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Image Based Robust Target Classification
for Passive ISAR

Andrea Manno-Kovacs, Member, IEEE, Elisa Giusti, Member, IEEE, Fabrizio Berizzi , Senior Member, IEEE,
and Levente Kovács , Member, IEEE

Abstract— This paper presents an automatic and robust, image
feature-based target extraction, and classification method for
multistatic passive inverse synthetic aperture radar range/cross-
range images. The method can be used as a standalone solu-
tion or for augmenting classical signal processing approaches.
By extracting textural, directional, and edge information as low-
level features, a fused saliency map is calculated for the images
and used for target detection. The proposed method uses the
contour and the size of the detected targets for classification,
is lightweight, fast, and easy to extend. The performance of
the approach is compared with machine learning methods and
extensively evaluated on real target images.

Index Terms— Target classification, passive radar, ISAR, ATR.

I. INTRODUCTION

FOR decades, passive radars (PR) have attracted the atten-
tion of the scientific community because of numerous

advantages over conventional active radars, namely, low vul-
nerability to electronic countermeasure, counter-stealth advan-
tage and no electro-magnetic (e.m.) emission, which have
made PR an attractive technology especially for military
applications.

Passive radars exploit available non-cooperative illuminators
of opportunity (e.g., digital video broadcasts [1], mobile
signals [2], digital or FM radio [3], etc.) as signal sources,
and deploy one or more controlled receivers for target detec-
tion and imaging. There is continued scientific and indus-
trial/defense interest towards such systems, especially since
low cost passive radars [4] and real time processing are now
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possible. Moreover, PRs do not require frequency allocation
neither produce e.m. pollution. These features have made the
use of PRs attractive also for civilian applications such as
maritime and aerial traffic surveillance.

As research progresses in this area, more radar techniques
are added to PR systems to make them able to handle tasks
like radar imaging [5] of non-cooperative targets using Inverse
Synthetic Aperture Radar (ISAR) methods [2], [6]–[8]. The
application of ISAR processing to passive radar systems
enables the generation of 2D images of detected targets. The
passive ISAR images represent an estimate of the target reflec-
tivity function at those frequency bands where the PRs operate
and may be used for Automatic Target Recognition (ATR)
purposes. Using passive ISAR images for automatic target
classification is a field still in development.

To be effective for ATR, Passive ISAR images should
have fine enough spatial resolutions, namely range and cross-
range resolutions. Range resolution depends on the signal
instantaneous bandwidth, while cross-range resolution depends
on both the operative frequency and the aspect angle changes
between the radar and the target due to the target’s own
motions, which are however unknown. Broadcast signals,
typically used by Passive radar systems as signal of oppor-
tunity, are narrow band signals and uses low operative fre-
quencies that determine coarse range and cross-range resolu-
tions, respectively. However finer range resolutions may be
achieved by coherently adjoining more frequency channels,
as demonstrated in [9]. This permits to gather a signal with
a larger instantaneous bandwidth, approximately N times
that of a single frequency channel signal, if N is the num-
ber of the adjoined frequency channels. Finer cross-range
resolutions may be achieved by processing longer coherent
processing time, which in turn means larger aspect angle
changes.

Among related works, there are methods for target detection
using passive radar signal processing [2], [10]–[12]. In this
paper we focus on image-based target detection and classifi-
cation. The are methods for image based ISAR target detection
that require a priori target structure information [13]. Methods
for passive ISAR target classification include an image based
classification work using 3 classes, achieving 71% recogni-
tion rate [14]. Another target classification approach requires
coordinated flight models, on-board recorded flight paths and
profiles, altitude and velocity information, producing 21-100%
rates. In [15] we presented a proof-of-concept generic passive
ISAR image based classification with 61% average recognition
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rate that does not require a priori target models or other sensor
information.

This paper’s focus is on the investigation of automatic target
classification capabilities for passive ISAR. The proposed
method uses the range/cross-range images of targets produced
by radar imaging, and presents a generic, purely image based
target extraction and classification approach. The presented
method is evaluated on real passive ISAR data.

The contributions of this paper are as follows. i). We present
and evaluate a robust, generic, model-free, no-constraints
approach for image based target classification that only uses
image-based target features and no additional external data, for
various target classes and image resolutions. ii). The method
does not classify generic image features, but robustly extracts
the target from the images and uses their shape information.
iii). The method is usable with a low number of target samples
but easy to extend with more samples and target classes. iv).
It requires no re-training when extending the labeled target
dataset. The current method improves on our previous proof-
of-concept [15] with v). a target masking step during detection,
by vi). using a better performing contour extraction and
vii). an adapted and improved local edge orientation selection
step.

