for
the Electronical Speed Control (ESC) that is responsible for the operation of the rotors.
A very similar two level control strategy is used in [8] with differences in the orientation
and hence in orientation error definitions.

The control design starts from the nonlinear model derived in section 2. Please recall that
the control inputs are [F, τ ] and in this design method we assume that state variables
ξ, ξ̇, η and ˙eta are available for measurement. Based on [1], in the next two subsections,
the design of the external and internal control loops are summarized. The block scheme
of the two level control system can be seen on Figure 2.1.

Translational
dynamics

Orientation
dynamics

Internal
orientation
control

External
position
control

Trajectory
maker

IMU

Position
measurement

Internal control loop

External control loop

ξd ηd

F

ω η

η

ξ

ξ

ψd

Figure 2.1: The block scheme of the two level control system

16



2.1.1 The external control loop

The altitude control is related to the dynamics of the coordinate z as it is expressed in
equation (1.5):

mz̈ = cos θ cosϕF −mg (2.1)

In order to linearize (2.1), let F to be chosen as follows:

F =
m(rz + g)

cos θ cosϕ
(2.2)

Where rz is an auxiliary control input. By substituting F in equation (2.2) back into (2.1),
the equation of motion in the z direction reduces to: z̈ = rz.

The motion in the direction y is governed by the following equation:

mÿ = −F cos θ sinϕ (2.3)

By substituting the previously expressed F into (2.3) the following equation is obtained:

mÿ = −(rz + g) tanϕ (2.4)

Similarly to the previous case if ϕ is chosen as follows:

ϕ = arctan

(
− ry
rz + g

)
(2.5)

where ry is an auxiliary control input, then the nonlinear dynamical equation reduces to
ÿ = ry. Finally, in the direction x, the governing equation is:

mẍ = F sin θ (2.6)

Again, by substituting the expression for F in (2.2) and choosing θ to be as follows:

θ = arctan

(
rx cosϕ

rz + g

)
(2.7)

where rx is an auxiliary input variable, the governing equation in the direction of x reduces
to: ẍ = rx.

For the optimal state feedback control of the outer loop, it is necessary to define the
position errors of the quadcopter:

ex = x− xd

ey = y − yd

ez = z − zd

(2.8)

where x, y and z are the actual position coordinates in the parent frame and xd, yd and zd
are the (at least) twice differentiable desired trajectory coordinates. By substituting the
previously introduced auxiliary controls (rx, ry and rz), the acceleration error (the second
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time derivative of the position error) is given by:

ëx = rx − ẍd

ëy = ry − ÿd

ëz = rz − z̈d

(2.9)

By defining new auxiliary inputs as: r̂x = ëx = rx − ẍd, r̂y = ëx = ry − ÿd and r̂z = ëx =
rz − z̈d, the state space equation of the errors becomes as follows:

ė = Ae+Br̂ (2.10)

where: e = [ex, ėx, ey, ėy, ez, ėz]
T , r̂ = [r̂x, r̂y, r̂z]

T and

A =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1


B =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1


A system with these state space matrices is obviously controllable. We have also assumed
at the beginning of the chapter, that ξ and ξ̇ are available for measurement, which means
that the states of the error system (2.10) are also measurable. Hence, it is possible to
design an optimal state feedback control with LQR method. By this, the input of the
error system of (2.10) is chosen to be as follows:

r̂ = −Ke (2.11)

where K is the matrix that minimizes the following quadratic cost function:

J =

∫ ∞

0
(eTQe+ r̂TRr̂)dt (2.12)

where Q and R weight matrices define what the purpose of the control is. If the values in
Q are high compared to R, then the feedback gain matrix K will provide precise trajectory
tracking (small tracking error) even for the price of large control inputs. In the other way
around, the trajectory following will be less accurate but it will be less energy consuming.
Q and R are:

Q =



ξ1 0 0 0 0 0

0 ξ2 0 0 0 0

0 0 ξ3 0 0 0

0 0 0 ξ4 0 0

0 0 0 0 ξ5 0

0 0 0 0 0 ξ5


R =

µ1 0 0

0 µ2 0

0 0 µ3



(ξ1, ξ3, ξ5) are the costs of the position accuracy, (ξ2, ξ4, ξ6) are the costs of the velocity
accuracy and (µ1, µ2, µ3) are the costs of the auxiliary inputs.

From (2.9) and (2.10) the auxiliary controls r = [rx, ry, rz] can be calculated as follows:

r = ξ̈d −Ke (2.13)
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Once the auxiliary control vector r is calculated, equations (2.5), (2.7) and (2.8) can be
solved in this particular order. And in this way the desired orientation and thrust force for
the internal loop can be determined. As it is was previously discussed, and also detailed
in [1], it is a matter of choice, how the third Euler-angle, ψd, is defined. [1] suggests for
example to choose it so that a dedicated point of the quadcopter points in the direction
of the tangent of the trajectory at every time. It is possible, however the method that
the article suggests is not applicable in it self due to singularities in the definition. An
individual and smooth enough trajectory for ψd can also be prescribed.

2.1.2 The internal control loop

The external control loop, introduced in the previous subsection, produces a desired thrust
force (Fd) and a twice differentiable trajectory for the orientation angles ϕd and θd. (equa-
tions (2.5) (2.7 and (2.8)) As ψd does not appear in the governing equations of the external
loop it can be defined independently. The desired trajectory ψd should be an at least twice
continuously differentiable trajectory. This is a requirement, since the torque τ is the func-
tion of the angular acceleration as it can be seen from (1.2). The internal loop determines
the input τ with that the prescribed ηd trajectory can be followed optimally.

Equation (1.2) can be reduced to η̈ = τ̃ by the following change of variable:

τ = J̃ τ̃ + C(η, η̇)η̇ (2.14)

The structure of the internal control loop is quite similar to the external one. The angular
error vector is defined (analogously to (2.8)), and an optimal state feedback is designed for
the error state space (analogously to (2.9),(2.10 and (2.11)). The main point is, that the
internal control loop has to be faster than the external one. To achieve this, [1] suggests
the following method to define the internal loops feedback gain: (K is the external loop’s
and Kη is the internal loops feedback gain.)

K =

k1x k2x 0 0 0 0

0 0 k1y k2y 0 0

0 0 0 0 k1z k2z


The settling times are defined after [[1]] as follows:

tssx =
10

k2x
, tssy =

10

k2y
, tssz =

10

k2z

With these, the components of Kη become:

k2ϕ = k2θ = k2ψ =
10

ρmin{tssx, tssy, tssz}

k1ϕ =

√
k2ϕ
2
, k1θ =

√
k2θ
2
, k1ψ =

√
k2ψ
2

(2.15)

And hence the feedback gain of the internal loop becomes as follows:

K =

k1ϕ k2ϕ 0 0 0 0

0 0 k1θ k2θ 0 0

0 0 0 0 k1ψ k2ψ

 (2.16)
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Once the feedback gain is determined, the auxiliary control of the internal loop can be
obtained:

τ̃ = η̈d −Kηeη (2.17)

Where η̈d = [ϕ̈d, θ̈d, ψ̈d]
T and eη = [eϕ, ėϕ, eθ, ėθ, eψ, ėψ]

T . The auxiliary control τ̃ of the
internal control is in the role of r in the external control. The error system of the Euler
angles is defined similarly to the error system of the position in the previous subsection.
With τ̃ The desired torques can be calculated based on (2.14). As F has already been
calculated by the external control loop (equation(2.2)), the input vector [F, τ ] can be
produced.

2.1.3 The summary of the control method

1. Based on the position and velocity error, compared to the desired trajectory, the
external loop produces the desired thrust force control input F and the desired
orientation trajectory ηd for the internal loop.

(a) composition of the position error vector: equation (2.8)
(b) calculation of the auxiliary control (r̂): equation (2.13)
(c) calculation of ϕd, θd and Fd: equations (2.5), (2.7), (2.2)
(d) definition of the third orientation angle trajectory ψd on demand.

2. The internal loop calculates the desired τ torques based on the orientation error.

(a) composition of the orientation error vector: eη = [eϕ, eθ, eψ, ėϕ, ėθ, ėψ]
T

(b) calculation of the auxiliary control (τ̃): equation (2.17)
(c) calculation of the input torques (τ): equation(2.14)

After the external and internal control loop, the desired thrust force and torque is
given, (As it was detailed in the second section, these are the basic inputs of the
quadrotor) and from these the rotor velocities that are producing these inputs can
be calculated based on equation (2.18) which is derived from (1.10). These rotor
velocities can be given to the ESC (Electronic Speed Control) of the motor.


ω2
1

ω2
2

ω2
3

ω2
4

 =
1

k


1 1 1 1

−l l 0 0

0 0 −l l

− b
k − b

k
b
k

b
k


−1 [

F

τ

]
(2.18)

2.2 Jacobi linearization and LQG control

The LQG (Linear Quadratic Gaussian) control theory is one of the most fundamental
optimal control problems. It deals with linear systems with additive white Gaussian noise
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having incomplete state information. LQG control can be applied both to LTI and LTV sys-
tems. An LQG system basically consists of an LQE (Linear Quadratic Estimator, Kálmán-
filter) and an LQR (Linear Quadratic Regulator). The separation principle ensures, that
these two can be designed separately [12].

Jacobi linearization around an equilibrium point is introduced in [14]. LQG control is
detailed in [12] and [13]. The discrete time Kálmán-filter and Extended Kálmán-filter is
detailed in [15] and the continuous time derivation from the discrete time can be found
in [16]. A solution for stabilizing a quadcopter in hovering position with LQG control is
proposed in [5]. However, it is not further improved for trajectory tracking, I will introduced
later.

The block scheme of the controller can be seen on Figure 2.2.

Quadcopter
dynamicsLQR

Kálmán-filter Sensors
Auxiliary
trajectory
maker

Trajectory
generator

y

v

w

ymeas

uref

ηref

ξd

ξ̇d

x̂

u

uref

Figure 2.2: The block scheme of the LQG control

2.2.1 Jacobi linearization

LQG control can be applied only to linear systems. The dynamical model of the quadcopter
is a nonlinear one, which can be seen easily from the equations of the dynamics (1.1) and
(1.2). So first of all, the system has to be linearized in the neighborhood of a trim point.
Consider the following nonlinear differential equation:

ẋ(t) = F (x(t), u(t)) (2.19)

Where F (x, u) is the non linear function of the state vector x and the input vector u, and
ẋ is the time derivative of the state vector. x0 and u0 are called trim point values if they
form an equilibrium of F , i.e.:

F (x0, u0) = 0 (2.20)

Equation (2.20) implies that the trim point means, that state x0 with an input u0 is a
stable state of the system. The small deviation variables from the trim point can be defined
as follows:

δx(t) = x(t)− x0

δu(t) = u(t)− u0
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Substituting these back in (2.19), the following equation is obtained:

δ̇x(t) = F (x0 + δx(t), u0 + δu(t)) (2.21)

This is exact and still nonlinear, but it can be expanded into Taylor-series:

δ̇x ≈ F (x0, u0) +
∂F

∂x

∣∣∣∣ x(t) = x0

u(t) = u0

δx +
∂F

∂u

∣∣∣∣ x(t) = x0

u(t) = u0

δu +H.O.T. (2.22)

Where H.O.T denotes the higher than 1st order terms, which will be neglected and due
to (2.20), the following can be written:

δ̇x ≈ ∂F

∂x

∣∣∣∣ x(t) = x0

u(t) = u0

δx +
∂F

∂u

∣∣∣∣ x(t) = x0

u(t) = u0

δu (2.23)

By using the notations

∂F

∂x

∣∣∣∣ x(t) = x0

u(t) = u0

=: A
∂F

∂u

∣∣∣∣ x(t) = x0

u(t) = u0

=: B (2.24)

the following linear state space system comes:

δ̇x = Aδx +Bδu

δy = Cδx +Dδu
(2.25)

where D = 0 and δy = y(t)− y0 = y(t)− Cx0.

