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Abstract: In this paper a multi-modelling experiment is presented through which we have studied 

the possibilities of manufacturing process control supported by different digital simulation models. 

The main pillar of the study is a real, operating, research and demonstration cyber-physical 

production system which is detailed in the study. Our digital twin of the system in question includes 

two different virtual models; an agent-based model endowed with the ability of error handling, and 

a discrete-event simulation-based model for forecasting and supporting the error handling routine 

with evaluating bids. The experiment includes typical manufacturing processes with machine 

failures, which should be detected and recognized to invoke both simulations for re-forecast and 

error management. 
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1. INTRODUCTION 

One of the main challenges in manufacturing today is to 

design and operate systems producing a high variety of 

customized products as efficiently and quickly as possible, 

while dealing with uncertain and highly volatile demands. 

Managing manufacturing companies and systems requires 

both long-term and short-term decisions, which all deeply 

influence the performance of these firms [6]. 

The existence of validated, easily updatable and 

parametrizable models are one of the most important 

requirements in handling problems occurring in the operation 

of a manufacturing system and in having effective decision 

support on both planning and execution levels. From the 

modelling point of view, system’s models may use different 

formalisms and approaches, depending on the characteristics 

of the considered problem and the expected results. Whether 

the system is a production line, a distribution network or a 

communication system, modelling can be used for:  

• gaining knowledge about the system in different life-

cycle phases 

• evaluating certain features in the system 

• predicting system performance 

• comparing different alternatives 

• detecting system problems 

• evaluating and improving system performance. 

As a modelling option, analytical models can be adopted 

which use mathematical or symbolic relationships to provide 

a formal description of the system [3]. The model is then 

used in order to derive an explicit expression of a 

performance measure or, in most of the cases, to define an 

algorithm or a computation procedure able to calculate the 

addressed performance indicators.  

Applying simulation technology is another option to analyse 

and execute performance evaluation of production systems. 

Three major methodologies are known to build simulation 

models: discrete-event modelling, agent-based modelling and 

system dynamics. Simulation models represent the events 

occurring in a manufacturing system in its operation by a 

sequence of steps that are executed in a computer program 

[8]. This time lined sequence is generated with respect to a 

set of rules modelling the behaviour of the system. 

Accordingly, the characteristics and relationships between the 

elements in a production system can be described in detail. 

However, the higher the detail level is, the higher the 

required computational effort. If a simulation model is run for 

a sufficiently long time, then proper statistics can be 

collected, and performance indicators can be estimated. 

Concerning the planning, one of the main drawbacks of 

today’s production planning and control systems is that the 

decision makers rely on results achieved with static models 

that ignore important operating constraints/objectives of live 

shop operations. It is due to the lack of a close 

correspondence with the live status of executed processes and 

the data resulting from their real-time monitoring.  

Another weakness comes from the fact that building 

effective, usable and valid models often results in a capital-

intensive activity, even while adopting commercial software 
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platforms. Nevertheless, the models are applied only once or 

very few times. These models are named “throw away” or 

“stand-alone” models because they are seldom used after the 

initial plans or designs have been finalized. An extensive 

study of the penetration and use of discrete event simulation 

in the UK manufacturing industry identified only 11% of 

sites out of a sample of 431 which were currently utilizing 

simulation as a decision support tool [13]. One of the 

limitations of its use for on-line decision-making is the 

considerable amount of time spent in gathering and analysing 

operational data. Consequently, this can result in decision-

making processes relying on simulation primarily for off-line 

decision support and not for critical on-line decision-making. 

In real-time control, the three key issues are data acquisition, 

quick response and instantaneous feedback. 

Usually, the traditional data update process in the simulation 

model-based decision making is carried out manually and if 

the control logic of the production system is changed, manual 

core changes are required in the simulation model (e.g. 

usually a new model is necessary).  