The proposed method extracts the targets from the
range/cross-range images, and uses their shape and length
features for automatic classification. The segmentation of the
target from the images is based on our previous results in
saliency based feature extraction [16], [17]. Evaluations show
that we can achieve classification rates up to 92% on real data.
Application use cases include passive observation for force and
area protection [4].

In the following we will describe the imaging process
(Sec. II), the proposed target extraction and classification
(Sec. III) and the evaluations (Sec. IV).

II. RADAR AND IMAGING

In this section the mathematical background of both passive
radar (PR) processing and passive ISAR is provided. The PR
prototype used for the measurements is also presented.

A. PR Geometry and Processing

Let the geometry be represented in Fig. 1, where Tξ is a
Cartesian reference system embedded on the IO. The receiver
is composed of two antennas, one pointing toward the IO
to gather the reference signal and the other pointing toward
the area to be surveyed, RT xT g , RT x Rx and RRxT g are the
transmitter to target, transmitter to receiver and receiver to
target distances and β is the bistatic angle. A PR is intrinsically
bistatic since the transmitter and the receiver are not co-
located. According to the results in [18], a bistatic config-
uration can be approximated with an equivalent monostatic
configuration with a virtual sensor located along the bisector
of the bistatic angle β. Therefore the Bistatic Equivalent
Monostatic (BEM) radar can be defined as in Fig. 1, and the
bistatic ISAR theory applied in this framework.

The target motions with respect to the BEM are described by
the target total rotation vector �T . The effective rotation vector

Fig. 1. Passive radar geometry.

Fig. 2. Graphical representation of both ssurv (t) and sre f (t) according to
the batch approach.

�e f f is the component of �T that contributes to the ISAR
image formation, namely �e f f = iB E M

LoS × �
�T (t) × iB E M

LoS

�
.

At the receiver the cross-ambiguity function between the
reference signal, sre f (t) and the surveillance signal, ssurv (t)
is computed that provides the range/Doppler (RD) map. Sub-
optimal approaches are typically used instead of the standard
CAF (Cross Ambiguity Function) algorithm to speed up the
range/Doppler map formation. One of such approaches is the
“CAF batches” algorithm [19]. Following this approach, both
ssurv (t) and sre f (t) are divided into batches of temporal length
Tb as depicted in Fig. 2.

The CAF function can be then seen as a weighted sum of the
cross-correlation calculated within each batch, as in Eq. (1).
The “CAF batches” algorithm approaches the “standard CAF”
algorithm performance when Tbνmax � 1:

χ(τ, ν) =
Nb�

n=1

e− j2πνnTb ·
�

ss(t; n)s∗
r (t − τ ; n) dt . (1)

The system that we use (SMARP, Sec. II-C) is a software
defined radar system, therefore equation (1) is performed dig-
itally after the analog to digital converter (ADC), as follows:

χ(τp, νq ) =
Nb�

n=1

e− j2πνqnTb ·
M�

m=1

ss(tm; n)s∗
r (tm −τp; n), (2)

where tm = m	t , τp = p	τ and νq = q	ν are the fast time,
delay-time and Doppler samples, m = 1, · · · , M , M	t = Tb,
p = 1, · · · , P , q = 1, · · · , Q and 	t , 	τ and 	ν are the
sampling intervals. When no super-resolutions techniques are
implemented, P = M and Q = Nb .
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Fig. 3. Passive ISAR processing block scheme.

B. Passive-Bistatic ISAR Processing

The passive ISAR processing chain is visualized in Fig. 3.
The algorithm takes as input the RD map as produced by the
“CAF batches” algorithm. The moving target echo is extracted
from the RD map through a 2D filter applied to the RD map
which aims at isolating the moving target sub image from
the other targets and noise and clutter. This is a fundamental
step since the ISAR processing can be applied to a target at
a time and noise and clutter may affect the ISAR processing
performance.

The target sub-image cropped from the RD map is then pro-
jected back onto the data domain, namely the “frequency/slow-
time” domain via a 2D Fourier transform. In [6] Martorella
and Giusti demonstrate that by inverse Fourier transforming
the RD sub-image of the moving target a bistatic ISAR-like
signal in the “frequency/slow-time” domain can be obtained
to which the ISAR processing can be applied.