This system is already linear and hence an LQG controller can be designed for it. To be
able to complete the previously introduced linearization, the function F (x(t), u(t)) and
the trim point values x0 and u0 have to be defined in the case of the quadcopter. The
state and the control variables will be the followings:

x(t) = [ξ̇, η, η̇]T = [ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇]T u(t) = [F, τ ]T = [F, τϕ, τθ, τψ]
T

With these state variables and based on equations (1.1) and (1.2) the nonlinear differential
equation that describes the quadcopter is the following:

ẍ

ÿ

z̈

ϕ̇

θ̇

ψ̇

ϕ̈

θ̈

ψ̈


=



1
mF sin θ

− 1
mF cos θ sinϕ

1
mF cosϕ cos θ −mg

ϕ̇

θ̇

ψ̇

a1

a2

a3


(2.26)
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where: a1a2
a3

 = J̃−1(τ − C(η, η̇)η̇)

A reasonable trim point choice for the quadcopter would be the stable hovering point, in
which case the drone has no velocity, its orientation angles are zeros (horizontal position)
and it does not have any angular velocities. For this hovering, the quadcopter does not need
any torque input but it needs a thrust force that keeps the balance with the gravitational
force. In this way the trim point state and input vectors become:

x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]T u0 = [mg, 0, 0, 0]T (2.27)

With these trim point values and with differential equation (2.26) that describes the
system, the Jacobian-matrices defined in (2.24) become as follows:

A =



0 0 0 0 g 0 0 0 0

0 0 0 −g 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


B =



0 0 0 0

0 0 0 0
1
m 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz


(2.28)

Suppose we can measure the velocity and the orientation of the quadcopter, but not the
angular velocity of it. This way the C matrix of the linear state space becomes:

C =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


(2.29)

With equations (2.28) and (2.29) all the information is given to design an optimal feedback
control system with LQR to the linear system (2.25).

2.2.2 Controllability and observability

In order to be able to design an LQG controller, the LTI system (2.25) has to be controllable
and detectable. These two properties can be checked through the controllability (Co) and
observability (O) matrices. If these matrices have the rank equal to the dimension of the
state vector the terms are satisfied. These matrices for an n dimension state space have
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the following forms [12, 17]:

Co = [B,AB,A2B, ..., An−1B]

O = [C,CA,CA2, ..., CAn−1]T

These matrices can be constructed in MATLAB with specified functions, and the result
is that both of them have the rank 9, which is the dimension of the state vector, so the
system is controllable and observable.

2.2.3 Kálmán-filter design (LQE)

In reality every system has noises, both in the process and in the sensors as well. In this
case, a state estimator ([17]) is needed. There are several types of state estimators but the
most commonly used type for linear systems is the well known Kálmán-filter [12, 15, 16].
The system with additional noises can be described with the following stochastic equations:

ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t)
(2.30)

where v(t) and w(t) are the process and measurement noises respectively. Since there is
noise in the system, and we don’t even know all the states from the measurements, a state
observer has to be designed. The estimation process in continuous time is the following:

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t)) (2.31)

where x̂ is the estimated state, ŷ = Cx̂ is the estimated output, and L is the observer
gain. The following variables for the error of the state and output estimations have to be
introduced:

∆x = x− x̂

∆y = y − ŷ = C∆x
(2.32)

By substituting these back into (2.31) and also taking into account the noises from (2.30),
the following dynamics for the errors can be obtained:

∆ẋ = (A− LC)∆x+ v + Lw (2.33)

For the use of the Kálmán-filter, the following assumptions need to be taken:

• stationary (the noise does not evolve with time)
• zero-mean
• Gaussian distribution
• white noise (the value of the noise is independent at any time from the values at any
previous times)

• x0, v and w are uncorrelated. (x0 is the initial state.)

The process and the measurement noises have the following properties:

E
{
v(t)v(τ)T

}
= V δ(t− τ)

E
{
w(t)w(τ)T

}
=Wδ(t− τ)

(2.34)
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Where V andW are the variance matrices of the noises, and δ(t−τ) is the Kronecker-delta
function, which is 1 if t = τ and 0 anywhere else. (In this respect (2.34) also implies that
the noises are white noises.) We assume, that the noises on the different variables of the
states and the outputs are not correlated to each other, in other words, V and W matrices
are diagonal. V and W matrices are also positive definite, and we can assume that W is
strictly positive definite, since there is no sensor without noise. We also use the following
initial statements:

x̄0 = E {x(t0)}

P0 = E
{
(x(t0)− x̄0) (x(t0)− x̄0)

T
} (2.35)

The following expressions formalize the assumption that was mentioned before, that the
initial state uncertainty, the process noise and the measurement noise are independent
from each other.

E
{
v(t)w(t)T

}
= 0 E

{
w(t)x0(t)

T
}
= 0 E

{
x0(t)v(t)

T
}
= 0 (2.36)

The LQE problem is to choose L to minimize the following expected (scalar) value:

E
{
∆x(t)T∆x(t)

}
(2.37)

For the solution of this, there is two more things that have to be fulfilled:

• (A,C) has to be observable. This was detailed in the previous section, that the
system is observable after the linearization.

• (A, V ) has to be stabilizable. Since (A,B) is controllable, and stabilizable in a not
too big environment of the trim point, and V is bounded, it can be said, that (A, V )
is stabilizable.

The derivation of the continuous Kálmán-filter can be found in details in [16]. The result
of the derivation is the following for L:

L = P̄CTW−1 (2.38)

where P̄ is the solution of the following algebraic Ricatti-equation:

0 = P̄AT +AP̄ + V − P̄CTW−1CP̄ (2.39)

Luckily MATLAB has an lqe function, that calculates this Kálmán-filter gain, based on
matrices A,C, V and W . It also waits for a transfer matrix that defines how the process
noise influences the state, but we can assume it to be an identity matrix. (In this case the
noises are simply added to the states.)

2.2.4 Trajectory tracking with the Jacoby-linearized model

Once ξd desired trajectory is defined, ηref , η̇ref , η̈ref and Fref trajectories can be defined
instantly based on equation (1.5). (ψd trajectory can be defined independently). After
ηref , η̇ref and η̈ref are given, τref can be calculated based on (1.2). In this way, we can
define reference angular and input trajectories for given ξd and ψd desired trajectories. This
property of the dynamics is called the differential flatness and is further detailed in [8].
The meaning of differential flatness is that all the states and the inputs can be calculated
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from some carefully selected outputs, ξ and ψ in our case. This means, that based on the
desired trajectories for these outputs (ξd, ψd), reference trajectories for all the states and
the inputs can be obtained. I will not deduce this property analytically since I think it can
be seen easily from equations (1.5) and (1.2). The calculation of the reference trajectories
can be found in details in (3.10).

The model, introduced in subsection 3.2.1., in it self is only capable of stabilizing the
quadcopter in a hovering position. To achieve the trajectory following feature, the states
and inputs of the state space model defined in (2.25) have to be changed as follows:

δ̂x =

ξ̇ − vref

η − ηref

η̇ − η̇ref

 δ̂u =

[
F − Fref

τ − τref

]
(2.40)

Where:
vref = ξ̇d + k(ξd − ξ): Reference velocity. The second part of the expression of vref has to
be added to the first time derivative of the trajectory, since the position is not represented
in the linear model, and without this term the position accuracy would not be guaranteed.
k is a constant and can be set based on demand.

ηref : The desired orientation trajectory that is exactly defined by ξd trajectory. ψd is
independent again, and can be defined separately. For the definition of ϕref and θref see
equation (3.10) which was obtained based on (1.5) and (1.2).

η̇ref : The first time derivative of the desired orientation trajectory ηref .

Fref : The reference thrust force trajectory which is exactly defined by ξd and ηref . For the
definition of Fref see equation (3.10) which was obtained based on (1.5) and (1.2).

τref : The reference torque trajectory that is exactly defined by ηref . For the definition of
τref see equation (3.10) which was obtained based on (1.5) and (1.2).

We assume, that the quadcopter will not leave the close surrounding of the
hovering state. In this way, we can use the previously introduced A and B state and
K feedback gain matrices of the system. The important difference is that instead of δx
and δu, we control the motion of the quadcopter based on the bias from the desired
reference trajectories (δ̂x and δ̂u). If the quadcopter does not leave the close neighborhood
of the hovering point, the system is assumed to be linear. And if it is a linear system, then
theoretically the correction input for a small deviation from the reference state trajectories
will be the same as if the deviation would be compared to the hovering point. In this way,
the control input u = [F, τ ] to the quadcopter becomes:

u = uref −Kδ̂x (2.41)

Where K is the LQR feedback gain matrix.

Equation (2.41) also means, that if we had an ideal system, with absolutely no state and
measurement noises then δx would always be 0, and hence the controller would always
give the quadcopter uref that naturally would drive it exactly on the desired trajectory.

That assumption we have made by letting the state space matrices to be the exact same
as they are around the hovering trim point, lets us to design the control easily. On the
other hand it means a limitation to its operation area. The quadcopter controlled in this
way would not be able to follow a trajectory that requires big angular velocities or angles
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compared to the hovering position. These limitations have to be considered during the
trajectory design.

The ξ position of the quadcopter can not be taken into the linear state space system, while
a fixed position and a fixed velocity as trim point value would be impossible to satisfy.
However, the position can be involved in the Kálmán-filter’s state space system, it only
means an extra integrator in the system. In this way, it is possible to estimate the position
of the quadcopter as well which is necessary for the generation of vref . It is also important
that due to the definition of vref : ∫

ξ̇ − vrefdt ̸= ξ − ξd

Due to this fact, the Kálmán-filter’s estimating equation in (2.31) can be obtained for this
application with the states and state space matrices as follows:

˙̃
δx = Ãδ̃x + B̃δ̃u + L̃(δ̃y − δ̃y) (2.42)

Where

δ̃x =


ξest − ξd

ξ̇est − ξ̇d

ηest − ηd

η̇est − η̇d

 δ̃y =

ξmeas − ξd

ξ̇meas − ξ̇d

ηmeas − ηd

 δ̃y =

ξest − ξd

ξ̇est − ξ̇d

ηest − ηd

 δ̃u =

[
F − Fref

τ − τref

]

δ̃x is the state vector of the filter, which is not identical to the state vector of the controlled
system δ̂x. (It contains ξ̇d instead of vref )
Ã contains an extra line of integrators compared to A in (2.28)
B̃ contains an extra line of zeros compared to B in (2.28)
L̃ is the estimating feedback gain of the filter designed for this system.

It can be seen, that in order to be able to include an extra integrator in the system and
hence to measure the position as well we have to use ξ̇d instead of vref . So the states of the
Kálmán-Filter differ from the states of the controlled system. To get back the states of the
controlled system as they are in equation (2.40), the following equation can be obtained:

δ̂x = T δ̃x

Where:

T =

−k · I3×3 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3


Where I3×3 and 03×3 denote the 3× 3 dimension identity and zero matrix respectively.