As stated in [12] Cyber-Physical Production Systems (CPPS), 

relying on the latest and foreseeable further developments of 

computer science (CS), information and communication 

technologies (ICT), and manufacturing science and 

technology (MST) may lead to the 4th Industrial Revolution, 

frequently noted as Industry 4.0. Having the newest ICT 

enabling technologies, the real-time connection and update of 

the data and status of the real manufacturing system into its 

simulation model(s), thus achieving the exact mirror of the 

real system and its controlling part in the planning 

environment is currently possible. Such solutions, named 

usually as Digital Twin can provide a drastic change in the 

lifecycle of the decision making since it is expected that the 

model will be continuously used in parallel with the real 

manufacturing system, supporting the managers and the 

engineers to optimize their manufacturing processes, to react 

effectively in the case of disturbances and to discover 

potential future undesired situations in a proactive manner.  

In the optimization and investigation of industrial production 

lines, digital twin will play a decisive role in the close future. 

It was proposed by Grieves in 2003 at University of 

Michigan, and defined as three parts: physical product in the 

physical space, virtual product in the virtual space, and the 

real-time two-way connection between them [4]. The virtual 

side isn’t just recording performances of the physical one, but 

also carries out optimization and prediction based on the 

stored historical data [14]. 

The evolution of smart interconnection and interoperability 

between virtual and physical space has four stages. At the 

first stage, the production depends on the physical 

manufacturing line, due to the lack of effective information, 

which may lead to low efficiency and accuracy. Then, at the 

second stage, with the appearance of different information 

technologies, interaction is created between the virtual and 

the physical space – but the interaction is weak, and the 

virtual model is not the real-time representation of the 

physical one. Now, at the third stage, owing to the increased 

usage of sensors, the reduction of calculation times, new 

communication technologies and the interaction exists. In the 

future (fourth stage), the two-way connection will be 

enhanced and additional services will be available [14]. 

In [14] the authors present a novel concept of digital twin 

shop floor. They divide the digital twin into four key 

components: physical shop floor, virtual shop floor, shop 

floor service system and shop floor digital twin data. 

According to this concept, while creating the interaction 

between the two spaces the following aspects should be 

considered and implemented [14]: 

1. Data collection and order transmission at the field 

level 

2. Data processing methods 

3. Information systems to optimize the production 

process 

4. Creation of a virtual environment  

5. Establish interaction 

6. Information security protocols 

The most important part of the interaction is to update the 

status of the virtual space according to reality. Creating a real 

digital twin solves this issue: it fills the gap between the two 

spaces. 

The authors in [1] present a digital twin architecture reference 

model for cloud-based cyber-physical systems (CPS). They 

describe the digital twin as a part of a CPS. According to the 

authors, the digital twin could be used for diagnostics, 

monitoring, and prognostics purposes and with the cloud 

infrastructure it becomes a bridge between the application 

and physical level of CPS. It is important because the 

physical layer can provide real-time information, and the 

cyber layer can extend that with delay tolerant applications. 

Digital twins could analyse the current state of the system, 

and recommend actions for the best outcome. 

Zhang et. al. [16] describe a digital twin-based approach for 

designing and decoupling a hollow glass production line. 

They divide the iterative designing and decoupling process 

into three major steps: 

1. Rapid individualized design based on reference 

models 

2. Distributed semi-physical simulation 

3. Decoupling of multi-objective optimization in design 

However, digital twins are not only useful in connection of 

production lines. As for a different applicability, they could 

help reducing item return rates in the clothing retail trade [5], 

in aircraft real-time monitoring [15] or even faults can be 

diagnosed and problems solved before a trouble happens with 

a digital twin of a car. 

In this paper, two of the previously mentioned methodologies 

are implemented in parallel for the examination of the same 

system: a discrete event-based simulation (DES) model in 

Tecnomatix Plant Simulation and a multimethod model that 



 

 

 

     

contains a distributed agent-based and also a discrete event-

based layer in AnyLogic.  

There is an essential difference between the two modelling 

techniques. In DES models the state variables of the system 

can change at separate points in time - when an event occurs. 

Events may change the system state, create or delete other 

events. The DES technique uses a dynamically changing 

event list to describe the behaviour of a system and does not 

deal with the time between the events. 

In general, the agent-based simulation focuses on the actions 

and interactions of autonomous agents. An agent can be a 

product, a machine, or even a sensor with a defined 

behaviour which is in accordance with the cyber-physical 

systems concept [10]. The overall performance of the system 

is formed by the individual behaviours and interactions of the 

participants with themselves and with their environment [11]. 