Once the data is transformed into a domain compatible with
a typical ISAR processor input, any ISAR processor may be
used to form a focused ISAR image of the target. Without
loosing any generality, we will make use of the Image Contrast
Based Autofocus (ICBA) technique followed by a Range-
Doppler (RD) image formation [6]. Finally, the ISAR image
is rescaled along the cross-range direction to obtain an image
displayed in a spatial coordinate system [20].

C. The SMARP System

The proposed approach has been tested on data acquired
with the SMARP (Software-defined Multiband Array Passive
Radar) passive radar demonstrator. SMARP has been devel-
oped by the Radar and Surveillance Systems Laboratory (RaSS
Lab.) of the Italian National Inter-University Consortium for
Telecommunications (CNIT). SMARP is a dual band and dual
polarization passive radar operating at UHF (470-790 MHz)
and S-band (2100-2200 MHz). In its current version SMARP
is able to acquire up to 25 MHz bandwidth signal at UHF [4].
A picture of SMARP is shown in Fig. 4.

The SMARP system radio frequency (RF) front-end is
composed of the reference and surveillance antennas, the “RF
front-end 1” that includes the calibration network, and the
“RF front-end 2” that includes the synchronization network.
The picture on the right hand-corner shows a picture of the
workstation monitor on which the “processing, control and
display unit” block is implemented.

An example of the detection and tracking results is shown
in Fig. 5. Examples of passive ISAR images of ships obtained
with SMARP system are shown in Fig. 6.

The dotted lines in Fig. 5 represent the main beam of the
surveillance antenna and the black dot represents the SMARP

Fig. 4. The SMARP system.

Fig. 5. An example of the SMARP tracking results: AIS trajectories
(white lines) and radar tracks (black line).

Fig. 6. Examples of P-ISAR images of three ships: (a) Cargo ship 200.63m
long and 26.5m wide, (b) Cargo ship 184m long and 27m wide, (c) cooperative
ship equipped with GPS and 32m long and 7m wide.

geographical location. The IO is approximately 30 kms away
from the receiver inland. The bistatic angle is determined by
the receiver, transmitter and target location, therefore it may
change a little depending of the target coordinates with respect
to both the transmitter and the receiver. However the bistatic
angle was in the range [10◦ − 40◦]. The monostatic range
resolution was 6.25 m, whilst the bistatic range resolution is
coarser as it is worsened by the cosine of half the bistatic
angle. The coherent processing interval (CPI) also differs
among different targets. The CPI used to generate images
in Fig. 6 was 5 s. Similar CPIs were used to generate the
other ISAR images that compose the used dataset. The typical
ISAR processing output is an image in the range/Doppler
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TABLE I

TARGET CLASSES IN THE DATASET

map. The algorithm proposed in [20] has been used to convert
the Doppler axis to cross-range axis, therefore from Hertz to
meters. Fully scaled ISAR images as those in Fig. 6 permit to
estimate the target length.

During trials both targets of opportunity and cooperative
targets were present. Targets of opportunity are cargo ships
approaching or leaving the Livorno harbor, which is close
to the SMARP system location, with similar trajectories and
mainly along the SMARP Line of Sight. This explains why
images in Fig. 6 (a) and (b) that represent cargo, have a
similar pose and therefore a similar ISAR image. Conversely,
the cooperative target was travelling on a predefined trajectory
that included circumferences and during the acquisition was
travelling approximately perpendicular to the line of sight of
the radar. This explains why the image in Fig. 6(c) has a
different pose with respect to the others.

The target size can be estimated from a 2D ISAR image. It is
worth to mention that, since the 2D ISAR image is the result
of a projection of the three-dimensional target reflectivity
function onto an unknown 2D plane, the target size could be
underestimated and may change over time. This may lead to an
incorrect estimation of the target’s geometrical features, such
as the target size. The use of a sequence of ISAR images
instead of only a single one may partially overcome this issue
and could provide a better estimate of the target’s length.

III. TARGET EXTRACTION AND CLASSIFICATION

In the target extraction step we use a fused textural and
directional feature map to detect target candidates and extract
the contour and the length of the target. In the classification
step we use these features to estimate the class of an unknown
target based on the a priori labeled dataset. The dataset
used for evaluations was obtained with the described radar
(Sec. II-C), and contains 294 range/cross-range images
of 12 target classes labeled A-L (3 planes, 9 ships, containing
9-63 class elements as shown in Table I, and some samples
in Fig. 6).