2.2.5 The summary of the control method

Based on the desired trajectories, ξd and ψd, reference trajectories for the angles and the
control inputs are generated (ηref , uref ). In a not too big neighborhood of the hovering
trim point, the quadcopter is assumed to be a linear system, for which an LQR control
can be obtained. The difference of the state variables from the reference values through
the feedback gain generates the difference input. By adding this difference input to the
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reference input, we get the optimal control input for the quadcopter. During the process,
the states are estimated by a Kálmán-filter which works with slightly different states in
order to be able to estimate the position of the quadcopter as well.

2.3 Feedback linearization

In this section, the exact feedback linearization control method will be introduced. At first
the control will be summarized for SISO systems, then the extension of it to trajectory
following MIMO systems and the adoption of it for the quadcopter will be detailed.

2.3.1 Feedback linearization of a SISO system

In this subsection, I am only going to introduce the feedback linearization method briefly
and going to concentrate on its implementation method for trajectory tracking application.
The detailed theory and deduction of feedback linearization can be found in [18] and [19].

For the sake of simplicity, I am going to introduce the feedback linearization of a nonlinear
SISO system first. The method described in this way can be extended to MIMO systems
easily with small changes. Suppose we have the following nonlinear SISO system which is
affine in the input, that is, a system of the form:

ẋ = f(x) + g(x)u

y = h(x)
(2.43)

where x ∈ Rn, u ∈ R and y ∈ R. The vector fields f(x) : D 7−→ Rn and g(x) : D 7−→ Rn
and the function h(x) : D 7−→ R are assumed to be smooth in the domain D ⊂ Rn, that
is, their partial derivatives respect to x of any order exist and are continuous on D.

It is also assumed that all states are available for measurement.

The objective of feedback linearization is to find a smooth control law in the form:

u = α(x) + β(x)v (2.44)

that transforms the map between the new input v and output y into a linear time invariant
one.

In order to construct the linearizing feedback, the notion of Lie-derivative and relative
degree have to be introduced:

• f(x) vector field is a smooth mapping on Rn. It consists of smooth functions of
x ∈ Rn:

f(x) =


f1(x)

f2(x)
...

fn(x)

 (2.45)

• given a vector field f(x) : Rn 7−→ Rn in the form of (2.45) and a function λ : Rn 7−→
R. The derivative of λ(x) along the vector field f(x) is called the Lie-derivative of
λ(x) and is denoted by:

Lfλ(x) =
∂λ

∂x
f(x) (2.46)
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• The higher order derivatives can be calculated recursively:

Lkfλ(x) =
∂Lk−1

f λ(x)

∂x
f(x)

An other important definition that has to be made is the notion of relative degree of a
system. The system of the form of (2.43) has a relative degree of r if:

1. : Lgh(x) = 0

2. : LgL
i
fh(x) = 0 for all i < r − 1

3. : LgL
r−1
f h(x) ̸= 0

(2.47)

This definition practically means that the output of the system has to be differentiated r
times, before the input first appears explicitly.

In this way, suppose, the relative degree of a system of the form (2.43) is r > 1. Then:

ẏ =
dy

dt
=
dh(x)

dt
=
∂h

∂x
ẋ =

∂h

∂x
f(x) +

∂h

∂x
g(x)u = Lfh(x) + Lgh(x) = Lfh(x)

ÿ =
d2y

d2t
=
dLfh(x)

dt
=
∂Lfh(x)h

∂x
ẋ = L2

fh(x) + LgLfh(x) = L2
fh(x)

...

y(r) =
dry

drt
=
dLr−1

f h(x)

dt
=
∂Lr−1

f h(x)h

∂x
ẋ = Lrfh(x) + LgL

r−1
f h(x)

(2.48)

Suppose, a system has a relative degree of n. Then by differentiating the output n times,
the following set of equations is obtained:

y = h(x) = z1

ż1 = ẏ = Lfh(x) = z2

ż2 = ÿ = L2
fh(x) = z3

...
żn = y(n) = Lnfh(x) + LgL

n−1
f h(x)u

(2.49)

By choosing the input u to be as follows:

u =
1

LgL
n−1
f h(x)

[
v − Lnfh(x)

]
(2.50)

equation (2.49) can be transformed into a chain of integrators:

y = z1

ż1 = z2

ż2 = z3
...

żn = v

(2.51)
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Due to equation (2.51), the realization of the system would become:

A =


0 1 0 . . . 0

0 0 1 . . . 0
. . .

0 0 0 . . . 0

 B =


0

0
...
1

 C = [1 0 . . . 0] (2.52)

A system with these state space matrices is obviously controllable.

Since LgLn−1
f h(x) ̸= 0 because of the definition of the relative degree of a system and that

we assumed it to be equal to n, equation (2.50) always has a solution. In this way the
exact feedback linearization is complete and the functions of (2.44) can be obtained as:

α(x) =
−Lnfh(x)

LgL
n−1
f h(x)

β(x) =
1

LgL
n−1
f h(x)

(2.53)

2.3.2 Extension of the control method to trajectory tracking MIMO
systems

Suppose we have a system of the following form:

ẋ = f(x) + g(x)u

y = h(x)
(2.54)

where x ∈ Rn, u ∈ Rp and y =∈ Rp. The vector fields are f(x) : D 7−→ Rn and h(x) :
D 7−→ Rp and the matrix g(x) : D 7−→ Rn×p.

For MIMO systems, the vector relative degree of a system has to be defined. Based
on the definition of relative degree for SISO systems: The system has a vector relative
degree of {r1, r2, ..., rp} if the ith output of the system has to be differentiated ri times for
a control input to appear explicitly.

If the system has a vector relative degree {r1, r2, . . . , rp} then the following equation can
be obtained: 

y
(r1)
1

y
(r2)
2
...

y
(rp)
p

 = F (x) +G(x)u (2.55)

If G(x) is nonsingular then u can be chosen as follows:

u = G−1(x)(v − F (x)) (2.56)

Necessary conditions for the non-singularity of G(x):

•
∑
ri = n

• G(x) is a p× p square matrix. This is why the dimensions of y and u in the system
(2.54) both have to have the dimension p.
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Similarly to the SISO case, equation (2.56) transforms the nonlinear system of equations
(MIMO version of (2.50)) into a chain of integrators as follows (MIMO version of (2.51):

y1 = z11

ż11 = z12
...

ż1r1 = v1

y2 = z21

ż21 = z22
...

ż2r2 = v2

. . .

yp = zp1

żp1 = zp2
...

żprp = vp

(2.57)

For details and derivation of the exact feedback linearization see [18] and [19].

2.3.3 Trajectory tracking with the feedback linearized model

Since the nonlinear dynamics of the quadcopter has been transformed into a chain of
integrators, and hence it became a linear system, the trajectory tracking capability can be
achieved easily. For this, the following choice of the v auxiliary input variable is necessary:

v =


y
(r1)
1d

y
(r2)
2d
...

y
(rp)
pd

+Ke (2.58)

Where y(ri)id is the rith derivative of the ith desired output variable and e is the error vector
which has the form of:

e = [e
(1)
1 , . . . , e(1)p , e

(2)
1 , . . . , e(2)p , . . . , e

(r1−1)
1 , . . . , e

(rp−1)
p ]T (2.59)

where e(j)i = y
(j)
id − y

(j)
i .

Substituting the input choice of equation (2.58) into the system (2.55) the following dy-
namics for the errors comes:

y
(r1)
1d − y

(r1)
1

y
(r2)
2d − y

(r2)
2

...
y
(rp)
pd − y

(rp)
p

 =


e
(r1)
1

e
(r2)
2
...

e
(rp)
p

 = −Ke (2.60)

Which can be stabilized with an appropriate choice of the feedback gain K. (In the case
of the quadcopter control, K is determined with LQR method for the feedback linearized
error system of (2.63).)

With this choice of auxiliary input v, the real inputs of the system become as follows:

u = G−1(x)



y
(r1)
1d

y
(r2)
2d
...

y
(rp)
pd

− F (x) +Ke

 (2.61)
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2.3.4 Implementation of the method on the quadcopter

I choose the output variables to be the position and the yaw angle. y = [ξ, ψ]T (This is a
reasonable choice, since trajectory can be prescribed for these states.) The input variables
are the ones, that were previously: u = [F, τ ]T . In this way, the assumption, that is that
the dimensions of the input and the output have to match is fulfilled.

The state space ([ξ, ξ̇, η, η̇]T ) has the dimension of 12. According to equations (1.1) and
(1.2), both the position variables and the yaw angle have to be differentiated 2-2 times
until an input variable appears explicitly. In this way, the (vector) relative degree of the
system in this form is 8, which is less then the dimension of the state space. We have
two choice: we either find 4 more functions for the coordinate transformation (This is a
common solution when the sum of the vector relative degree is less than the dimension
of the state space. It is detailed in [18]), or we make some variable changes, with which∑
ri = n holds.

The second option turns out to be the easier solution. The dynamics of the quadcopter in
the x, y, z direction can be obtained after (1.1) as follows:

ẍ =
1

m
F sin θ

ÿ = − 1

m
F cos θ sinϕ

z̈ =
1

m
F cos θ cosϕ− g

(2.62)

It can be seen that if instead of F we choose uf = F̈ to be the input variable of the system
then the vector relative degree of the system becomes 14. (As we have to differentiate
the 3 translational dynamics equations of (2.62) four-four times to reach the new control
variable uf , and ψd has to be differentiated 2 times to reach τ .) Since the new control
variable is the second derivative of the thrust force, two more integrators appear in the
system, and hence the number of the states also becomes n = 14. In this way,the necessary
criteria of exact feedback linearization is reached. (

∑
ri = n)

In addition, this solution implies that the prescribed trajectory has to be at least 4 times
differentiable in time. Luckily, as it is detailed at the beginning of section 4, the four times
differentiable trajectory prescription is a requirement for all controls anyways (because of
the dynamical properties of the quadcopter), so this change in the variables does not mean
an extra boundary for the trajectory design.

To make the functions that describe the system simpler and hence the differentiations
easier, it is also reasonable to choose η̈ to be the new input instead of τ . This does not
change the dimension of the state space nor the vector relative degree of the system, it just
makes calculations easier. After all these changes in the variables, the new input vector of
the system is: unew = [uf , η̈]

T

With these changes in the input and with the method described in subsection 3.3.2., the
error system for trajectory tracking can be obtained as follows:

ė = Ae+Bv (2.63)

Where e = [eξ, e
(1)
ξ , e

(2)
ξ , eψ, e

(3)
ξ , e

(1)
ψ ]T is the error vector, where e(i)ξ = ξ

(i)
d − ξ(i) and
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e
(i)
ψ = ψ

(i)
d − ψ(i). The matrices of the system are:

A =



03×3 I3×3 03×3 03×1 03×3 03×1

03×3 03×3 I3×3 03×1 03×3 03×1

03×3 03×3 03×3 03×1 I3×3 03×1

01×3 01×3 01×3 01×1 01×3 11×1

03×3 03×3 03×3 03×1 03×3 03×1

01×3 01×3 01×3 01×1 01×3 01×1


B =

[
010×4

I4×4

]
(2.64)

Where 0n×m denotes an n×m dimension zero matrix and In×n means an n×n dimension
identity matrix.

