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Abstract

In several decision-making problems, alternatives should be ranked on the basis
of paired comparisons between them. We present an axiomatic approach for the
universal ranking problem with arbitrary preference intensities, incomplete and mul-
tiple comparisons. In particular, two basic properties – independence of irrelevant
matches and self-consistency – are considered. It is revealed that there exists no
ranking method satisfying both requirements at the same time. The impossibility
result holds under various restrictions on the set of ranking problems, however, it
does not emerge in the case of round-robin tournaments. An interesting and more
general possibility result is obtained by restricting the domain of independence of
irrelevant matches through the concept of macrovertex.
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1 Introduction

Paired-comparison based ranking emerges in many fields of science such as social choice
theory (Chebotarev and Shamis, 1998), sports (Landau, 1895, 1914; Zermelo, 1929; Radicchi,
2011; Bozóki et al., 2016; Chao et al., 2018), or psychology (Thurstone, 1927). Here a gen-
eral version of the problem, allowing for different preference intensities (including ties) as
well as incomplete and multiple comparisons between two objects, is addressed.

The paper contributes to this field by the formulation of an impossibility theorem:
it turns out that two axioms, independence of irrelevant matches – used, among others,
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in characterizations of Borda ranking by Rubinstein (1980) and Nitzan and Rubinstein
(1981) and recently discussed by González-Dı́az et al. (2014) – and self-consistency – a
less known but intuitive property, introduced in Chebotarev and Shamis (1997) – cannot
be satisfied at the same time. We also investigate domain restrictions and the weakening
of the properties in order to get some positive results.

Our main theorem reinforces that while the row sum (sometimes called Borda or score)
ranking has favourable properties in the case of round-robin tournaments, its application
can be attacked when incomplete comparisons are present. A basket case is a Swiss-system
tournament, where row sum seems to be a bad choice since players with weaker opponents
can score the same number of points more easily (Csató, 2013, 2017).

The current paper can be regarded as a supplement to the findings of previous ax-
iomatic discussions in the field (Altman and Tennenholtz, 2008; Chebotarev and Shamis,
1998; González-Dı́az et al., 2014; Csató, 2018a) by highlighting some unknown connec-
tions among certain axioms. Furthermore, our impossibility result gives mathematical
justification for a comment appearing in the axiomatic analysis of scoring procedures by
González-Dı́az et al. (2014): ’when players have different opponents (or face opponents
with different intensities), IIM1 is a property one would rather not have’ (p. 165). The
strength of this property is clearly shown by our main theorem.

The study is structured as follows. Section 2 presents the setting of the ranking
problem and defines some ranking methods. In Section 3, two axioms are evoked in
order to get a clear impossibility result. Section 4 investigates different ways to achieve
possibility through the weakening of the axioms. Finally, some concluding remarks are
given in Section 5.

2 Preliminaries

Consider a set of professional tennis players and their results against each other (Bozóki et al.,
2016). The problem is to rank them, which can be achieved by associating a score with
each player. This section describes a possible mathematical model and introduces some
methods.

2.1 The ranking problem

Let N = {X1, X2, . . . , Xn}, n ∈ N be the set of objects and T = [tij ] ∈ R
n×n be a

tournament matrix such that tij + tji ∈ N. tij represents the aggregated score of object
Xi against Xj, tij/(tij + tji) can be interpreted as the likelihood that object Xi is better
than object Xj. tii = 0 is assumed for all Xi ∈ N . Possible derivations of the tournament
matrix can be found in González-Dı́az et al. (2014) and Csató (2015).

The pair (N, T ) is called a ranking problem. The set of ranking problems with n
objects (|N | = n) is denoted by Rn.