This concept presents the incomplete knowledge-based 

decision-making factor, which is lifelike with economic 

competition between the “costumer” and the manufacturer 

and among the agents [9].  

2. SYSTEM DESCRIPTION 

The SmartFactory is a cyber-physical sample production 

system which is created for modelling and testing industrial 

issues. The system is capable of running complex simulation 

and scheduling experiments, meanwhile executing abstract 

manufacturing and logistical tasks. The system can be 

described as an experimental environment for Industry 4.0 

and cyber-physical system related researches, while these 

concepts could also be demonstrated for industrial partners 

and the general public. Our last specified intention is to use 

the system for educational purposes - students can obtain 

experience on industrial equipment with real constraints. [7] 

 

Figure 1. SmartFactory 

In the SmartFactory, each and every workpiece is equipped 

with a unique identification tag for tracking and recognition 

purposes. This feature allows the workpieces to represent 

industrial components on an abstraction level. Workflows 

mostly start with every workpiece stored in the warehouse. 

After they are unloaded and transported to their processing 

destination, they are manufactured on one of the four 

identical workstations. Then they are transported back to the 

storage. The parts of the system are described below. [7] 

2.1. Workstation 

Four, perfectly identical Festo Modular Production Systems 

(MPS) can be found in the manufacturing cell. All of them 

have a stepper motor-propelled 6-positioned turntable as their 

central moving unit. The first nest of the dedicated positions 

is used for the loading and unloading the workpieces with a 

manipulator. At the second position, a pneumatic drill probe 

checks whether the workpiece has a pilot hole. After the 

tester there is a stamper tool, which prints a pattern 

(depending on the stamp) on the dedicated surface. The 

fourth position, which is the most easily accessible for 

humans, provides a possibility for manual manipulation of 

the workpieces. This position also has a button for the 

operator to signal after the task is finished. This is followed 

by a drilling position, which consists of a drill which can be 

lowered onto the workpiece for an adjustable time. At this 

nest the workstation performs material removal machining on 

the stamped surface. If there is no such surface, the drill sinks 

into the pilot hole. The sixth and final nest contains a pushing 

mechanism, which shoves the faulty workpieces onto a slide 

where it leaves the production system. [2] 

2.2. Warehouse 

The Festo Didactic corporation's uniquely manufactured 

high-bay warehouse has three levels and twelve palette 

places, and is an integral part of the SmartFactory system. 

Eleven of the twelve palette places are capable of storing four 

workpieces, while the remaining place is used to switch the 

palettes' positions. The palettes are moved by a two-pronged 

lifter, which is driven vertically by a numerically controlled 

(NC) servo motor propelled cogged belt, and moves on a 

pneumatic rail in the horizontal direction. The lifter is halted 

by pneumatic bumpers in order to stop at the right palette 

place. The system executes the vertical and horizontal 

positioning simultaneously. [2] 

2.3. Transportation systems 

In the demonstration system, the transportation between the 

warehouse and the different workstations can be realized by a 

conveyor system or by mobile robots. The conveyor system 

is composed of four FlexLink X45 type conveyor belt with 

individual motor drive, because the length and bending 

constrains. The warehouse and every workstation has a 

bypass unit for unloading workpieces from the conveyors. 

The mobile robot system is made of two omniwheel-driven 

automated guided vehicles (Festo Didactic Robotino). They 

determine their position on the table using their stepper 

motors' encoders and a gyroscope. The robots are also 

equipped with two inductive and an optical sensor, with 

which they achieve sensor fusion in order to more accurately 

position themselves at the buffer stations, and they also have 

a gripper for the transportation of the workpieces to the 

system components. 



 

 

 

     

3. ANYLOGIC MODEL 

The AnyLogic environment is a Java-based simulation tool 

for multi-modelling tasks. Owing to the well-known high-

level programming language, it can be easily connected to the 

physical system with a TCP/IP based communication 

protocol over the dispatching unit described in the 5th section. 