For the error system defined in (2.63), an LQR control can be designed, and hence the
auxiliary control variable v can be calculated through static state feedback. The new,
changed control variables (unew = [uf , η̈]

T ) can be calculated based on equation (2.56) as
follows:

unew =

[
uf

η̈

]
= G−1(x)

[[
ξ
(4)
d

ψ
(2)
d

]
− F (x) +Ke

]
(2.65)

F (x) and G(x) can be reached through differentiating the expressions for the translational
accelerations in (2.62) two more times. (Since in the new control variable choice ψ̈ is a
control variable it self, the last line of F (x) consists of zeros, and the last line of G(x)
becomes easily [0, 0, 0, 1].) After unew is calculated, the real inputs for the system, u =
[F, τ ]T , can be found with the help of the definition of uf (F =

∫∫
ufdt) and equation

(1.2). (τ = J̃ η̈ − C(η, η̇)η̇)

One more thing that needs to be checked is that at which occasions becomes G(x) singular.
After looking at G(x) (which can be done by running symbolic_differentiation.m)
script file), it can be seen, that singularity occurs when the orientation angles ϕ and θ and
also the thrust force of the motor F become zero at the same time. If we make sure, that
this scenario never happens then exact feedback linearization can be used successfully for
the control of the quadcopter.

However, the control method brings major difficulties with itself, which origins in the
multiple times differentiation. First of all, it is not realistic that we can measure all the
states and their derivatives, that would be required for the control. In this case we would
probably need a state estimator, for example an Extended Kálmán-filter [15]. Second of
all, Producing the trajectory and their higher order derivatives turns out to be not very
easy for trajectories of the kind that will be introduced in the next section.

2.3.5 The summary of the control method

The e error vector can be built based on the desired and the real trajectories. After that,
the auxiliary input v can be calculated through the feedback gain: (equation (2.58)). Based
on equation (2.61) and v the new input variables can be found, and from them, based on
the definition of uf and equation (1.2) the real inputs of the system can be calculated.
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Chapter 3

Trajectory design for the
quadcopter

The quadcopter gets predefined points in the 3D space, which it should interlace with a
4 times differentiable trajectory. (The order of differentiability depends on the prescribed
velocity profile which will be detailed later in subsections 3.1.1 and 3.2)

The four times differentiable trajectory is necessary because of the followings: Based on
equation (1.5), the orientation angles (η) can be expressed as functions of the second
derivative of the trajectory (ξ̈). Moreover, equation (1.2) implies that the torque is the
function of the orientation, its first and its second derivatives. Finally the rotor velocities
are functions of the torque. From these it can be seen, that the rotor velocities are functions
of the fourth derivative of the desired translational trajectory,ξd. In this way a four times
differentiable trajectory prescription is essential in order to achieve a continuous rotor
velocity function.

This paper introduces two solutions for the trajectory prescribing task. In the first case a
natural spline is fitted on the points. The second is a piecewise linear trajectory, where the
points are simply connected with straight lines. The higher order continuity is achieved
by the definition of the velocity profile in both cases.

3.1 Spline trajectory

The curve trajectory definition is produced in two steps. First, a spline curve is fitted on
the desired points in the space. Second, a velocity profile is defined, which respects the
constraints of the quadcopter.

Given k points ξi = [xi, yi, zi]
T in the 3D space. We fit a third order spline (a two times

differentiable spline), sp(ρ), on these points. The fitting is done so, that we define k − 1
third order polynomials, one for each [ξi; ξi+1] interval, which satisfy 3 boundary conditions
at their endpoints(zeroth, first and second derivative continuity). These polynomials are
denoted as qi(ρ), where ρ ∈ [ρi; ρi+1] i = 1, 2...(k−1). Here ρi and ρi+1 are the boundaries
of the parameter on the ith polynomial. The previously mentioned properties and the
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boundary conditions can be expressed as follows:

qi(ρ) =Ai(ρ− ρi)
3 +Bi(ρ− ρi)

2 + Ci(ρ− ρi) +Di (3.1)
qi(ρi+1) =qi+1(ρi+1) = ξi+1 (3.2)

d

dρ
qi(ρi+1) =

d

dρ
qi+1(ρi+1) (3.3)

d2

d2ρ
qi(ρi+1) =

d2

d2ρ
qi+1(ρi+1) (3.4)

Please note that equation (3.2) is basically 2 equations, so we have 4 equations ((3.2),(3.3)
and (3.4)) for the 4 unknown constant coefficients Ai, Bi, Ci and Di that determines the
ith component of the spline.

The problem of the trajectory definition with a spline is that the curve is not the function
of time nor distance, but the function of a parameter ρ. In order to evaluate the spline
in time, the function between time and ρ has to be defined. It is solved in the following
way: With a fine grid, the spline is evaluated in many points between ρmin and ρmax. The
arc length between the neighboring points is approximated with a straight line. It is an
acceptable approximation if the grid is fine enough. In this way, a function between the
arc length ρ̃ and the parameter ρ can be achieved. The function between ρ̃ (arc length)
and the parameter ρ is constructed by an other spline. Because of the very fine grid, the
nonlinearity between the new parameter of the new spline and ρ̃ is negligible. in this way
the function f (ρ̃p) = ρ can be obtained. So, if p is a point on the spline and the arc length
ρ̃p between p and the start point of the spline is known, the parameter of this point, ρp, can
be calculated. In this way, if we know the covered distance on the spline, the parameter
(ρ) of that point can be calculated. In this way, suppose the quadcopter’s velocity follows
v(t) function in time. After all this, the point of the desired trajectory spline at a time
instance ti can be determined as follows:

ρ̃(ti) =

∫ ti

t0

v(t)dt (3.5)

ρ(ti) =f (ρ̃(ti)) (3.6)
ξd(ti) =sp(ρi) = sp(f(ρ̃(ti))) (3.7)

The time derivatives of the trajectory (with the notation sp(t) = ξd(t)):

ξ̇d =
dξref
dt

=
∂ξref
∂ρ

∂ρ

∂ρ̃

∂ρ̃

∂t
=
∂ξref
∂ρ

∂ρ

∂ρ̃
v(t) (3.8)

ξ̈d =
d2ξref
d2t

=
∂2ξref
∂2ρ

(
∂ρ

∂ρ̃
v(t)

)2

+
∂ξd
∂ρ

(
∂2ρ

∂2ρ̃
v(t)2 +

∂ρ

∂ρ̃
a(t)

)
(3.9)

(v(t) and a(t) are scalar functions and are the velocity and acceleration on the trajectory)

3.1.1 Constructing the velocity profile for the spline

Assume the spatial spline trajectory, i.e. (3.1) and (3.8) is given. To construct the velocity
profile v(t) it has to be kept in mind that the motor and rotor properties imply maximal
values for the [F, τ ] inputs (as it was introduced in subsection 2.2.1.). It is also reasonable
to set constraints on the orientation angles (θmax, ϕmax).
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The quadcopter will accelerate to a constant velocity at the beginning of the path, keep
this constant speed and then decelerate at the end of the path to zero. This constant
velocity should be set such that the previously mentioned input and orientation angle
constraints would not be violated. For this, a maximal constant velocity vmax is computed
which defines a feasible trajectory. This maximal constant velocity can be calculated with
a non-linear constraint optimization problem.

For this, suppose that the desired trajectory ξd be given. If ξd is given, the corresponding
reference angular trajectory ηref and input trajectory uref can be determined from the
state space model (1.5) and (1.2) as follows:

ϕref = fϕ(ξ̈d) = arctan

(
− ÿ

z̈ + g

)
θref = fθ(ξ̈ref , ϕref ) = arctan

(
−
ẍ cosϕref
z̈ + g

)
Fref = fF (ξ̈d, ϕref , θref ) =

m(z̈ + g)

cos θ cosϕ

ηref =

 fϕ(ξ̈d)

fθ(ξ̈d, ϕref )

ψref

 η̇ref =

 ḟϕ(ξ̈d)

ḟθ(ξ̈d, ϕref )

ψ̇ref

 η̈ref =

 f̈ϕ(ξ̈d)

f̈θ(ξ̈d, ϕref )

ψ̈ref


τref = J̃ η̈ref + C(ηref , η̇ref )η̇ref

uref = [Fref , τref ]
T

(3.10)

The aim is to maximize v such that the state and input constraints are not violated.
Formally this can be formulated as follows:

vmax = max {v} s.t.: uref ∈ [umin;umax] and ηref = [ηmin; ηmax]

If v velocity and sp(ρ) spline are given then the ξd trajectory can be calculated based on
equations (3.5),(3.6) and (3.7). As it can be seen from (3.10), this desired trajectory (ξd)
defines exactly the orientation and the input trajectories. Hence ηref and uref [Fref , τref ]
can also be obtained for a given v and sp(ρ). In this respect, the iterative optimization
of v goes so, that v is risen in small steps from 0, and for each v, the maximal reference
orientation angle and input is calculated. This process goes on until one of the constraints
are violated. The last feasible v is kept and is chosen to be the constant velocity along the
spiral trajectory vmax.

The other thing that needs to be set is the function that defines the acceleration. The
quadcopter based on its dynamics has several requirements for such a function. Since we
know that the velocity in the middle of the path is constant (v(t) = v), the velocity
function at acceleration and deceleration has to satisfy the following boundary conditions.
(ts is the duration of the acceleration. in other words, the acceleration function is valid
only if t ∈ [t0; ts]. After that the quadcopter flies with the previously defined constant
velocity vmax.)

v(t0) = 0

v̇(t0) = 0

v̈(t0) = 0
...
v (t0) = 0

v(ts) = vmax

v̇(ts) = 0

v̈(ts) = 0
...
v (ts) = 0
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For this 8 boundary conditions a seventh order polynomial is chosen. This function has
the following form:

v(t) = A(t− t0)
7 +B(t− t0)

6 + C(t− t0)
5 +D(t− t0)

4 + E(t− t0)
3 + F (t− t0)

2+

+G(t− t0) +H

(3.11)

The coefficients of the polynomial can be expressed with ts (the duration of the accelera-
tion) and vmax (constant velocity of on the path, which the acceleration function reaches
at t = ts) as follows:

A = −20vmax
t7s

B =
70vmax
t6s

C = −84vmax
t5s

D =
35vmax
t4s

E = 0

F = 0

G = 0

H = 0

(3.12)

In the expressions of these coefficients, the only variable that can be changed is ts. (vmax is
the constant velocity, which is provided by the previously introduced optimization process.)
In this way, the task is to determine the shortest ts acceleration time, during which none
of the constraints (input and orientation angles) are harmed. This leads to an other non-
linear constraint optimization which should be solved.

This process is solved again in an iterative manner. The aim of the optimization is to
minimize ts (and in this way to define the shortest acceleration function) such that the
constraints for the orientation angles and the inputs would not be violated.

tsmin = min {ts} so that: uref ∈ [umin;umax] and ηref = [ηmin; ηmax]

where: uref is the reference input and ηref are the reference angular trajectories which are
exactly defined by ts and the spline sp(ρ) during the acceleration in the following way:
equations (3.12) and (3.11) determine the velocity profile v(t) from ts; with the help of
(3.5), (3.6) and (3.7) the desired trajectory ξd can be obtained; ηref and uref comes from
(3.10).

The iterative optimization process works similarly to the optimization of the constant
maximal velocity vmax. ts is reduced by small steps until one of the constraints is vio-
lated. The last feasible ts is kept and then the coefficients of the acceleration function
are calculated (3.12). (Since the acceleration and deceleration function are the same, the
violation of the constraints is checked both at acceleration and deceleration, so both at
the beginning and at the end of the spline.)

