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Abstract: The handling of vehicle interactions is a challenge in the research into the traveling of
autonomous vehicles. This paper focuses on collision-free motion design of autonomous vehicles
to guarantee their minimum traveling time in intersections. First, a decision logic of the order
of the vehicles in intersections is proposed. Based on the decision logic a constrained nonlinear
optimization method is also proposed, with which the minimum traveling time of the vehicles
without their collision is guaranteed. Since the on-line solution of the nonlinear optimization
task can be numerically complex, a neural network based approximation of the optimal solution
is developed. The efficiency of the method with various intersection scenarios is shown in the
CarSim simulation environment.
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1. INTRODUCTION AND MOTIVATION

The interactions of autonomous vehicles in smart cities are
an important research field in the autonomous vehicles.
Since in urban areas a large number of intersections are
found, there is a huge potential in the appropriate control
of vehicles approaching the intersections. The coordinated
control of the autonomous vehicles provides a more flexible
solution for vehicle interactions in intersections, which is
able improve the effectiveness and, simultaneously, the
safety of the traffic system.

Figure 1 illustrates an example concerning autonomous
vehicles crossing in intersections. A conventional intersec-
tion with traffic signs is illustrated in Figure 1(a). In the
scenario three vehicles are approaching the intersection.
Vehicle 1 has right of way against the other two vehicles
since it is coming on a higher-order road and the other two
vehicles have give way sign. Vehicle 2 wants to go straight
ahead, while Vehicle 3 wants to turn left. In the scenario
both Vehicle 2 and Vehicle 3 must be decelerated and
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stopped if necessary. It leads to increasing energy and fuel
consumptions and loss of time.

(a) Intersection with traffic signs

(b) Intersection w/o traffic signs

Fig. 1. Illustration of intersection scenarios

However, without traffic signs (Figure 1(b)) in the sce-
nario it is possible to modify the motion profile of the
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vehicles to achieve minimum loss of time and energy and
fuel consumptions reduction. The initial velocity, the ac-
celeration and/or deceleration requirements and the fuel
characteristics determine the appropriate crossing order
in the intersection.

The optimal control of the motions of autonomous vehicles
in intersections has several advantages. In the real traffic
scenario the autonomous vehicles are traveling together
with human-driven vehicles and pedestrians. It is a nec-
essary condition to set the traffic rules clearly, which
determine the motions of the various types of travelers.
Consequently, these traffic rules reduce the possibilities
of autonomous vehicles and, moreover, the behavior of
the humans must be incorporated in the control of the
intersection, , see e.g., Li et al. (2016).

Moreover, the architecture in the control strategy of the
autonomous vehicles in intersections should be varied. A
centralized coordination of the vehicles in the intersec-
tion results in an efficient operation of the traffic system.
However, it requires enhanced infrastructure, e.g. V2V
and V2I communications Wuthishuwong and Traechtler
(2013). Moreover, the autonomous vehicles must have a
decision logic in themselves, with which the interactions
are handled. Thus, the control problem of the smart inter-
sections has both centralized and individual components.

The performances in intersections can also lead difficulties
in the control design. For example, the minimum trav-
eling time of the vehicles can cause the deceleration of
the slow heavy vehicles to provide priority for the fast
passenger cars. However, the deceleration and accelera-
tion maneuvers of the heavy vehicles require significant
amount of energy and fuel and result in decreases emission
in intersections. Since there is a contradiction between
the minimization of the energy consumption and that of
traveling time, in the control of the autonomous vehicles
a balance between the performances must be guaranteed.

Several papers have produces various results concerning
intersections. A framework for the intersection control,
which is based on the queuing theory was presented by
Tachet et al. (2016). A model predictive control based
intersection control using centralized approach for two
vehicles was presented by Riegger et al. (2016). The
quadratic programming method is the possibility of real
time implementation compared to the convex optimization
using space coordinates, see Murgovski et al. (2015). An
autonomous intersection management system in which the
connection of intersections was handled by multi-agent
viewpoint was presented by Dresner and Stone (2008);
Hausknecht et al. (2011). Another multi-agent solution,
which is based on a heuristic optimization algorithm, was
presented by Zohdy and Rakha (2012). The objective of
the research is to reduce total time delay for the entire in-
tersection, while collisions are prevented. A mixed-integer
linear programming based method for the coordination of
vehicles in the intersection was published by Fayazi et al.
(2017).