The AnyLogic model of the SmartFactory system is two-

layered: one discrete event-based model for the realistic 

operation as in the physical system (Figure 2) and an agent-

based order and job management layer, where each and every 

component of the system is endowed with the ability to make 

decisions for itself based on their interest. This abstract 

layer’s main purpose is to manage the work organization 

without full knowledge of the capabilities and statuses of the 

components. The so-called “Management” agent is 

responsible for the control of the bidding procedure for each 

error handling job between the “Resource” agents and the 

message handling between the physical system. Each 

“Resource” agent has its own DES representation and 

capabilities for performing different manufacturing 

processes. 

 

Figure 2. Runtime screen of the AnyLogic model 

Following the Digital Twin concept, the simulation is linked 

with the real system and can react to errors without any user 

interactions. The simulation runs together with the real 

system by continuously mapping the process statuses to the 

DES layer. When an error occurs, the agent-based layer gains 

control over the DES layer and also over the SmartFactory. 

The application of the agent-based model implemented in 

AnyLogic is described in the 5th section. 

4. PLANT SIMULATION MODEL 

Plant Simulation is a discrete event-based simulation 

software, which is capable of simulating different 

manufacturing and logistic processes in an object-oriented 

way. While AnyLogic is developed for simulating processes 

in general, Plant Simulation is specialized for creating models 

about production systems – the toolkit (pre-defined objects 

with various setup options and attributes) makes the model 

building process easier. 

The Plant Simulation model of the SmartFactory is depicted 

in Figure 3. The model is capable of importing the tasks and 

assigning the processes that have to be performed to the 

given products, and with going through all of the processes in 

the routing, forecasting the average expected lead times 

connected to each workstation. In the model, having an 

abstraction level, the mobile robots are modelled by human 

workers which are basic building blocks provided by the 

modelling environment, while the turntables are symbolized 

by separate workstations and short routes between them. The 

difficulty with creating the Plant Simulation model was the 

fact that the system must not reach a dead lock – which may 

happen when two workpieces try to reach the same loading 

position at the turntable from the conveyor belt and from last 

processing turntable nest. Since the simulation software is 

programmable, this deadlock is avoided by using different 

methods and “if-then” structures within the programming 

environment. 

 

Figure 3. Runtime screen of the Plant Simulation model 

The main aims of the discrete event-based model 

implemented in Plant Simulation is highlighted in more 

details in the next section. 

5. SYNERGY OF MULTI-MODELLING 

Our high-level model comprises six components which are 

used in the experiments (Figure 4). As mentioned before, the 

main pillar is the SmartFactory cyber-physical production 

system with all of the low-level controllers, actuators and 

sensors. The dispatching unit realizes a communication hub 

with a standardized protocol for status reporting and process 

controlling statements. Every low-level controller is 

reachable in a unique way from the hub (e.g. command 

interpreter statements over UDP protocol on LAN for every 

PLC of the workstations, JSON structured string message 

protocol on CAN for the microcontrollers of the bypass 

units), but for the other components of the system, they are 

accessible over a unified JSON based message structure over 

TCP/IP. This way the SmartFactory system’s low-level 

commands are mapped to a more common higher-level form 

with a header containing a universally unique identifier, the 

target of the message and the current status of the task. 



 

 

 

     

The controller functions as the driving force of the production 

in the SmartFactory: manages the processes. The routing of 

every workpiece is generated in a precedence-based graph 

form and is executed in this component based on the status 

reports. These reports have the same structure as the 

commands previously described but the status value of the 

task differs. We can identify acknowledgment from the 

controller as the actual beginning of the process. The status 

can have a value which means the task is finished without 

any problem or it can have an error value. Every process 

related information which reaches the dispatching unit is 

stored in a database in a structured form for later evaluation. 

Both two simulation models are connected to the dispatching 

unit but receive different information. The routing of a 

certain workpiece is described in a task graph form, where 

the nodes are different operations that must be performed on 

a certain workpiece and the edges define the precedence 

constrains. The multimethod model is provided with the 

status reports to map the current state of the demonstration 

system. When an error occurs in the AnyLogic DES layer, it 

is also registered as a status report of the system, which 

means it reaches the controller and the error handling routine 

is activated. 