The deceleration function can be given easily based on the acceleration function. It can be
set to be the mirror image of the acceleration function. It is achieved with the following
change in the function: (tt is the total time duration of the path. Or in other words, at tt
the quadcopter arrives at the endpoint of the curve with 0 velocity.)

v(t) = A(tt − t)7 +B(tt − t)6 + C(tt − t)5 +D(tt − t)4 + E(tt − t)3 + F (tt − t)2+

+G(tt − t) +H

t ∈ [tt − ts; tt]
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3.1.2 Summary of the spline trajectory design algorithm

Once the spline is fitted on the points, the mapping between the spline parameter (ρ)
and the arc length measured from the beginning of the spline (ρ̃) is constructed. The
maximal constant velocity and the shortest acceleration time is determined with iterative
optimization processes. In this way, the scalar velocity profile v(t) can be determined for
the trajectory (optimization precesses and then equations (3.12) and (3.11)). After this,
the desired trajectory ξd is defined based on equations (3.5),(3.6) and (3.7).

3.2 Piecewise linear trajectory

In case the desired trajectory consists of straight lines between the points, the only problem
to be solved is the prescription of a sufficient velocity profile. A proper velocity profile is
necessary in order to achieve a 4 times differentiable trajectory. Moreover, for the piecewise
linear trajectory, a strict completion time for the whole path is also prescribed. (So in this
case the aim is not to complete the trajectory under the shortest possible time, as it was
at the spline trajectory, but to complete it under a prescribed time.) The velocity profile
to be designed is again divided into an acceleration and a deceleration function on each
single line and both of them are sixth order functions of time. (the deceleration function
is just the mirror image of the acceleration function on each straight line/ section.) Sixth
order polynomials are necessary in order to fulfill the boundary conditions in (3.14), which
guarantee the four times differentiability in time. Note, that v̈(t0 + ta) = ȧ(t0 + ta) = 0
is not prescribed in (3.14). It is not necessary, since in the middle of each single line the
acceleration of the quadcopter does not have to have a local extrema. This is just the
point, where the acceleration changes its sign, before that it accelerated and after that it
decelerates. But it can have a constant change in its acceleration. (It is something like, it
can go through the horizontal position with a constant angular velocity and it does not
have to stop there for a moment.) In this way there are only 7 boundary conditions for each
single velocity function. (A single velocity function is only an acceleration or a deceleration
function! In other words, the complete velocity function of a single straight line consists
of two single velocity functions: one for the acceleration part and one for the deceleration
part.) Note that as the velocity profile is symmetric, the acceleration function has the same
shape as the deceleration function. Because of this fact, the acceleration takes exactly the
same time as the deceleration. Hence, the time instant when the acceleration turns into
deceleration is at the middle of the total duration of a single straight line. Because of this
symmetry in time and the similarity of the accelerating and decelerating functions, I will
only focus on the acceleration part. As we are talking about the first half of the velocity
function, (the acceleration part) the following notations will be used:
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si : The length of the ith straight line.
ttotal : The completion time of the total path.
toi : The starting time of the ith section.
ti : The completion time of the ith section.

tai =
ti

2
: The duration of the acceleration or the deceleration.

thi =
tai

2
: The acceleration has a maximum value at the middle of the

acceleration, so at this instance.
amaxi = v̇(t = t0i + thi) : The maximum acceleration of the ith section.

From the previously announced variables si and ttotal are fixed variables. All the others
are free ones, and in the latter discussion we would like to determine them in order to
define the acceleration velocity profile. However, it needs to be realized that the remaining
time variables are not independent from each other.

The velocity profile on the ith section during acceleration can be obtained with the following
polynomial:

vi(t) = Ai(t− t0i)
6 +Bi(t− t0i)

5 + Ci(t− t0i)
4 +Di(t− t0i)

3 + Ei(t− t0i)
2 + Fi(t− t0i) +Gi

t ∈ [t0i; t0i + tai]

(3.13)

And the boundary conditions are:

vi(t0i) = 0

v̇i(t0i) = 0

v̈i(t0i) = 0
...
v i(t0i) = 0

v̇i(t0i + thi) = amaxi

v̇i(t0i + tai) = 0
...
v i(t0i + tai) = 0

(3.14)

If tai, t0i and amaxi would be known, it could be solved (thi = tai/2). But in this case only
these conditions are known: ∑

i

ti = ttotal (3.15)∫ t0i+tai

t0i

vi(t)dt =
si
2

(3.16)

The third condition is, that the maximum acceleration is the same on every
single path. (amaxi = amaxj for all (i, j)) Due to this condition, from now on I will denote
the maximal acceleration simply with amax. This condition would not be necessary but it
makes the calculation easier as it can be seen in the followings. The fact that the maximal
acceleration on each line is the same practically means that the velocity profile is just
magnified proportionally with the length of a line. On a longer path, the drone will have
a higher max velocity, but it will be reached with the same maximal acceleration. (The
maximal acceleration is also constrained by the maximal thrust force and orientation angles
constraints. If the prescribed time is too short for the completion then this acceleration
constraint is violated. This violation is checked within the program.) If amax is fixed, the
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time duration ti of a single line with the length si can be deduced based on the form of
the velocity profile of (3.13) and the boundary conditions (3.14).

ti =
5

8

√
21si
amax

(3.17)

Since we have said that the maximal acceleration amax is the same on each lines and the
total time is the sum of the individual path durations this can be said:

ttotal =
5

8

√
21

amax

n∑
i

√
si (3.18)

Where n is the number of lines. In our case however, not the maximal acceleration but
instead the total duration of the path completion (ttotal) is given and from that should we
determine amax. In this respect, amax should be obtained as the function of the individual
straight line lengths si and the total duration ttotal, which now can be done easily based
on equation (3.18) as follows:

amax =
525

64t2total

[
n∑
i

√
si

]2

(3.19)

After this, in the knowledge of amax and the length of each straight line si, the time
variables of each line (ti, t0i, tai, thi) can be calculated after substituting back in (3.17)
and the variable definitions. Now in the knowledge of amax and thi, the coefficients of the
fifth order polynomial (3.13) for each straight line can be obtained (These can be deduced
based on the form of the acceleration function in (3.13), the constraints in (3.14 and the
assumption that the maximal acceleration is the same on every single line.):

Ai =
amax
10th

5
i

Bi = −14amax
25th

4
i

Ci =
4amax
th

3
i

Di = 0

Ei = 0

Fi = 0

Gi = 0

(3.20)

The deceleration function is just the mirror image of the acceleration function, so with the
exact same coefficients the function for slowing down can be written as follows:

vi(t) = Ai(ti − t)6 +Bi(ti − t)5 + Ci(ti − t)4 +Di(ti − t)3 + Ei(ti − t)2 + Fi(ti − t) +Gi

t ∈ [t0i + tai; ti]

(3.21)

Once the function of the scalar velocity function for the straight lines are given the trajec-
tory definition can be achieved relatively easily. Let pi denote the ith prescribed point of
the path and ri = pi+1 − pi the vector that points from that point to the next one. Then
the trajectory prescription and its time derivatives for the ith straight line can be obtained
as follows:

ξd = si(t)
ri
|ri|

ξ̇d = vi(t)
ri
|ri|

ξ̈d = ai(t)
ri
|ri|

ξ
(3)
d = ȧi(t)

ri
|ri|

ξ
(4)
d = äi(t)

ri
|ri|

(3.22)
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Where boldface characters denote vectors and the simple ones are scalar quantities.

3.2.1 Summary of the piecewise linear trajectory design algorithm

The maximal acceleration for each single line will be the same. In this way, based on the
given total duration ttotal, the length of each straight line si and equation (3.19), (amax)
maximal acceleration can be calculated. After this, the duration of each individual line
can be calculated (equation (3.17)). From ti, thi can be calculated, and hence the scalar
coefficients of the velocity function can be obtained (equation (3.20)).
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Chapter 4

Simulation results

All three of the methods are simulated in the MATLAB Simulink environment. Initializer
MATLAB scripts are written, where the variable initialization, path planning and the
necessary calculations for the controllers take place. The control architectures are then
built and the simulations run in the Simulink environment. These scripts and the Simulink
files are detailed in the Appendix.

The simulations run with the continuous time model of the quadcopter and with continuous
time controllers. The time delay of realistic systems is neglected in the simulations. This
delay however could be included in the controllers in the following manner: The system
and the controllers have top be discretized supposing zeroth order hold inputs. When the
calculation of the kth input takes place, measurements of the (k− 1)th states are available
only. In this way, a popular solution is to simulate the model between the (k−1)th and kth
time-steps, in this way to get an approximation of the states in the kth time-step. Than the
inputs for the kth time-step can be calculated based on these approximated states. This
calculation takes place between the (k − 1)th and kth time-steps and the control input is
applied to the plant at the kth instant. This method for solving time delays is used for
example in [20] where they use it in the application of a discrete MPCC (Model Predictive
Contouring Control) controller. This compensation was not the aim of the simulations and
hence this solution is not applied during the simulations.

The simulated quadcopter has the following properties, which are typical values. These
anyway could be set on demand.

m = 0.468[kg] l = 0.275[m] b = 1.14 · 10−6[kgm] k = 2.98 · 10−5

[
N

rad2

]
Tmot = 100[mNm] Jact = 1.25 · 10−7[kgm2]

J =

Ixx 0 0

0 Iyy 0

0 0 Izz

 =

4.856 · 10
−3 0 0

0 4.856 · 10−3 0

0 0 8.801 · 10−3
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4.1 Results and experiences

4.1.1 Piecewise linear trajectory

The accuracy of the trajectory following gets better if the quadcopter has more time
to complete it. This causes smaller accelerations and hence errors decrease. The results
of 2 simulations will be introduced in the followings in which the desired time for the
quadrotor to complete the path were 25 and 40 seconds. The total length of the trajectory
was 63.41[m] which means that the average velocities on the path were 2.53

[
m
s

]
and

1.58
[
m
s

]
respectively. The highest velocities that the drone has reached were 8.29

[
m
s

]
and

5.18
[
m
s

]
respectively.

The piecewise linear trajectory on which the quadcopter was tested and the trajectories
of the quadcopters with the different controls can be seen on Figure (4.1).
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Figure 4.1: The piecewise linear test trajectory with 25[s] runtime

The errors of the runs can be seen on Figure (4.2) and (4.3).

Both the successive i/o linearization and feedback linearization controllers have quite good
trajectory following capabilities. These controllers perform better in this simulation than
the LQG. First of all, it is due to the fact, that during the design of these controllers we
took into account the exact nonlinear system (with some substitutions and transformations
to reach a system that is controllable with linear control methods.). This is not true for
the LQG controller, where the Jacobi-linearization of the system is not exact. (We neglect
the higher order terms from the Taylor-series.) Second of all, the simulation of the LQG
controller includes noises as well and we did not assume that we can measure all the
states required for the state feedback (Instead a Kálmán-filter is used.). By the other two
controllers, we assumed that all the required states are available for measurement. This is
however not very realistic, and in reality probably an Extended Kálmán-filter (EKF) [15]
would produce these variables for the controllers. Again, due to the fact, that the LQG
simulation contains noises, the quadcopter would not be able to reach a stable settling
point with 0 error. However, the magnitude of this error remains in the range of the
noises.