The proposed method processes the radar-generated ISAR
images, and it does not depend on the ISAR imaging process.
Currently, the method processes single images independently,
thus it does not depend on or use target motions, trajectories,
dynamics. It handles the classification process from a purely
content-based retrieval point of view.

A. Detection and Feature Extraction

The proposed method does not use a priori target informa-
tion, it only relies on discriminative image features. A benefit
of such an approach is flexibility and independence from target
model constraints. The target detection and extraction uses
fused morphological, textural and edge feature maps.

Fig. 7. Input images (a, c, e) and rescaled versions (b, d, f) for processing.

The input images can have different pixel resolutions, and
they can also have different the spatial resolutions. Also,
the two dimensions of one image can have different spatial
resolutions (as shown in the examples of Fig. 7 (a, c, e)).
Thus, as a first step before processing, we rescale the input
images so each image will have the same meters/pixel (m/px)
resolution along both of its axes (e.g., Fig. 7 (b, d, f)). The
range of different spatial resolution values in the dataset is
0.81-11.72 m/px. These rescaled images will be the inputs
of the detection (Fig. 8(a)), which begins with an adaptive
Otsu thresholding [21] step for noise reduction. Generally,
Otsu’s method performs clustering-based thresholding to bina-
rize gray level images: by assuming that the image contains
only two classes (foreground and background), a threshold
is calculated adaptively to minimize intra-class variance and
maximize inter-class variance between them based on the
intensity. In [15] such a filtered image was used as input,
but in this work we improved the detection process by using
the thresholded image as region of interest mask on the input
(Fig. 8(b)).

As it can be observed from the samples in Fig. 7, the images
can have quite limited features, the marginal color information
and the often unclear contours both make target extrac-
tion challenging. Therefore, our aim is to perform a salient
object localization and outline approximation by exploiting
the reduced feature space, applying the fusion of available
features, like texture, edge and orientation.

As a first step, textural features are extracted. The image
is analyzed on the pixel level, then partitioned into texture
atoms on a regional level, using a sparse texture model [22].
A texture distinctiveness value is assigned to the texture atoms,
representing the relevance of the texture in the image. The
assigned distinctiveness value is calculated using both the
occurrence frequency and visual attention-based rules concern-
ing the position of the texture atom (i.e., the center region
of the image draws higher visual attention), resulting in a T
texture map. In the T map more distinct textures are assigned
a higher distinctiveness value (in Fig. 8(c) darker color means
higher distinctiveness). By Otsu-thresholding the T map we
obtain an estimate for the location of the salient (Fig. 8(d)).
The number of texture atoms has to be set beforehand: after
testing different values, the recommendations of the original
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Fig. 8. The feature map generation and target extraction steps: (a) input;
(b) filtered input; (c) texture feature image; (d) directional image; (e) fused
feature image; (f) final target candidates; and (g) length of final target (all
inverted for visualization). Images are inverted for better visibility.

method were followed and the initial atom number was set
to 20.

Beside textural features, limited contour (edge) information
is also available, which can be applied for salient object
detection. In case of the passive ISAR images, there are usually
no clear contours, therefore it is more efficient to represent
the outline by salient keypoints and defining salient object
features based on this point set. To extract more representative
outline information, an object-specific main orientation is
calculated based on the main orientation of the gradient in
the close proximity of the salient keypoints. This technique
was previously introduced for general imagery [16], [23]
and satellite imagery [24], where the P salient keypoint set
is calculated as the local maxima of the Modified Harris
for Edges and Corners (MHEC) characteristic function [25],
which is a modification of the Harris detector’s characteristic
function [26] for noisy and high curvature boundaries. The
Harris detector was introduced for detecting corner points,
by calculating changes of intensity for a small shift in the
image. In case of a corner point, this change is expected
to be large. The change can be approximated by the so-
called Harris matrix, which is based on the second-order
image derivatives. Using the eigenvalues of the Harris matrix,
a corner response is generated to distinguish between corner,
edge and flat (homogeneous) regions. The local maxima of the
corner response indicates the location of corner points.