A scoring procedure f is an Rn → R
n function that gives a rating fi(N, T ) for each

object Xi ∈ N in any ranking problem (N, T ) ∈ Rn. Any scoring method immediately
induces a ranking (a transitive and complete weak order on the set of N × N) � by
fi(N, T ) ≥ fj(N, T ) meaning that Xi is ranked weakly above Xj , denoted by Xi � Xj .
The symmetric and asymmetric parts of � are denoted by ∼ and ≻, respectively: Xi ∼ Xj

1 IIM is the abbreviation of independence of irrelevant matches, an axiom to be discussed in Sec-
tion 3.1.
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if both Xi � Xj and Xi � Xj hold, while Xi ≻ Xj if Xi � Xj holds, but Xi � Xj does not
hold. Every scoring method can be considered as a ranking method. This paper discusses
only ranking methods induced by scoring procedures.

A ranking problem (N, T ) has the skew-symmetric results matrix R = T − T ⊤ =
[rij ] ∈ R

n×n and the symmetric matches matrix M = T + T ⊤ = [mij ] ∈ N
n×n such that

mij is the number of the comparisons between Xi and Xj , whose outcome is given by rij .
Matrices R and M also determine the tournament matrix as T = (R + M)/2. In other
words, a ranking problem (N, T ) ∈ Rn can be denoted analogously by (N, R, M) with the
restriction |rij| ≤ mij for all Xi, Xj ∈ N , that is, the outcome of any paired comparison
between two objects cannot ’exceed’ their number of matches. Although the description
through results and matches matrices is not parsimonious, usually the notation (N, R, M)
will be used because it helps in the axiomatic approach.

The class of universal ranking problems has some meaningful subsets. A ranking
problem (N, R, M) ∈ Rn is called:

• balanced if
∑

Xk∈N mik =
∑

Xk∈N mjk for all Xi, Xj ∈ N .
The set of balanced ranking problems is denoted by RB.

• round-robin if mij = mkℓ for all Xi 6= Xj and Xk 6= Xℓ.
The set of round-robin ranking problems is denoted by RR.

• unweighted if mij ∈ {0; 1} for all Xi, Xj ∈ N .
The set of unweighted ranking problems is denoted by RU .

• extremal if |rij| ∈ {0; mij} for all Xi, Xj ∈ N .
The set of extremal ranking problems is denoted by RE .

The first three subsets pose restrictions on the matches matrix M . In a balanced
ranking problem, all objects should have the same number of comparisons. A typical
example is a Swiss-system tournament (provided the number of participants is even). In
a round-robin ranking problem, the number of comparisons between any pair of objects
is the same. A typical example (of double round-robin) can be the qualification for soccer
tournaments like UEFA European Championship (Csató, 2018b). It does not allow for
incomplete comparisons. Note that a round-robin ranking problem is balanced, RR ⊂ RB.
Finally, in an unweighted ranking problem, multiple comparisons are prohibited.

Extremal ranking problems restrict the results matrix R: the outcome of a comparison
can only be a complete win (rij = mij), a draw (rij = 0), or a maximal loss (rij = −mij).
In other words, preferences have no intensity, however, ties are allowed.

One can also consider any intersection of these special classes.
The number of comparisons of object Xi ∈ N is di =

∑

Xj∈N mij and the maximal
number of comparisons in the ranking problem is m = maxXi,Xj∈N mij. Hence:

• A ranking problem is balanced if and only if di = d for all Xi ∈ N .

• A ranking problem is round-robin if and only if mij = m for all Xi, Xj ∈ N .

• A ranking problem is unweighted if and only if m = 1.2

2 While mij ∈ {0; 1} for all Xi, Xj ∈ N allows for m = 0, it leads to a meaningless ranking problem
without any comparison.
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Matrix M can be represented by an undirected multigraph G := (V, E), where the
vertex set V corresponds to the object set N , and the number of edges between objects Xi

and Xj is equal to mij , so the degree of node Xi is di. Graph G is said to be the comparison
multigraph of the ranking problem (N, R, M), and is independent of the results matrix R.
The Laplacian matrix L = [ℓij ] ∈ R

n×n of graph G is given by ℓij = −mij for all Xi 6= Xj

and ℓii = di for all Xi ∈ N .
A ranking problem (N, R, M) ∈ Rn is called connected or unconnected if its compar-

ison multigraph is connected or unconnected, respectively.