The rotor velocities that the quadcopter produced in order to follow the path can be seen
on figure (4.4), (4.5) and (4.6). It can be examined on figure (4.5) that the rotor velocities
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Figure 4.2: The errors on piecewise linear test trajectory with 25[s] runtime
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Figure 4.3: The errors on piecewise linear test trajectory with 40[s] runtime

of the LQG controller are noisy compared to the others. This is again caused by the noises
in the simulated system. If these noises are tuned to 0 then the rotor velocities are just as
smooth as they are in the case of the other two control methods.

4.1.2 Spline trajectory

I used a spiral trajectory to test the controllers on spline paths. The parameters of the tra-
jectory are: R = 4[m], h = 1[m] and it has 8 turns. (h is the rise of each turn.) This simple
trajectory choice is reasonable since the LQG controller is unable to follow accurately tra-
jectories which require high angular velocities and angular accelerations because it would
be outside of the small neighborhood of the trim-point. The results of two simulations will
be introduced with different, 4

[
m
s

]
and 6

[
m
s

]
, velocities.

The spiral trajectory and the paths of the two quadrotors can be seen on Figure (4.7).

The errors of the control methods with the two different speeds can be seen on Figures
(4.8) and (4.9).
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Figure 4.4: Rotor velocities on piecewise linear trajectory with successive i/o
control

Figure 4.5: Rotor velocities on piecewise linear trajectory with LQG control

Figure 4.6: Rotor velocities on piecewise linear trajectory with feedback lin-
earized system with LQR control

The successive i/o linearization controller works quite stable in this case as well. The
error is almost constant and has a low value in the middle of the path, which is the
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Figure 4.7: The spiral test trajectory with 6
[
m
s

]
desired velocity
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Figure 4.8: The errors of the spiral trajectory following with 6
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]
desired

velocity

period of constant path parallel velocity. The error fairly grows during acceleration and
deceleration. It is also the effect of the actuator model, since it saturates occasionally
during these periods.

The LQG controller’s error is again in connection with the noise. Due to these disturbances,
the error can not be near zero permanently at the end of the path. On the other hand, a
that big difference in accuracy compared to the other controllers, as it was by the piece
wise linear trajectory simulation, is not present in this case.

The error of the feedback linearization controller grows much higher at the beginning and
at the end of the path. This is probably caused by the effect of the new control variable
choice. Since the real thrust force is the second integrative of this control variable, the
quadcopter can not react to big accelerations that well. (It slows the response of the
controller.) The same effect can be examined in sharp turns as well. This integrating
effect causes also that once a bigger error has been present, it will only vanish after some
fluctuations. (This is the same phenomena that occurs if a PID controlled system is thrown
out of its stable position. It can only settle after at least one swing to the other direction.)
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This problem did not appear in the linear path case probably because there were smaller
accelerations.

4.1.3 Robustness with different weights

The robustness capabilities of the controllers were also examined. I ran 10-10 simulations
with each of them. In the first five runs, only the mass of the quadcopter was modified in
5 steps between 10% and 50%. In the second 5 runs, the mass and also the inertia of the
quadcopter was increased (again in 5 steps between 10% and 50%). The controllers were
tested on the previously introduced spiral trajectory with 4

[
m
s

]
velocity.

The successive i/o linearized controller has quite good robustness properties. It follows the
trajectory with a promising accuracy in x and y directions and it only has a more significant
inaccuracy in the z direction. At the end of the path, it hovers in a stable position with a
remaining error in the z direction. This inaccuracy in the hovering elevation is a property
that comes from the nature of the controller: If there were no position inaccuracy then the
thrust force would be just as big that it would be able to hover the quadcopter with the
exact weight. If the weight is bigger, a bigger control input is required and this can only
be reached if there is an inaccuracy in the position.(Some sort of an integrating property
is missing from the controller.) The errors of the successive i/o controller in this case can
be seen on Figure (4.10).
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Figure 4.10: The errors of the successive i/o controller on spiral trajectory
when the weight of the quadcopter is increased

The LQG control acts quite similarly to the previously shown successive i/o controller.
Again, its x and y direction accuracy is good and it has a vital error in the z direction.
Similarly to the previous case, the position in the z direction can not be accurate com-
pletely. This is due to the fact, that the reference velocity is defined in the following way:
vref = ξ̇d + k(ξd − ξ). It can be seen from equation (2.41) that if the first row of δ̂x is
zero, then the input will become exactly the reference input. Which is not enough for the
increased weight quadcopter to levitate in a stable position. In this way, there must be a
difference between the prescribed and the produced velocity. Since ξ̇d = 0 and we want ξ̇
to be zero vector, the only possibility is that vref ̸= 0. And that can only be if ξ ̸= ξd.
The accuracy can be improved by a higher value choice for k in vref . However, if k is too
big then the controller will react to a small position error very aggressively and hence the
stability of the system can be endangered. The errors of the LQG controller in this case
can be seen on Figure (4.11).
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Figure 4.11: The errors of the LQG controller on spiral trajectory when the
weight of the quadcopter is increased

From a certain aspect the feedback linearized system with LQR controller has the best
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robust properties from the 3 controllers. It has a very small position error when the path
parallel velocity is constant on the spiral and is capable of a perfectly accurate position
keeping at the end. On the other hand, this is the control which is the most sensitive for
parameter varying when it has to accelerate (Especially when the inertia of the quadcopter
is not accurate, see in the next part.). The reason for this is that due to the new auxiliary
control choice, the desired thrust force is calculated through two integrators. This is exactly
what was missing from the previous two controls, and this is why it is capable of hovering
in the exact position. The downside of this integrating manner in the thrust force is that
it reacts slower, and this is why it produces bigger errors and longer transients while
accelerating. The errors of the feedback linearized system with LQR controller in this case
can be seen on Figure (4.12).
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Figure 4.12: The errors of the feedback linearized system with LQR control
on the spiral trajectory when the weight of the quadcopter is increased.

4.1.4 Robustness with different weights and inertia

In these simulations the inertia of the quadcopter was also changed. In many cases this is a
more reasonable examination, since if for example the quadcopter has to carry something
it can heavily effect the inertia of the whole system, not just the weight of it.

The change in the inertia of the quadcopter did not really effect the trajectory following
accuracy of the successive i/o and the LQG controller. Generally it can be said, that the
growth of the inertia has an impact on the performance when high angular accelerations
occur, so in other words, when the fourth derivative of the trajectory is high. In the case
of the spiral trajectory this scenario happens mainly during acceleration and deceleration.
According to this, the main difference between this simulation and the previously intro-
duced one appears at the beginning and the end of the path. During these periods the
errors are fairly larger compared to the previous case. The errors of the successive i/o
linearization and the LQG controllers when the weight and the inertia of the quadcopter
is changed can be seen on Figures (4.13) and (4.14) respectively.
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Figure 4.13: The errors of the successive i/o controller on the spiral trajectory
when the weight and inertia of the quadcopter is increased.
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Figure 4.14: The errors of the LQG controller on the spiral trajectory when
the weight and inertia of the quadcopter is increased.

The feedback linearized system with LQR controller on the other hand is heavily effected
by the change in the inertia of the quadrotor. Again, in situations when the inertia of
the quadcopter does not play an important role, so when the angular accelerations are
not high, the controller is capable of following the path with relatively small errors, even
when the weight and inertia parameters are changed heavily. These errors nevertheless are
much bigger than they were in the previous case. During acceleration and deceleration the
controller reacts slowly and hence the errors grow huge and only disappear after a longer
oscillation. The errors of the feedback linearized system with LQR control in this case can
be seen on Figure (4.15).
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Figure 4.15: The errors of the feedback linearized system with LQR control on
the spiral trajectory when the weight and inertia of the quadcopter is increased.
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Chapter 5

3D visualization in V-REP

Figure 5.1: quadcopter V-REP model
V-REP is a robot simulator software with integrated development environment. It is based
on a distributed control architecture: each object/model can be individually controlled via
an embedded script, a plugin, a ROS or BlueZero node, a remote API client, or a custom
solution. What makes V-REP interesting for us is that the control can also be written
in a MATLAB script through the remote API framework. Furthermore, V-REP luckily
contains a default quadcopter model which basically consists of the body and the 4 rotors.

The working of V-REP is based on the parent child relationships between the parts. In
the quadcopter’s case the body is the parent of the rotors among others. This means, that
there is a matrix defined between them that defines the children’s positions related to the
parent. So if one object is the parent of an other, they can be moved together in V-REP.
In the software, the parts usually have (threaded or non threaded) child scripts attached
to them, from where they are controlled. These scripts are written in LUA language. But
V-REP can be controlled through MATLAB as well, and I have used this option for the
sake of simplicity.

The Visualization goes as follows: The motion of the controlled quadcopter is simulated in
a MATLAB script. From this simulation, the actual simulated position and orientation of
the drone is sent to V-REP through the Remote API framework. The controller which is
simulated in this way is the successive i/o linearization control. The detailed description
of the method and the simulation files can be found in the appendix in the A.4 section.

A video of the 3D simulations can be seen on this Youtube link:
https://youtu.be/LH8xv1qjG5c
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Conclusion

Trajectory tracking control solutions with different kinds of trajectory design methods
have been introduced in this paper. The controllers have been tested via simulations on
the different trajectories with different speeds and with changed weight and inertia. The
tracking errors have been plotted in these cases and explanation to their possible origins
have been made. Based on these experiments, it can be said, that the presented controls
are suitable for tasks such as the ones proposed in the introduction.

The successive input-output linearization controller uses an exact linearized model
of the quadcopter through clever variable changes, and applies a two level control archi-
tecture on it. Based on the transversal errors, the external loop produces the thrust force
and the angular trajectories for the internal loop. The internal loop then calculates the
desired torque inputs based on the angular errors. The method has been proposed in [1].
The control algorithm has quite good trajectory following capabilities if it is well tuned. Its
robust tracking properties are also sufficient, however, position error will always remain
due to the lack of integrating property in the controller. In real life operation an EKF
state estimator would be needed to provide the necessary state information.

The Jacobi linearized model with LQG controller uses the trimmed out model
model of the quadcopter around the hovering state, it is also charged with noises in the
states and in the measurements as well. An LQG controller for this linear plant is then
investigated. This type of linearization is not exact and hence the trajectory following
capabilities are a little poorer than in the case of the other two controllers. On the other
hand, designing a KF is much easier than doing it for an EKF. Furthermore, due to the
totally linear controller, computational requirements are smaller than in the other two
cases. The robust behavior of the control is quite similar to the successive i/o’s, Position
error remains due to the lack of integrating property.

The feedback linearized model with LQR controller uses the exact linearized model
of the plant via feedback. An LQR controller is then applied to the linearized system. The
sufficient conditions for exact feedback linearization are achieved through changes in the
input variables. Thanks to these changes, integrating manner also appears in the control
which was missing from the previous two solutions. This integrating property makes the
control to react slightly slower than the other two solutions, but it has an appealing
behavior when it comes to robustness. The controller reacts to accelerations slower, and
hence fluctuations can appear in these cases, however no position error remains, which
could be an important aspect during design.

Next to the control methods, two trajectory designing solutions have been proposed for
solving the problem of generating sufficiently smooth trajectories through desired points in
the 3D space. The requirements for the trajectories such as sufficient smoothness based on
the dynamics of the quadrotor and the limitations that originate in the actuator properties
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are introduced. Trajectory designing methods have been then shown, which fulfill these
requirements partially by analytical and partially by optimization methods.