When representing objects, beside corners, edges may also
help, therefore a modification of the corner response is applied
here. Based on the λ1 and λ2 eigenvalues of the Harris
matrix, the modified characteristic function is calculated as
their maximum: Hmod = max(λ1, λ2). Local maxima of
Hmod define the P salient keypoint set, which represent the
object outline in the subsequent feature extraction step. P
set is applied in the mentioned earlier works for defining
the dominant orientations of the currently processed region
of interest (ROI), by calculating the local gradient orientation
density (LGOD) [27] in the small neighborhood around the
points of P . A Wn(i), n×n (n = 3) window is defined around
the i th point of the point set (Pi ), and for each r ∈ Wn(i) pixel,
the local gradient orientation is calculated:

ϕi = argmax
ϕ∈[−90,+90]

⎧
⎨

⎩
1

Ni

�

r∈Wn(i)

1

h
·�∇gr�·κ

	
ϕ − ϕ∇

r

h



⎫
⎬

⎭
, (3)

Fig. 9. Calculation of the main direction of the object: (a) the salient points
and (b) the orientation histogram. The main orientation (in black) is defined
as the orientation with the maximum value in the histogram.

where ∇gr = [gr,x gr,y] is the intensity gradient vector at

(xr , yr ) image pixel, with �∇gr� =
�

g2
r,x + g2

r,y magnitude

and ϕ∇
r = tan−1[ gr,y

gr,x
] orientation. To get a more balanced

data for ϕi selection, the weighted orientation histogram in the
Wn(i) is smoothed. To achieve this, the κ Gaussian smoothing
kernel is applied, which is a non-negative, symmetric function
and represents the shape of the Gaussian (bell-shaped) hump.
The h bandwidth parameter is responsible for the scale of
the smoothing, larger values may result in smoother function
and there is always a trade-off between the preservation of
the original data characteristics and the smoothing effect.
By following the earlier works on the LGOD [24], [27],
h = 0.7 bandwidth parameter is applied. Finally, Ni =�

r∈Wn(i) �∇gr� is defined.
After calculating all the ϕi values for all keypoints, a ϑ(ϕ)

orientation histogram is defined from them. Previously [15] the
dominant peaks of the histogram were analyzed by correlating
a series of Gaussian functions to the orientation histogram
iteratively. However, in the present case, the salient objects
usually have one dominant direction (like in Fig. 7), therefore
the iterative search for the main orientations can be simplified
to a maximum-search on the ϑ(ϕ) orientation histogram. The
main direction will be:

α = argmax
ϑ∈[−90,+90]

{ϑ(ϕ)}. (4)

Extensive evaluations also confirmed that the detection with
this simplification results in higher classification performance,
moreover the detection process becomes faster. The P salient
keypoint set is shown in white in Fig. 9(a) for the cropped
image, the calculated ϑ(ϕ) orientation histogram is in Fig. 9(b)
with the α dominant orientation marked with the black line.

By defining the main direction representing the salient
object, an improved edge map can be constructed, where edges
in the main direction are further emphasized. To achieve this,
the Morphological Feature Contrast (MFC) operator [28] is
applied with a linear extension to extract features in the defined
orientation. Beside other direction-based edge detection meth-
ods [29], [30], MFC is selected because of its ability to handle
proper orientation information (not just histogram binning)
on a contour level (not just pixel level) at corners as well.
MFC extracts bright and dark individual features separately
by applying morphological opening and closing. The size of
the structural elements are selected to suppress background
textures and to enhance important features. To detect specific
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types of features (in the dominant direction), a subsequent
ρlin filter is applied in the main α direction, resulting in a
feature-enhanced Mα map. To combine the different salient
edge information, Mα and Hmod are fused to achieve the
salient structural information (Fig. 8(d)):

S = max(max(0, log(Mα)), max(0, log(Hmod))). (5)

At this point, the T texture map represents the salient texture
information (Fig. 8(c)), S represents the salient structural
information (Fig. 8(d)), which are fused to detect the salient
object:

C = γ |∇(S(x, y))| + (1 − γ ) |∇(T (x, y))|, (6)

where a fixed γ = 0.3 parameter was set based on experi-
ments. The fused feature image is shown in Fig. 8(e).

To obtain the final target region, we apply adaptive Otsu
thresholding on the C feature map (Fig. 8(f)) and extract the
remaining largest blob as the target.

For the classification process we previously [15] used the
raw contour points H = {hi , i > 1} of this blob as the first
feature. Here we use the convex hull of the obtained contour
points and the blob’s main length L = max

�
d(hi , h j ), i �= j

�

as features during classification (Fig. 8(g)).