2.2 Some ranking methods

In the following, some scoring procedures are presented. They will be used only for
ranking purposes, so they can be called ranking methods.

Let e ∈ R
n denote the column vector with ei = 1 for all i = 1, 2, . . . , n. Let I ∈ R

n×n

be the identity matrix.
The first scoring method does not take the comparison structure into account, it simply

sums the results from the results matrix R.

Definition 2.1. Row sum: s(N, R, M) = Re.

The following parametric procedure has been constructed axiomatically by Chebotarev
(1989) as an extension of the row sum method to the case of paired comparisons with
missing values, and has been thoroughly analysed in Chebotarev (1994).

Definition 2.2. Generalized row sum: it is the unique solution x(ε)(N, R, M) of the
system of linear equations (I + εL)x(ε)(N, R, M) = (1 + εmn)s(N, R, M), where ε > 0 is
a parameter.

Generalized row sum adjusts the row sum si by accounting for the performance of
objects compared with Xi, and adds an infinite depth to the correction as the row sums
of all objects available on a path from Xi appear in the calculation. ε indicates the
importance attributed to this modification. Note that generalized row sum results in row
sum if ε → 0: limε→0 x(ε)(N, R, M) = s(N, R, M).

The row sum and generalized row sum rankings are unique and easily computable
from a system of linear equations for all ranking problems (N, R, M) ∈ Rn.

The least squares method was suggested by Thurstone (1927) and Horst (1932). It
is known as logarithmic least squares method in the case of incomplete multiplicative
pairwise comparison matrices (Bozóki et al., 2010).

Definition 2.3. Least squares: it is the solution q(N, R, M) of the system of linear
equations Lq(N, R, M) = s(N, R, M) and e⊤q(N, R, M) = 0.

Generalized row sum ranking coincides with least squares ranking if ε → ∞ because
limε→∞ x(ε)(N, R, M) = mnq(N, R, M).

The least squares ranking is unique if and only if the ranking problem (N, R, M) ∈ Rn

is connected (Kaiser and Serlin, 1978; Chebotarev and Shamis, 1999; Bozóki et al., 2010).
The ranking of unconnected objects may be controversial. Nonetheless, the least squares
ranking can be made unique if Definition 2.3 is applied to all ranking subproblems with
a connected comparison multigraph.

An extensive analysis and a graph interpretation of the least squares method, as well
as further references, can be found in Csató (2015).
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3 The impossibility result

In this section, a natural axiom of independence and a kind of monotonicity property is
recalled. Our main result illustrates the impossibility of satisfying the two requirements
simultaneously.

3.1 Independence of irrelevant matches

This property appears as independence in Rubinstein (1980, Axiom III) and Nitzan and Rubinstein
(1981, Axiom 5) in the case of round-robin ranking problems. The name independence of
irrelevant matches has been used by González-Dı́az et al. (2014). It deals with the effects
of certain changes in the tournament matrix.

Axiom 3.1. Independence of irrelevant matches (IIM): Let (N, T ), (N, T ′) ∈ Rn be two
ranking problems and Xi, Xj, Xk, Xℓ ∈ N be four different objects such that (N, T ) and
(N, T ′) are identical but t′

kℓ 6= tkℓ. Scoring procedure f : Rn → R
n is called independent

of irrelevant matches if fi(N, T ) ≥ fj(N, T ) ⇒ fi(N, T ′) ≥ fj(N, T ′).

IIM means that ’remote’ comparisons – not involving objects Xi and Xj – do not
affect the order of Xi and Xj . Changing the matches matrix may lead to an unconnected
ranking problem. Property IIM has a meaning if n ≥ 4.

Sequential application of independence of irrelevant matches can lead to any ranking
problem (N, T̄ ) ∈ Rn, for which t̄gh = tgh if {Xg, Xh} ∩ {Xi, Xj} 6= ∅, but all other paired
comparisons are arbitrary.

Lemma 3.1. The row sum method is independent of irrelevant matches.

Proof. It follows from Definition 2.1.

3.2 Self-consistency

The next axiom, introduced by Chebotarev and Shamis (1997), may require an extensive
explanation. It is motivated by an example using the language of preference aggregation.