Although these trajectory design methods are sufficient for the tasks, better solutions
could also be carried out. The piecewise linear trajectory solves the problem of keeping
the quadcopter in a safe area defined by the properly positioned desired points. On the
other hand, the fact that the quadcopter has to stop at every single key-point makes
the trajectory not very time and consumption efficient. In this respect, a possible future
development area can be to solve this problem based purely on optimization. Nice solutions
are proposed for example in [8], where solutions for designing smooth trajectories though
desired points within safe corridors are introduced.
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Appendix

A.1 File description of the Successive i/o linearization sim-
ulation

loadvar.m The weighting matrices Q and R from equation (2.12) can be set here. After this the
script calculates the LQR feedback gain of the external loop of the control, defined
in (2.11) and (2.12). After this the feedback gain of the internal loop is calculated
based on equations (2.15) and (2.16).

spline_points.m (a) several constants, such as the quadcopter parameters, gravitation, actuator pa-
rameters etc. is set here.

(b) The desired points, to which the trajectory should be fitted, can be given.
(c) The path type can be set. path_type=1: spline on the points, path_type=2:

piecewise linear trajectory on the points.
(d) fits the desired curve to the points
(e) The desired time of completion for the piecewise linear trajectory is set here.
(f) calculates the maximum velocities, accelerations with that the drone can com-

plete the path safely
(g) calculates the total time necessary for the path, and some other values that are

useful during the simulation
(h) calculates many important values for running. (such as time breakpoints of

acceleration/deceleration, spline parameters etc.)

quad_LQR.slx This is the file, where the simulation of the controller runs. The mechanism of the
controller simulation can be summarized as the following:
The next point and the first four time derivatives of the desired trajectory is cal-
culated in each time-step (MATLAB function name: trajectory_generation).
From the desired trajectory and the real position of the drone, the position error
vector, specified in equation (2.10), is calculated (MATLAB function name: pos-
ture_error). From the error, the desired orientation angles ηd and the thrust force
(Fd) is calculated based on equations (2.13), (2.5), (2.7) and (2.2) (MATLAB func-
tion name: Calculate_angles). (the third orientation angle ψd is also calculated,
but not based on these equations. For the yaw angle, ψ, any reasonable trajectory
can be defined. From the desired orientation angles and the real actual orientation of
the quadcopter the angular error vector (eη) is calculated (MATLAB function name:
Angle_error). From the angular error and the desired thrust force the ω input for
the motors are calculated (MATLAB function name: Omega_for_ESC). If the
motor can not produce that high acceleration on the rotors, as it would be neces-
sary, saturation occurs ((MATLAB function name: actuator_dynamics). From
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the rotor velocities the torques, thrust force and the angular accelerations are cal-
culated base on equations (1.10) and (1.2) (MATLAB function name: Quadcopter
plant). From these the real position can be found based on the translational dynam-
ics of the quadcopter described in (1.1) (MATLAB function name: Translational
dynamics).

First loadvar.m and spline_points.m should be loaded in order to calculate the param-
eters for the simulation. After that the quad_LQR.slx can be run. In the run parameters
the following settings are recommended: Fixed step, ODE1 (Euler) solver, 0.001 step size.
The simulation time should be set according to the length of the path. (e.g. the total_time
variable should be checked, to get the necessary time for the drone to complete the path)

In the followings the MATLAB Function blocks of the Simulink file are detailed.

A.1.1 trajectory_generator

Inputs:

v The desired velocity in case the path is a spline. This is the velocity
which is safe for the quadcopter, even in the sharpest turn. The drone
accelerates to this, keeps it for a while and then decelerates to zero at
the and.

t_sattle The time that is needed to accelerate to ”v”.
t The actual time of the simulation.
total_time The total time that is needed to complete the path in both cases.
time_breakpoints This vector is needed only for the linear path type. This helps to decide

between which 2 points is the quadcopter at any time instant.
a_max The maximal acceleration the drone can handle.
path_type This declares whether the trajectory is a spline (1) or a piecewise linear

one (2).
Coefs_sp The coefficients of the spline that is fitted on the desired points.

(sp.coefs)
Coefs_ro_rotild The coefficients of the spline that represents the ρ(ρ̃) function.

(ro_rotilde.coefs)
Breaks_sp The breakpoints of the ρ spline parameter of the spline that is fitted on

the desired points (sp.breaks)
Breaks_ro_rotild The breakpoints of the spline parameter of the spline that represents

the ρ(ρ̃) function. (ro_rotilde.coefs)
spline_length The total length of the spline.
last_point The endpoint of the trajectory where the drone should arrive and levitate

in at the end.
points The vector of the desired points.

Outputs:

57



xi the point of the desired trajectory at the time instant t
xi1 The first time derivative of the desired trajectory at the time instant t
xi2 he second time derivative of the desired trajectory at the time instant t
xi3 he third time derivative of the desired trajectory at the time instant t
xi4 he fourth time derivative of the desired trajectory at the time instant t

This function contains a case structure for the two different path type. In case of a spline,
the quadcopter should accelerate to the specified ”v” and at the end slow down to zero.
In case of straight lines path, the drone accelerates and decelerates on every line, as it
was detailed previously. The function block contains a case structure for each types of
trajectories.

Spline

A spline is fitted on the desired points of the trajectory. After that, as it was detailed before
in section 4.1, the function between arc length on the path ρ̃ and spline parameter ρ is
reached by fitting a spline on many sample points. (we evaluate the spline at many ρ spline
parameter points and always calculate the arc length of the spline from the beginning of
the spline till this point. In this way we produce two vectors containing many ρ and ρ̃
pairs. A spline (ro_rotilde) is fitted on these points to get ρ(ρ̃) function.)

The problem is, that a spline structure can not be given to a MATLAB Function Block as
an input variable. The solution is to use only the parameters of these splines and evaluate
them manually within the block. These splines have the following general form:

r(p) = Ai(p− p0i)
3 +Bi(p− p0i)

2 + Ci(p− p0i) +Di p ∈ [p0i; p0i+1]

where p is the parameter of the spline, Ai, Bi, Ci and Di are the coefficients of the ith part
and p0i is the value of the parameter at the beginning of the ith part. The coefficients
and the beginning parameters of the parts of a spline are held in the .coeffs and .breaks
fields of a spline struct. Since a spline can not be given as an input variable to a MAT-
LAB Function Block, these variables (coefficients and breaks) are given to it. From these
variables the splines and their derivatives can be reconstructed and evaluated easily.

The trajectory generation goes as follows: ρ̃(t) = s(t), v(t), a(t), ȧ(t) and ä(t) are calculated
in each time-step with the help of equations (3.11) and (3.12). With the help of the breaks
and coefficients of the spline ro_ro_tilde (which represents the ρ(ρ̃) function), the actual
ρ(ρ̃) spline parameter and its derivatives respect to ρ̃ are calculated. With ρ, the spline
fitted on the desired points (ξ(ρ)) and its derivatives respect to ρ can be calculated. In
this way the next value of the trajectory and its first 4 time derivatives are calculated.

Straight lines path

Based on the variable time_breakpoints, the program determines on which straight line
the desired point in the next time instant should be. s(t), v(t), a(t), ȧ(t) and ä(t) values
are calculated based on equations (3.20) and (3.13). After it, based on equation (3.22) the
next point of the trajectory and its first 4 time derivatives can be calculated.

A.1.2 posture_error

Inputs:
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xd desired trajectory (ξd)
xd_p the desired velocity (first time derivative of the trajectory) ξ̇d
xi the real position of the quadcopter (ξ)
xi_p the real velocity of the quadcopter (ξ̇)

Outputs:

e_vect the position error vector, introduced in (2.10): e = [ex, ėx, ey, ėy, ez, ėz]
T

A.1.3 Calculate_angles

Inputs:

K feedback gain matrix, calculated in loadvar.m based on equation (2.12).
e position error vector
xd_pp second time derivative of the desired trajectory
psi_final the desired final orientation of the quadcopter, at the endpoint.
total_time The time, the quadcopter needs to complete the path.
t actual time.

Outputs:

etaD The desired orientation of the quadcopter
ThrustD The desired thrust force of the rotors, the quadcopter has to produce.

Based on equation (2.11) the auxiliary control vector r can be calculated. From r the
desired angles ϕ, θ and the desired thrust force can be computed (equations (2.5), (2.7)
and (2.2)). Since the third Euler-angle of the orientation, ψ, does not appear in these
equations (this is because of the choice of the transformation matrix R), a trajectory for
this can be prescribed for it separately from the ξd desired translational trajectory. This
ψ(t) trajectory has to be differentiable continuously 2 times in time. (The rotor velocities
are the functions of the second derivatives of the angular trajectories.)

A.1.4 angle_error

Inputs:

etaD desired orientation (ηd)
etaD_p the desired angular velocity (first time derivative of the desired orienta-

tion η̇d
eta the real orientation of the quadcopter (η)
eta_p the real angular velocity of the quadcopter (η̇)
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Outputs:

e_vect the orientation error vector: e = [eϕ, ėϕ, eθ, ėθ, eψ, ėψ]
T

eϕ,θ,ψ = ηdϕ,θ,ψ − ηϕ,θ,ψ

ėϕ,θ,ψ = η̇dϕ,θ,ψ − η̇ϕ,θ,ψ

A.1.5 Calculate_omega

Inputs:

K_eta feedback gain matrix of the orientation error system, calculated based
on equations (2.15) and (2.16). It is calculated in loadvar.m.

e_eta orientation error vector
etaD_pp second time derivative of the desired orientation trajectory
ThrustD the desired thrust force to be produced by the rotors.
etaD The desired orientation of the quadcopter.
etaD_p The desired angular velocity, the first time derivative of the desired

orientation.

Outputs:

omega_square the square of the desired angular velocities of the rotors.

Based on the mechanical properties and equations (2.14) and (2.17) and (2.18) the desired
angular velocities of the rotors can be calculated.

A.1.6 Actuator dynamics

Inputs:

t The actual time
omega_square_d the square of the desired rotor velocity
omega_actual The actual rotor velocity

Outputs:

omega_p the acceleration of the rotors.
T Thrust force, produced after the saturation

Based on equations (1.11) and (1.13) the actuator checks whether the motor is capable
of the rotor acceleration that the desired rotor velocity prescribes or not. If it is capa-
ble of it, the omega_p would be so, that the rotor velocity will be the exact same as
omega_square_d. If the motor can not produce that high acceleration, omega_p will
be calculated with the biggest torque the rotor can produce.
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A.1.7 Quadcopter plant

Inputs:

omega_square the square of the desired rotor velocities
eta the real orientation of the quadcopter (η)
eta_p the real angular velocity of the quadcopter (η̇)

Outputs:

Thrust The thrust force generated by the rotors.
eta_pp The angular acceleration, the second time derivative of the orientation.

(η̈)

From the actual orientation and angular velocity of the quadcopter and the angular veloc-
ities of the rotors, the generated thrust force and angular acceleration can be calculated
based on equations (1.10) and (1.2). The angular velocity and orientation is calculated
from the integration of η̈.

A.1.8 Translational Dynamics

Inputs:

Thrust The thrust force generated by the rotors.
eta The orientation of the quadcopter

Outputs:

xi_pp the acceleration of the quadcopter.
(
ξ̈
)

From the orientation and the thrust force of the rotors the acceleration of the quadcopter
can be calculated based on equation (1.1). The velocity and the position is calculated from
the integration of ξ̈.
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A.2 File description of the LQG control simulation

setup.m This script is almost completely the same as spline_points.m in the successive i/o
linearization simulation.