B. Classification

During classification we estimate the class of an unknown
target based on a priori samples. We handle this process as a
top-N retrieval task, where we first index the labeled dataset,
then perform a retrieval step, looking for the best match to the
query target and proposing a class based on the most similar
results. The used index structure is a BK*-tree [31], which is a
metric tree where a node can have multiple children, each child
falling into a specific distance interval from its parent. The tree
can be built starting with any random dataset sample, adding
the rest sequentially. The comparison of two targets is based on
the so called tangent or turning function representation [32]
of the extracted contours (difference or target contours q , r
denoted by DT (q, r)), weighted by the length difference of
the two targets (DL(q, r)): D(q, r) = DT (q, r) · DL(q, r).

When looking for similar targets, we retrieve the top
5 matches from the index and propose the class of the most
frequent result as the class of the unknown query target. In a
real system implementation this would be done continuously,
classifying based on the updated statistics of previous class
proposals. The retrieval process follows the steps from [31],
given an unknown target q , and nR the root node of the index:

1) If d0 = D(q, nR) < t (t sensitivity threshold constant),
then nR is a result. Let t1 = d0 − t , t2 = d0 + t .

2) For each node Pi (P0 = nR) having c j , j = 1 . . . M
children,

a) Select c j which overlap with [t1, t2],
b) If d j = D(q, c j ) < t , c j is a result,
c) Update t1 = d j − t and t2 = d j + t , iterate step 2.

There are several benefits of such a retrieval-based
approach. The indexing and retrieval can be fast (shown later);
when looking for similar nodes and traversing the tree, large
parts of it can be disregarded at every level (only retaining

Fig. 10. Normalized confusion matrix. Class labels (A-L) follow Table I.

subtrees of some of the children); the index is easy to extend
with new elements, which only need to be added to the tree
without the need for full reconstruction (i.e., re-training), and
it is also easy to parallelize, since we can run multiple retrieval
steps on the index simultaneously.

IV. EVALUATION

For evaluation, we used the above mentioned dataset
of 294 images. As a first step, Fig. 10 shows the normal-
ized confusion matrix of the full dataset with the proposed
method. This matrix’s goal is to show the intra- and inter-
class similarity/variability of the used target classes, i.e., how
similar or different the classes are from a feature-based dis-
crimination point of view. As it shows, some targets can more
easily be mistaken for another, similar target. Our goal is to
try to get close to these values when only a partial dataset
is used for training and evaluated with distorted versions of
excluded target sample images. The average recognition rate
(diagonal mean of the matrix) is 69%.

During evaluations we followed the same rules: randomly
withhold 40-70% from each class - used for testing, denoted
by RW (ratio withheld) - and use the remaining 60-30% of
elements for training (or indexing in our case). We repeated
each test 10 times, and averaged the results over all classes and
tests. The methods we compared with are HOG (histogram of
oriented gradients) and LBP (local binary patterns) based sup-
port vector machines (SVM) using linear (SVML), Gaussian
(SVMG), RBF (SVMR) and polynomial (SVMP) kernels,
k-nearest neighbors (KNN) and decision trees (Dec.tree).

We measured performance by calculating the average recog-
nition rate (ARR): the percentage of queries when the respec-
tive method correctly estimates the class.

The first test (Fig. 11(a)) shows ARR results (averaged over
all classes for each method over all repetitions) when testing
the classification using randomly withheld dataset elements
(“Prop.” denotes the proposed method). These results show
that in general, when using test images similar to previously
known dataset elements, some machine learning approaches
perform better: these approaches are good in extracting gen-
eral image statistics and matching these statistics to a priori
samples, while the proposed method (Prop.) deals with the
extracted target regions only. However, in the following tests
we concentrate on more realistic scenarios, where the targets
can be distorted versions of the known samples. In Fig. 11(a)
we also included results using [15] (“Prev”) to show the
changes in this proposed method have improved the approach.
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Fig. 11. (a) Average recognition rates (ARR) when withholding RW ratio of each class for testing. (b) Augmenting (a) with 90◦, 180◦, 270◦ rotated and
10% cropped versions. (c) Augmenting (b) with 45◦, 135◦ rotated versions.

Fig. 12. Per-class (A-L) average recognition rates (ARR) from Fig. 11(c)
for the proposed (Prop.), SVML+HOG and Dec.tree(LBP) methods.