Figure 1: The ranking problem of Example 3.1

X1 X2

X3 X4

Example 3.1. Consider the ranking problem (N, R, M) ∈ R4
B ∩ R4

U ∩ R4
E with results

and matches matrices

R =











0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0











and M =











0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0











.
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It is shown in Figure 1: a directed edge from node Xi to Xj indicates a complete win of
Xi over Xj (and a complete loss of Xj against Xi). This representation will be used in
further examples, too.

The situation in Example 3.1 can be interpreted as follows. A voter prefers alternative
X1 to X2 and X3, but says nothing about X4. Another voter prefers X2 to X3 and X4,
but has no opinion on X1.

Although it is difficult to make a good decision on the basis of such incomplete prefer-
ences, sometimes it cannot be avoided. It leads to the question, which principles should
be followed by the final ranking of the objects. It seems reasonable that Xi should be
judged better than Xj if one of the following holds:

✠1 Xi achieves better results against the same objects;

✠2 Xi achieves better results against objects with the same strength;

✠3 Xi achieves the same results against stronger objects;

✠4 Xi achieves better results against stronger objects.

Furthermore, Xi should have the same rank as Xj if one of the following holds:

✠5 Xi achieves the same results against the same objects;

✠6 Xi achieves the same results against objects with the same strength.

In order to apply these principles, one should measure the strength of objects. It is
provided by the scoring method itself, hence the name of this axiom is self-consistency.
Consequently, condition ✠1 is a special case of condition ✠2 (the same objects have nat-
urally the same strength) as well as condition ✠5 is implied by condition ✠6.

What does self-consistency mean in Example 3.1? First, X2 ∼ X3 due to condition ✠5.
Second, X1 ≻ X4 should hold since condition ✠1 as r12 > r42 and r13 > r43. The
requirements above can also be applied to objects which have different opponents. Assume
that X1 � X2. Then condition ✠4 results in X1 ≻ X2 because of X2 � X1, r12 > r21

and X3 ∼ X2 � X1 ≻ X4, r13 = r24. It is a contradiction, therefore X1 ≻ (X2 ∼ X3).
Similarly, assume that X2 � X4. Then condition ✠4 results in X2 ≻ X4 because of
X1 ≻ X3 (derived above), r21 = r43 and X4 � X2 ∼ X3, r24 > r43. It is a contradiction,
therefore (X2 ∼ X3) ≻ X4. To summarize, only the ranking X1 ≻ (X2 ∼ X3) ≻ X4 is
allowed by self-consistency.

The above requirement can be formalized in the following way.

Definition 3.1. Opponent set: Let (N, R, M) ∈ Rn
U be an unweighted ranking problem.

The opponent set of object Xi is Oi = {Xj : mij = 1}

Objects of the opponent set Oi are called the opponents of Xi. Note that |Oi| = |Oj|
for all Xi, Xj ∈ N if and only if the ranking problem is balanced.

Notation 3.1. Consider an unweighted ranking problem (N, R, M) ∈ Rn
U such that Xi, Xj ∈

N are two different objects and g : Oi ↔ Oj is a one-to-one correspondence between the op-
ponents of Xi and Xj , consequently, |Oi| = |Oj|. Then g : {k : Xk ∈ Oi} ↔ {ℓ : Xℓ ∈ Oj}
is given by Xg(k) = g(Xk).

In order to make judgements like an object has stronger opponents, at least a partial
order among opponent sets should be introduced.
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Definition 3.2. Partial order of opponent sets: Let (N, R, M) ∈ Rn be a ranking problem
and f : Rn → R

n be a scoring procedure. Opponents of Xi are at least as strong
as opponents of Xj , denoted by Oi � Oj, if there exists a one-to-one correspondence
g : Oi ↔ Oj such that fk(N, R, M) ≥ fg(k)(N, R, M) for all Xk ∈ Oi.

For instance, O1 ∼ O4 and O2 ∼ O3 in Example 3.1, whereas O1 and O2 are not
comparable.