LQG_main.m (a) Calls the function linear_LQR(), which gives back the(A,B) matrices of the
state space model (2.25) that are defined in (2.24) and the K LQR feedback
gain of the linearized system.

(b) Calculates the observability and controllability matrices.
(c) Sets the trim point values of the states, outputs and control inputs.
(d) Sets the initial values of the states, outputs and control inputs.
(e) Sets the state disturbance and measurement noise covariance matrices
(f) Calculates the Feedback gain of the Kálmán-filter.

LQG_simulink.slx This is the file, where the simulation of the controller runs. The mechanism of the
controller simulation can be summarized as follows:
The next point and the first four time derivatives of the desired trajectory is calcu-
lated in each time-step (MATLAB function name: trajectory_generation). The
reference trajectories of the thrust force and the orientation angles are calculated
based on equation (1.1). The desired trajectory of the (ψ) yaw angle could be de-
fined here as well (MATLAB function name: auxiliary_trajectory). Based on the
Inertia of the quadcopter and the angular trajectories, the auxiliary trajectory of the
torques is calculated based on equation (1.2) (MATLAB function name: tau_ref).
The Kálmán-filter calculates the estimated state based on equation (2.42).(MATLAB
function name: kalman). Based on the estimated state and the auxiliary reference
trajectories the input variable is produced with the use of equation (2.41) (MAT-
LAB function name: input_calculator). The necessary rotor velocities for these
inputs are calculated based on equation (2.18) (MATLAB function name: calcu-
late_omega). From the rotor velocities the torques, thrust force and the angular
accelerations are calculated base on equations (1.10) and (1.2) (MATLAB function
name: Quadcopter plant). From these the real position can be found based on
the translational dynamics of the quadcopter described in (1.1) (MATLAB function
name: Translational dynamics).

The detailed description of MATLAB function blocks trajectory_generator, omega_calculator,
Quadcopter plant and translational Dynamics can be found in section A.1.

A.2.1 auxiliary_trajectory

Inputs:

xi_d_pp The second time derivative of the trajectory
m The weight of the quadcopter.

Outputs:
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F_ref The reference trajectory of the thrust force. (Fref )
eta_ref The reference trajectory of the orientation angles. (ηref )

It calculates the reference trajectory of the thrust force and the orientation angles based
on equation (1.1).

A.2.2 tau_ref

Inputs:

eta_ref The reference trajectory of the orientation angles. (ηref )
eta_ref_p The first derivative of the reference trajectory of the orientation angles.

(η̇ref )
eta_ref_pp The second derivative of the reference trajectory of the orientation an-

gles. (η̈ref )
J The inertia of the quadcopter.

Outputs:

tau_ref The reference trajectory of the thrust force. (τref )

The reference trajectory of the torques is calculated based on equation (1.2).

A.2.3 kalman_filter

Inputs:

u The inputs that were produced by the motors. [F, τ ]T

xi The measured (and hence noisy) position of the quadcopter. (ξ̇)
xi_p The measured (and hence noisy) velocity of the quadcopter. (ξ̇)
eta The measured (and hence noisy) orientation of the quadcopter
delta_y_est The estimated output of the system by the Kálmán-filter. (ŷ = Cx̂)
delta_x_est The estimated state by the Kálmán-filter. (x̂)
A_f The matrix of the linearized system’s state space equation.
B_f The matrix of the linearized system’s state space equation.
K_f Kálmán-filter gain.
xd_p the first time derivative of the desired trajectory
xd the desired trajectory
F_ref The reference trajectory of the thrust force (Fref ).
tau_ref The reference trajectory of the torques (τref ).
eta_ref The reference trajectory of the orientation angles (ηref ).
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Outputs:

delta_x_est_p The derivative of the estimated state. ( ˙̃δxest)
xi_act_est_p The first 3 element of the derivative of the estimated state vector.

The Kálmán-filter estimates the states with the use of equation (2.42).

A.2.4 input_calculator

Inputs:

F_ref The reference trajectory of the thrust force. (Fref )
tau_ref The reference trajectory of the torques. (τref )
delta_x The estimated states. (x̂)
K The LQR feedback matrix.

Outputs:

ud The desired inputs for the quadcopter.

It produces the real state vector δ̂x from the Kálmán-filter’s state vector δ̃x. After it it
calculates the desired inputs for the quadcopter based on equation (2.41).

A.3 File description of the feedback linearized system with
LQR control simulation

main.m This script is almost completely the same as spline_points.m in the successive i/o
linearization simulation. It designs the trajectories and the quadcopter parameters
are set here. It calls the function lqr_matrices.m which returns with the A,B
matrices (2.64) of the error system in equation (2.63) and the LQR feedback gain.

symbolic_diff.m This script calculates the F (x) and G(x) functions of equation (2.55) through sym-
bolic differentiation of the dynamic model of the quadcopter. These functions that
are calculated here are used in the Simulink file.

Feedback_lin.slx This is the Simulink file in which the simulation of the feedback linearized control
runs. The mechanism of the controller simulation can be summarized as follows:
The next values of the trajectory and its derivatives are calculated ((MATLAB func-
tion name: trajectory_generator)). The error vector of equation (2.63) is built.
With the help of the error vector, the auxiliary control v is calculated ((MATLAB
function name: aux_input)). The unew input variable and τ is calculated from v
in (MATLAB function name: input_calculator). Through two integrator blocks
F is reached from uf . From the real inputs ([uf , τ ]) the desired rotor velocities are
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obtained ((MATLAB function name: omega_calculator)). The rotor velocities are
fed to the dynamical model of the quadcopter (MATLAB functions names: Quad-
copter Plant and Translational dynamics). The states are fed back for the error
vector composition.

The detailed description of MATLAB function blocks trajectory_generator, omega_calculator,
Quadcopter plant and translational Dynamics can be found in section A.1.

A.3.1 aux_input

Inputs:

desired_states The vector of the desired states of the feedback linearized system. xd =
[ξd, ξ

(1)
d , ξ

(2)
d , ψd, ξ

(3)
d , ψ

(1)
d ]

real_states The vector of the real states of the feedback linearized system. x =
[ξ, ξ(1), ξ(2), ψ, ξ(3), ψ(1)]

K LQR feedback gain

Outputs:

v auxiliary input variable v

First the error vector in the form of (2.59) is produced, then the v auxiliary input variable
is calculated based on equation (2.58).

A.3.2 input_calculator

Inputs:

v The auxiliary input variable v.
eta The real orientation of the quadcopter (η)
eta1 The real angular velocities of the quadcopter (η̇)
eta2 The real angular acceleration of the quadcopter (η̈)
FF The thrust force
FF1 The first time derivative of the thrust force
xd4 The fourth time derivative of the desired trajectory
psi_d_2 The second time derivative of the desired trajectory of ψ yaw angle.

Outputs:

u_f An input of the feedback linearized system, that is the second derivative
of the thrust force. (uf )

tau the torque input of the system (τ)
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This block calculates of the new input variables of the system (unew = [uf , η̈]
T ) based

on equation (2.65). The real input variable (u = [F, τ ]T ) is then obtained in two steps.
τ is calculated within the block based on equation (1.2). F is reached through two times
integration outside of the block. After it u real input is generated with a Mux block.

A.4 V-REP

A.4.1 Connecting MATLAB to V-REP

The connection of MATLAB to V-REP can be established with the use of the V-REP
Remote API framework. To be able to complete the connection, several files have to
be included in our working library. These files can be found in the /programming/re-
moteApiBindings/matlab/matlab folder and have the following names: simpleTest.m, sim-
pleSynchronousTest.m and complexCommandTest.m. There is one more file that is needed
in the folder: /programming/remoteApiBindings/lib/lib/64Bit (or 32Bit) folder, and the
file name is: remoteAPI.dll for Windows,remoteAPI.so for Linux or remoteApi.dylib for
MAC. We have to copy these files into the working library.

I used synchronous communication mode between the two softwares. The connection can
be reached with the functions that are in simpleSynchronousTest.m example code. This
code should be copied to the MATLAB script and then the control can be built in a ”while
loop” as it can be seen in the quadcopter_vrep.m MATLAB script file.

A smaller complication occurs when the control from MATLAB is built up. Concretely, the
previously mentioned parent-child relationships disappear as MATLAB takes over control.
This is because of the fact that these relationships are prescribed in the tree structure of
the elements but they also have to be declared within the code. Since they were defined
in the LUA child scripts, which are disabled, these connections have to be declared again
from the MATLAB code. (The LUA-child script of an object has to be disabled in order
to be able to control an object from MATLAB through the remote API framework.) The
syntax that is used for redefine the parent-child relationships is:

[number returnCode]=simxSetObjectParent(number clientID,number objectHandle,number
parentObject,boolean keepInPlace,number operationMode)

A.4.2 Quadcopter with arm attached to it

In the V-REP simulation an arm is attached to the quadcopter, symbolizing that it will
be used for some sort of transportation. The hand that is used is also a basic element of
V-REP, it is called BarretHand. The connection between the hand and the quadcopter
body is achieved with a force sensor. These sensors, next to their evident function, act
as a rigid connection between bodies. After the force sensor is positioned properly in/on
the body of the quadcopter, the scene object properties of it should be opened. Under
the Common tab, one should click on the Assembling button. In the jump up window the
only check-box should be checked. This will imply that once the force sensor is assembled
with an other object, a transformation matrix will be built that specifies the position,
orientation etc. between it self and the other object.

Once it is done, first the quadcopter, then the force sensor should be selected and then the
Assemble/Disassemble button should be clicked. This will make the force sensor the child
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of the quadcopter. (This can also be observed in the scene hierarchy tree on the right.)
After positioning the BarretHand correctly, the same steps should be done, except that
the parent of the BarretHand should be the force sensor.

Unfortunately, in this case the previously mentioned parent-child relationship declaration
from the MATLAB code does not work for some reasons. Instead, the LUA code of the
BarretHand has to be kept and the relationship should be declared there. The code for
this is:

effectorHandle=sim.getObjectHandle(’BarrettHand’)
targetHandle=sim.getObjectHandle(’Quadricopter’)
sim.setObjectParent(targetHandle,effectorHandle,true)

If it is made correctly, the scene hierarchy tree should look something like on figure (A.4.1).
The drone with the hand can be seen o figure (A.4.2):

Figure A.4.1: scene hierarchy tree

Figure A.4.2: quadcopter with hand

A.4.3 MATLAB script

The V-REP simulation/visualization is implemented with the successive i/o linearization
controller.

The file quadcopter_vrep.m contains the program code of the V-REP simulation. It
contains all the connection initializing functions, such as the parent-child relationships and
the control program it self. The program part, that is responsible for the connection with
V-REP is in the very first part. If the trial for connection was not successful, the rest of
the program does not run.
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After this comes the initializing part where the necessary handles of the objects are asked
from V-REP; the parent-child relationships are declared; all the initial values are set
and almost the same code runs as in the MATLAB simulation in spline_points.m and
loadvar.m (Which can be found in the Appendix).

The controller runs in a ”while loop”. The structure is exactly the same as it was in the
successive i/o linearization Simulink simulation. The functions are also almost the same
and are in function scripts. The only difference can be between these functions and the
ones in the Simulink simulation is that in some cases much more practical function calls
replace some parts in the program. This appears because many functions are inaccessible
from the so called MATLAB Function blocks in Simulink. (Or for example splines can not
be given to them as input variables.)
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