 

Figure 4. System functional structure 

As shown in the flowchart in Figure 5, after the generation of 

the routing the production process starts with the controller’s 

overview, while the Plant Simulation model obtains the task 

graph in a matrix form (the software is limited to table-based 

data inputs). The conversion is made by an intermediate 

script and transmitted to the simulation model through a 

socket interface. As already mentioned, the Plant Simulation 

model is capable of making forecasts about the expected 

average lead times based on the received task graph. The 

AnyLogic model runs together with the physical environment 

based on the information gained from the dispatching unit 

over another socket interface.  

5.1. Error handling 

When an error occurs (symbolized with a red “Error” node in 

Figure 5) the controller stops working, because the 

precedence constrains deny reaching the next step. 

Technically one edge (constrain) must be removed and an 

alternate branch, which substitutes the failed process, has to 

be inserted. Although the controller is not yet capable of 

accomplishing this functionality, so the multimethod model 

provides this new branch. 

 

Figure 5. Process flowchart 

In practice, if a workstation makes scrap based on the 

predefined probability in the DES layer, the agent layer is 

alerted. Thereafter the “Management” agent takes charge and 

generates a new order for a product based on the type of the 

failed job meanwhile removes the scrap workpiece from the 

workflow with the pushing mechanism at the workstation. 

The “Management” agent announces the work for the 

“Resource” agents and they can apply to take part in the 

tender. Every “Resource” replies for every job offer based on 

their own capabilities and they either drop it or bid to obtain 

the task. This bidding is supported with test simulation runs 

performed by the Plant Simulation model. When it receives 

the alternate routing possibilities from each “Resource” 

agent, an experiment is run in Plant Simulation for each 

bidding agent, and returns the forecasted lead times, which 

are the actual bid values. The decision-maker “Management” 

agent chooses the bidder with the lowest lead time offer. 

After the winner is published, in the case of an error, the 

transportation to the victor is done by the mobile robots 

(while in the other cases the conveyor system transports the 

parts). When the error is solved, the agent-based layer gives 

back the control to the SmartFactory process controller. This 

way the obstacles of the continuation are removed, and the 

controller can continue working. 



 

 

 

     

In terms of the Plant Simulation model, when the production 

continues after the new routing created with the error 

handling branch, the simulation needs to restart itself from 

the beginning in the possession of the new task graph. It 

would be complicated to save the model state right before the 

error occurs, and continue the simulation run form that 

moment with a different task matrix – it is easier to run the 

simulation again (and it does not take much time and 

computational effort). This way the Plant Simulation model 

is a dual-purpose component of the system: its tasks are 

forecasting and bid supporting. 

The main difference between the application of the 

multimethod modelling and the discrete-event approach is the 

following: when an error occurs, the Anylogic model uses 

agents that compete for executing the previously failed, 

unfinished task, while the Plant Simulation model forecasts 

show the diversion from the planned course. 

6. FUTURE WORK 

The error-handling method which is presented here is the first 

step of our research project in this area and shows a lot of 

potential, but it still needs further improvements. The 

outlined flowchart in the 5th section was executed with 

participation of every component and operated as expected 

and previously described. On one hand, the real-life error 

detection, which would be the base for industrial 

implementations, can not be achieved without the installation 

of proper sensor network for every possible failure. The 

software-based approaches (e.g. timeout, missing response 

from controller) are indirect indications of an arising error. 

Since the SmartFactory demonstration system is limited to a 

lower level of load and since the desired process complexity 

appropriate for the capabilities of the Plant Simulation model 

is higher, the second most crucial hardware development is to 

prepare the system for a long-time operation with a higher 

load of jobs. 

7. CONCLUSION AND OUTLOOK 

The experiment we proposed showed that the integration of 

multiple simulations can improve a manufacturing system’s 

behaviour in relation with error handling and forecasting. The 

short-term distributed control can solve an arising problem 

without re-planning everything, while the invokable DES can 

predict the difference between the planned and the changed 

production parameters. We would like to underline that as we 

just started our research, the work presented in this paper is 

only the first step we completed. Nevertheless, we are 

continuing our activities to elaborate more complex scenarios 

and we are porting our multi-model approach to real 

industrial environments.  
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