Therefore, conditions ✠1-✠6 never imply Xi � Xj if Oi ≺ Oj since an object with a
weaker opponent set cannot be judged better.

Opponent sets have been defined only in the case of unweighted ranking problems, but
self-consistency can be applied to objects which have the same number of comparisons,
too. The extension is achieved by a decomposition of ranking problems.

Definition 3.3. Sum of ranking problems: Let (N, R, M), (N, R′, M ′) ∈ Rn be two rank-
ing problems with the same object set N . The sum of these ranking problems is the
ranking problem (N, R + R′, M + M ′) ∈ Rn.

Summing of ranking problems may have a natural interpretation. For example, they
can contain the preferences of voters in two cities of the same country or the paired
comparisons of players in the first and second half of the season.

Definition 3.3 means that any ranking problem can be decomposed into unweighted
ranking problems, in other words, it can be obtained as a sum of unweighted ranking
problems. However, while the sum of ranking problems is unique, a ranking problem may
have a number of possible decompositions.

Notation 3.2. Let (N, R(p), M (p)) ∈ Rn
U be an unweighted ranking problem. The opponent

set of object Xi is O
(p)
i . Let Xi, Xj ∈ N be two different objects and g(p) : O

(p)
i ↔ O

(p)
j be

a one-to-one correspondence between the opponents of Xi and Xj. Then g
(p) : {k : Xk ∈

O
(p)
i } ↔ {ℓ : Xℓ ∈ O

(p)
j } is given by Xg(p)(k) = g(p)(Xk).

Axiom 3.2. Self-consistency (SC) (Chebotarev and Shamis, 1997): A scoring procedure
f : Rn → R

n is called self-consistent if the following implication holds for any ranking
problem (N, R, M) ∈ Rn and for any objects Xi, Xj ∈ N : if there exists a decomposition
of the ranking problem (N, R, M) into m unweighted ranking problems – that is, R =
∑m

p=1 R(p), M =
∑m

p=1 M (p), and (N, R(p), M (p)) ∈ Rn
U is an unweighted ranking problem

for all p = 1, 2, . . . , m – in a way that enables a one-to-one mapping g(p) from O
(p)
i onto

O
(p)
j such that r

(p)
ik ≥ r

(p)

jg(p)(k)
and fk(N, R, M) ≥ f

g(p)(k)(N, R, M) for all p = 1, 2, . . . , m

and Xk ∈ O
(p)
i , then fi(N, R, M) ≥ fj(N, R, M), furthermore, fi(N, R, M) > fj(N, R, M)

if r
(p)
ik > r

(p)

jg(p)(k)
or fk(N, R, M) > fg(p)(k)(N, R, M) for at least one 1 ≤ p ≤ m and

Xk ∈ O
(p)
i .

Self-consistency formalizes conditions ✠1-✠6: if object Xi is obviously not worse than
object Xj , then it is not ranked lower, furthermore, if it is better, then it is ranked higher.
Self-consistency can also be interpreted as a property of a ranking.

The application of self-consistency is nontrivial because of the various opportunities
for decomposition into unweighted ranking problems. However, it may restrict the relative
ranking of objects Xi and Xj only if di = dj since there should exist a one-to-one mapping

between O
(p)
i and O

(p)
j for all p = 1, 2, . . . , m. Thus SC does not fully determine a ranking,

even on the set of balanced ranking problems.
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Figure 2: The ranking problem of Example 3.2

X1

X2

X3 X4

X5

X6

Example 3.2. Let (N, R, M) ∈ R6
B ∩ R6

U ∩ R6
E be the ranking problem in Figure 2: a

directed edge from node Xi to Xj indicates a complete win of Xi over Xj in one comparison
(as in Example 3.1) and an undirected edge from node Xi to Xj represents a draw in one
comparison between the two objects.

Proposition 3.1. Self-consistency does not fully characterize a ranking method on the
set of balanced, unweighted and extremal ranking problems RB ∩ RU ∩ RE.