In this paper an optimal motion design for the autonomous
vehicles in the intersection is proposed. As a contribu-
tion of the paper, the form of the constrained nonlinear
optimization problem is presented. It is approximated by
neural networks for computational reasons. The paper also

proposes a solution for the control of the intersection in
which there are only autonomous vehicles. The intersec-
tion with two roads crossing is also examined, while the
vehicles are driven into straight, left or right directions.
The proposed solution provides a centralized coordination
between the vehicles, while traveling time is minimized
and collisions are avoided. The control of the intersection
is based on the neural network method, which is a novel
approach.

The paper is organized as follows. In Section 2 the op-
timization problem together with the performance and
the order of vehicles is formulated. Section 3 presents the
method using neural networks. In Section 4 the efficiency
of the method is illustrated through high-fidelity CarSim
simulation examples. Finally, Section 5 summarizes the
contributions of the paper and the future challenges.

2. OPTIMIZATION OF VEHICLES IN THE
INTERSECTION

In the optimization procedure applied to the intersection
it is necessary to find the motion profile for all autonomous
vehicles which guarantees safe approaching for them. The
optimization procedure contains two tasks to be solved:

• First, it is necessary to find the appropriate order of
the vehicles. In this paper the goal of the intersection
control is to find the minimum traveling time for
each vehicle. Thus, it is required to find the order
of vehicles with which the minimum traveling time
for all vehicles is guaranteed.

• Second, the kinematics of the vehicles for the given
vehicle order must be determined, e.g., the accel-
eration/deceleration or the velocity profile for each
autonomous vehicle.

2.1 The determination of the vehicle order

The determination of the vehicle order is a key problem in
the optimization of autonomous vehicles in the intersec-
tion. If there are N number of vehicles in the intersection,
the number of the possible orders is N !. It means that
N ! number of autonomous vehicle motion profiles can be
designed, which results in different traveling times of the
autonomous vehicles. All of these motion profiles have
local minimums, which are connected to the current ve-
hicle order. Consequently, the intersection control, which
guarantees minimum traveling time leads to a nonlinear
optimization problem of the vehicle orders. The goal of
the first layer is to find the vehicle order which can lead
to the global optimum solution. Furthermore, the results
of the vehicle order are the appropriate initial conditions
in the motion optimization, which guarantees to find the
global minimum traveling time in the second layer.

In this paper, the determination of the vehicle order is
based on a rule which is defined through the experience
of a large number of simulation examples. The vehicles
crossing the intersection have right a way based on their
initial velocity at the entrance vi(k)

∣∣
k=1

and the length
of their route Li. The route of vehicle i depends on its
approaching intention, such as straight motion, left or right
turning. The order of the vehicles is decided through the
following rate:
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Ti =
Li

vi(k)
∣∣
k=1

. (1)

The rate Ti is computed for all i = 1 . . . N vehicles. The
Ti values are ordered increasingly, which determines the
order of the vehicles. For example a vehicle with small
initial velocity and/or long route inside of the intersection
does not have right a way against the fast and/or short
route vehicles. Although the presented rule is based on
simulation experience, it results in the global minimum
traveling time in most of the scenarios. The order of
the vehicles has been built in the optimization of the
intersection through the initial conditions.

2.2 Optimization problem

The optimization method is based on a division of the
route, which is illustrated in Figure 2. The route of the
vehicle i in the intersection is divided into M equidistant
segments with index j and the acceleration ai,j along
this route is assumed to vary linearly. The aim of the
optimization is to compute the control inputs ai,j for each
i vehicle and j segment, which guarantees the minimum
traveling time for the vehicles and collisions are avoided.
There are two performances:

Fig. 2. Division of the vehicle route

• The performance of the control task is defined as
the minimum traveling time for each vehicle. It is
represented by the sum of traveling times of all
vehicles such as

J =

N∑
i=1

ti (2)

where ti is the traveling time for vehicle i, which is
the time value between the entrance and the exit of
the route. Moreover, N represents the number of the
vehicles in the intersection.
• The avoidance of collision is guaranteed by the safe

distance ssafe, which must be held by the vehicles.

The distance ei,l between the vehicles i and l is com-
puted through their positions (xi, yi), (xl, yl), which
results that

ei,l =
√

(xi − xl)2 + (yi − yl)2 > ssafe (3)

The parameter ssafe must be selected according to
the velocity of the vehicles.