Fig. 11(b) presents ARR results for tests augmented with
90◦, 180◦ and 270◦ rotated and 10% cropped (along each
border) versions: for a test image, its rotated and cropped
versions are also generated and tested. As the results show, in a
more realistic setting the proposed method performs better.

For Fig. 11(c) we further augmented the previous test by
adding 45◦ and 135◦ rotated versions of the test images
and the proposed method performed better than all compared
approaches. For further insight, Fig: 12 shows interim ARR
results for the best performers from Fig. 11(c), showing
ARR averaged for each class over all runs (column colors
representing different withholding ratios). These figures show
that the proposed method has fairly low variation vs. different
withholding ratios and can reach over 90% averages.

We also performed evaluations to showcase one of the main
benefits of the proposed method, that it is robust against
rotation changes and it can classify images of known targets
containing previously unseen distortions with higher reliability
than the other approaches. Thus, we performed tests using the
whole dataset for training/indexing and only using the rotated
and cropped (as described above) versions of target images
for testing, for each method. Fig. 13 shows the results (overall
averages in (a) and per-class in (b)). To further support this
property, we performed another test, where we used the whole
dataset for training, including the rotated and cropped versions,
but excluding the 135◦ rotation. Then, we only used these
135◦ rotated images as a test set, and the results are shown
in Fig. 14(a, b). As we expected, in case of the proposed
approach the inclusion of the rotated versions of the dataset

Fig. 13. (a) Average recognition rates (ARR) when using the full dataset for
training, and only the 45◦, 90◦, 135◦, 180◦, 270◦ rotated and 10% cropped
versions of images for testing. (b) Details per-class for the best performers.

Fig. 14. (a) Average recognition rates (ARR) when using the full dataset
for training, including the the 45◦, 90◦, 180◦, 270◦ rotated and 10% cropped
versions of the images. Testing is done on the 135◦ rotated dataset images
only. (b) Details per-class for the methods from Fig. 13(b).

images did not provide considerable changes, some of the
other approaches improved, but overall the proposed method
remained the better performer.

Overall, the proposed method shows a stable performance
and high robustness against input variations and distortions.

We also measured the time performance of the methods. Our
intent was to show that the proposed method is viable from a
practical usage point of view, and its processing times make
it suitable for implementation in a practical system. Table II
shows runtime results for training (a) and testing (b).

We would like to note here, that although some of the
methods show lower testing times in some cases - e.g.,
the Dec.tree(LBP) method can produce generic retrieval rates
close to our approach in Fig. 11 -, the benefits of the proposed
method can still make it more preferable:

• It is rotation independent, and it does not need different
rotations to be included in the training dataset. Other
approaches would need all possible (or preferred) rotated
versions to be included in training.

• It can robustly extract the contours of the target and use
it as a basis for classification, thus it is more robust than



MANNO-KOVACS et al.: IMAGE BASED ROBUST TARGET CLASSIFICATION FOR PASSIVE ISAR 275

TABLE II

TIME MEASUREMENTS (S) FOR TRAINING AND TESTING

other approaches that classify based on overall image
statistics, and it can better handle the classification of
unknown variations.

• Adding a new element to the dataset means one addition
to the index, while the other methods would need to
be retrained (including all preferred distortions) when
extending the dataset.

Training was measured by training with the full dataset
(294 elements) while in testing we measured the classifica-
tion time for 1176 queries (which corresponds to the tests
in Fig. 13). The proposed method runs single threaded, the oth-
ers multi-threaded (hardware: dual Intel Xeon E5645 2.4GHz,
12HT cores; Prop.: C++, others: Matlab R2017a).

V. CONCLUSION

The paper presents and evaluates robust automatic tar-
get extraction and classification capabilities in passive ISAR
range/cross-range images using textural and structural feature
maps, without a priori information about target types or char-
acteristics. The method approaches the problem from a
content-based image retrieval point of view, is lightweight, can
easily incorporate extended datasets without retraining. It also
provides better recognition rates than compared approaches
in realistic use cases when unknown targets can be distorted
versions of previously known labeled samples. The method
was evaluated on a 294 real image dataset containing targets
with resolutions of 0.81-11.72 meters/pixel, obtained with the
Software-defined Multiband Array Passive Radar (SMARP)
demonstrator of the CNIT-RaSS Lab., operating at UHF
(470-790 MHz) and S-band (2100-2200 MHz) frequencies.
Further improvements would include image sequence process-
ing, and further increase in robustness and classification
performance.
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