Proof. The statement can be verified by an example where at least two rankings are
allowed by SC, we use Example 3.2 for this purpose. Consider the ranking �1 such
that (X1 ∼1 X2 ∼1 X3) ≻1 (X4 ∼1 X5 ∼1 X6). The opponent sets are O1 = {X2, X6},
O2 = {X1, X3}, O3 = {X2, X4}, O4 = {X3, X5}, O5 = {X4, X6} and O6 = {X1, X5}, so
O2 ≻ (O1 ∼ O3 ∼ O4 ∼ O6) ≻ O5. The results of X1 and X3 are (0; 1), the results of X2

and X5 are (0; 0), while the results of X4 and X6 are (−1; 0). For objects with the same
results, SC implies X1 ∼ X3, X4 ∼ X6 and X2 ≻ X5 (conditions ✠3 and ✠6), which hold
in �1. For objects with different results, SC leads to X2 ≻ X4, X3 ≻ X4, and X3 ≻ X5

after taking the strength of opponents into account (condition ✠2). These requirements
are also met by the ranking �1. Self-consistency imposes no other restrictions, therefore
the ranking �1 satisfies it.

Now consider the ranking �2 such that X2 ≺2 (X1 ∼2 X3) ≺2 (X4 ∼2 X6) ≺2 X5. The
opponent sets remain the same, but their partial order is given now as O2 ≺ (O4 ∼ O6),
O2 ≺ O5, (O1 ∼ O3) ≺ (O4 ∼ O6) and (O1 ∼ O3) ≺ O5 (the opponents of X1 and X2, as
well as X4 and X5, cannot be compared). For objects with the same results, SC implies
X1 ∼ X3, X4 ∼ X6 and X2 ≺ X5 (conditions ✠3 and ✠6), which hold in �2. For objects
with different results, SC leads to X1 ≻ X2 after taking the strength of opponents into
account (condition ✠2). This condition is also met by the ranking �2. Self-consistency
imposes no other restrictions, therefore the ranking �2 also satisfies this axiom.

To conclude, rankings �1 and �2 are self-consistent. The ranking obtained by reversing
�2 meets SC, too.

Lemma 3.2. The generalized row sum and least squares methods are self-consistent.

Proof. See Chebotarev and Shamis (1998, Theorem 5).

Chebotarev and Shamis (1998, Theorem 5) provide a characterization of self-consistent
scoring procedures, while Chebotarev and Shamis (1998, Table 2) gives some further ex-
amples.
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3.3 The connection of independence of irrelevant matches and

self-consistency

So far we have discussed two axioms, IIM and SC. It turns out that they cannot be
satisfied at the same time.

Figure 3: The ranking problems of Example 3.3

(a) Ranking problem (N, R, M)

X1 X2

X3X4

(b) Ranking problem (N, R′, M)

X1 X2

X3X4

Example 3.3. Let (N, R, M), (N, R′, M) ∈ R4
B ∩ R4

U ∩ R4
E be the ranking problems in

Figure 3 with the results and matches matrices

R =











0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0











, R′ =











0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0











, and M =











0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0











.

Theorem 3.1. There exists no scoring procedure that is independent of irrelevant matches
and self-consistent.

Proof. The contradiction of the two properties is proved by Example 3.3. The opponent
sets are O1 = O3 = {X2, X4} and O2 = O4 = {X1, X3} in both ranking problems. Assume
to the contrary that there exists a scoring procedure f : Rn → R

n, which is independent of
irrelevant matches and self-consistent. IIM means that f1(N, R, M) ≥ f2(N, R, M) ⇐⇒
f1(N, R′, M) ≥ f2(N, R′, M).

a) Consider the (identity) one-to-one mapping g13 : O1 ↔ O3, where g13(X2) = X2

and g13(X4) = X4. Since r12 = r42 = 0 and 0 = r14 > r34 = −1, g13 satisfies
condition ✠1 of SC, hence f1(N, R, M) > f3(N, R, M).

b) Consider the (identity) one-to-one mapping g42 : O4 ↔ O2, where g42(X1) = X1

and g42(X3) = X3. Since r41 = r21 = 0 and 1 = r43 > r23 = 0, g42 satisfies
condition ✠1 of SC, hence f4(N, R, M) > f2(N, R, M).

c) Suppose that f2(N, R, M) ≥ f1(N, R, M), implying f4(N, R, M) > f3(N, R, M).
Consider the one-to-one correspondence g12 : O1 ↔ O2, where g12(X2) = X1 and
g12(X4) = X3. Since r12 = r21 = 0 and r14 = r23 = 0, g12 satisfies condition ✠3 of
SC, hence f1(N, R, M) > f2(N, R, M). It is a contradiction.