The optimization tasks (2) and (3) require the model
of the vehicles, with which both the ti and ei,l values
can be calculated. For this reason a simplified discrete
time longitudinal model with with sampling time T is
formulated in the following way:

vi(k + 1) = vi(k) + Tai(k), (4a)

si(k + 1) = si(k) + Tvi(k) +
T 2

2
ai(k), (4b)

where index i is related to the vehicle order. The current
acceleration command ai(k) comes from the control input
sequence ai,j through interpolation and depending on the
(xi, yi) position of vehicle i. The motion equations of the
vehicles are rearranged to a state-space form[

vi(k + 1)
si(k + 1)

]
=

[
1 0
T 1

] [
vi(k)
si(k)

]
+

[
T

T 2/2

]
ai(k) (5)

which can be formed in the state space representation
form:

xi(k + 1) = Axi(k) + Bui(k), (6)

where xi(k) represents the state xi(k) and ui(k) = ai(k) is
the control input of the system, which is linked to ai,j . The
position of the vehicle is also determined by the lateral
motion. However, it is assumed that the autonomous
vehicles follow the curvature of the intersection. Thus,
the lateral motions of the vehicles are not influenced
by the other vehicles, e.g. overtaking is not allowed.
Consequently, the positions of the vehicle (xi(k), yi(k)) can
be computed from their initial positions, the distances s(k)
and the motion directions of the vehicles.

In the optimization the model (6) is used to calculate
the minimum traveling time of the vehicles, with which
collision of the vehicles is avoided. The optimum problem
is formulated based on the performance of the system (2),
the constraint (3) and the vehicle model (6) as

min
ai,j :∀i∈N,j∈M

N∑
i=1

ti (7)

such that

ei,l(k) > ssafe ∀i, l ∈ N, ∀k (8a)

xi(k + 1) = Axi(k) + Bui(k) ∀i ∈ N. (8b)

The result of the optimization is significantly influenced
by the order of the vehicles. The initial conditions of ai,j
are determined from the order of the vehicles. The initial
conditions are selected to guarantee the predefined vehicle
order, e.g. the first vehicles have the highest ai,j initial
value, while the last vehicles have the lowest ai,j .

The result of the optimization is the sequence ai for all
vehicles. The solution of the task (7) is based on an opti-
mization algorithm, which is able to handle the nonlinear
constraints, see e.g. Gill et al. (1981); Coleman and Li
(1996). In practice, the optimum solution is computed
using Matlab/Simulink and CarSim, in which the models
of the vehicles are formulated. It represents the constraint
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(8b). The cost of the optimization (7) is computed from
the simulation, which it is performed by a candidate ai,j
sequence. During the simulation the fulfillment of collision
avoidance constraint (8a) is checked. Finally, the candidate
values ai,j , which guarantee the safe distance (8a) and the
minimum traveling time (7) are selected.

3. NEURAL NETWORKS IN THE OPTIMAL
MOTION CONTROL

The optimization task (7) results in a global optimal
solution for the vehicle order in the intersection. Although
it guarantees the optimal solution, the computation time
of the task can be high due to the nonlinear constraints.
Therefore, in this section an approximation of the optimal
solution through neural networks is presented.

The goal of the neural network generation is to find a
function F in which the output values are the accelera-
tion commands ai,j and the input values are the initial
positions of the vehicles si(1), the initial velocities vi(1)
and the approaching intentions Di of the vehicles. Thus,
the function F defines the following relationship:

ai,j = F(si(1), vi(1), Di), (9)

where Di represents straight, turning left or right motions.
Since the optimization problem can only be solved for
given si(1), vi(1), Di values, the positions and velocities
of the vehicle are gridded in the possible ranges. Solving
the optimization problem (7) on the gridpoints, training
data for the neural network fitting are generated.

In the fitting of the neural networks an input layer, hidden
layers and an output layer are defined. The nodes in
the input layer receive the input values si(1), vi(1). The
approaching intention Di is not considered in the neural
network, since different networks for all Di scenarios are
generated. The operation of the control in intersection
is incorporated in the nonlinear functions of the hidden
layers. Moreover, the role of the output layer is to generate
the acceleration commands ai,j .

The neural network results in an approximation of the
optimal solution and it has several additional advantages.

• Since the training data can be computed offline, it is
also possible to generate the neural network offline.
The neural networks can be implemented into the
control of the autonomous vehicles in intersections
and make fast computation possible.
• The function F is continuous, which means that any

kind of si(1), vi(1) values can be chosen, depending
on the current traffic scenario.
• During the motion of the autonomous vehicles it is

assumed that the required ai,j acceleration command
is realized. However, in practice the dynamics of the
vehicles can result in differences in the motion from
the kinematic model (6). Moreover, disturbances can
also modify the motions of the vehicles. It means
that the acceleration commands ai,j are required to
be checked during the motion of the autonomous
vehicles. The continuous function F makes it possible
to recompute the acceleration commands, depending
on the current si(k), vi(k), Di(k). The recomputing
process generates a feedback in the control of the
intersection, which is illustrated in Figure 3.

Dynamics of
autonomous vehicles

Entrance of
autonomous vehicles Neural network

vi(1)

si(1)
Di

ai,j

Decision on
recomputation

vi(k)

si(k)

vi(k)

si(k) YES

Fig. 3. Recomputing process in the intersection

4. ILLUSTRATION OF THE CONTROL METHOD

In the following section the efficiency of the presented
method is illustrated through CarSim simulation exam-
ples. The purpose of the simulations is to present the
guaranteeing of the minimization of traveling time and to
show the appropriate handling of the neural network.

4.1 Intersection with 2 vehicles

In the first simulation scenario two autonomous vehicles
are in the intersection as illustrated in Figure 4. The
intention of the blue vehicle (Vehicle 2 ) is to drive straight
in the intersection, while the intention of the red vehicle
(Vehicle 1 ) is to turn left. Thus, there is a conflict between
the vehicles, because both of them are required to exit in
the same lane of the intersection.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 4. Results of the simulation with two vehicles

The result of the simulation scenario using the proposed
neural network method is shown in Figure 4. The vehicles
at the entrance are shown in Figure 4(a). Since the T value
of the blue vehicle is higher than the red vehicle due to
its significantly higher velocity, the blue vehicle has right
of way against the red vehicle. Figure 4(b)-(c) show the
critical moments of the vehicle interaction. It is shown that
the distance between the vehicles is reduced. However, the
previously defined ssafe = 2.5m is not violated, because
the minimum distance between the vehicles is 2.83m. The
end of the maneuvers is presented in 4(d).

The results of the constrained nonlinear optimization
method and those of the neural network based approx-
imation are compared in Figure 5. It is shown that the
selection of M = 8 is close enough to each other, which
represents the acceptance of the neural network fitting.
Moreover, the impacts of ai,j on the velocities are illus-
trated in Figure 6. The results of the velocity signals show
that the motion of the vehicles in the optimal solution and
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(a) Vehicle 1
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(b) Vehicle 2

Fig. 5. Acceleration commands of the vehicles
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(b) Vehicle 2

Fig. 6. Velocity profiles of the vehicles

in its approximation are close to each other. Although in
the case of Vehicle 1 the velocity error slightly increases
due to the error in the neural network fitting. Despite of
this error the minimum distance between the vehicles is
modified only by 0.02m, which means that the error is
acceptable.

4.2 Intersection with 3 vehicles

The second simulation presents a more complex scenario,
in which three vehicles are involved, see Figure 7. The blue

Vehicle 2 wants to travel straight, the red Vehicle 3 wants
to turn right, while the black Vehicle 1 wants to turn left
and move forward in the same direction as Vehicle 3. The
motions of the vehicles show that the scenario with three
vehicles contain several conflicts.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 7. Results of the simulation with three vehicles

Similarly to the previous scenario, Figure 7 presents the
different moments of the simulation. The initial positions
of the vehicles are shown in Figure 7(a). The blue Vehicle
2 has right a way in the intersection, the red Vehicle 3 is
the next in the order, while the black Vehicle 1 is the last
one. Figure 7(b) illustrates the conflict between Vehicle 2
and Vehicle 1, while Figure 7(c) is about the interaction
of Vehicle 3 and Vehicle 1. The results of the maneuvers
are shown in Figure 7(d). The illustration shows that the
control of autonomous vehicles is also safe in the case of
three vehicles.

The acceleration commands with the solution of the con-
strained nonlinear optimization and with the neural net-
work approximation for all vehicles are found in Figure 8.
Since the signals are rather close to each other, the fitting
of the neural network has been successful. Moreover, the
neural network solution results only in 0.03m reduction in
the minimum distance between the vehicles. The resulting
velocity profile of the vehicles is presented in Figure 9. It
shows that the optimization and the neural network result
in similar velocity profiles with small differences.

5. CONCLUSIONS

In the paper the optimal motions of autonomous vehi-
cles for intersections have been presented. The proposed
method guarantees the minimum traveling time without
collisions of the vehicles. The motion design of the vehicles
leads to a nonlinear constrained optimization problem,
whose solution has been approximated using neural net-
works. The simulation scenarios with 2 and 3 autonomous
vehicles show that the proposed design method is able to
guarantee the optimal traveling time in the intersection,
while collisions are avoided. The neural network based
approximation leads to acceptable results, and it reduces
the minimum distances only slightly.

In future research the optimization problem will be an-
alyzed in further scenarios, such as energy consumption
or emission of the vehicles. A further challenge in the
motion design of the autonomous vehicles is the handling
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(a) Vehicle 1
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(b) Vehicle 2
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(c) Vehicle 3

Fig. 8. Acceleration commands of the vehicles

of mixed traffic scenarios, in which human-driven vehicles
and autonomous vehicles are traveling together.
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