Thus only f1(N, R, M) > f2(N, R, M) is allowed.
Note that ranking problem (N, R′, M) can be obtained from (N, R, M) by the per-

mutation σ : N → N such that σ(X1) = X2, σ(X2) = X1, σ(X3) = X4 and σ(X4) = X3.
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The above argument results in f2(N, R′, M) > f1(N, R′, M), contrary to independence of
irrelevant matches.

To conclude, no scoring procedure can meet IIM and SC simultaneously.

Corollary 3.1. The row sum method violates self-consistency.

Proof. It is an immediate consequence of Lemma 3.1 and Theorem 3.1.

Corollary 3.2. The generalized row sum and least squares methods violate independence
of irrelevant matches.

Proof. It follows from Lemma 3.2 and Theorem 3.1.

A set of axioms is said to be logically independent if none of them are implied by the
others.

Corollary 3.3. IIM and SC are logically independent axioms.

Proof. It is a consequence of Corollaries 3.1 and 3.2.

4 How to achieve possibility?

Impossibility results, like the one in Theorem 3.1, can be avoided in at least two ways: by
introducing some restrictions on the class of ranking problems considered, or by weakening
of one or more axioms.

4.1 Domain restrictions

Besides the natural subclasses of ranking problems introduced in Section 2.1, the number
of objects can be limited, too.

Proposition 4.1. The generalized row sum and least squares methods are independent of
irrelevant matches and self-consistent on the set of ranking problems with at most three
objects Rn|n ≤ 3.

Proof. IIM has no meaning on the set Rn|n ≤ 3, so any self-consistent scoring procedure
is appropriate, thus Lemma 3.2 provides the result.

Proposition 4.1 has some significance since ranking is not trivial if n = 3. However, if
at least four objects are allowed, the situation is much more severe.

Proposition 4.2. There exists no scoring procedure that is independent of irrelevant
matches and self-consistent on the set of balanced, unweighted and extremal ranking prob-
lems with four objects R4

B ∩ R4
U ∩ R4

E.

Proof. The ranking problems of Example 3.3, used for verifying the impossibility in The-
orem 3.1, are from the set R4

B ∩ R4
U ∩ R4

E .

Proposition 4.2 does not deal with the class of round-robin ranking problems. Then
another possibility result emerges.

Proposition 4.3. The row sum, generalized row sum and least squares methods are inde-
pendent of irrelevant matches and self-consistent on the set of round-robin ranking prob-
lems RR.
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Proof. Due to axioms agreement (Chebotarev, 1994, Property 3) and score consistency
(González-Dı́az et al., 2014), the generalized row sum and least squares ranking methods
coincide with the row sum on the set of RR, so Lemmata 3.1 and 3.2 provide IIM and
SC, respectively.

Perhaps it is not by chance that characterizations of the row sum method were sug-
gested on this – or even more restricted – domain (Young, 1974; Hansson and Sahlquist,
1976; Rubinstein, 1980; Nitzan and Rubinstein, 1981; Henriet, 1985; Bouyssou, 1992).

4.2 Weakening of independence of irrelevant matches

For the relaxation of IIM , a property discussed by Chebotarev (1994) will be used.

Definition 4.1. Macrovertex (Chebotarev, 1994, Definition 3.1): Let (N, R, M) ∈ Rn

be a ranking problem. Object set V ⊆ N is called macrovertex if mik = mjk for all
Xi, Xj ∈ V and Xk ∈ N \ V .

Objects in a macrovertex have the same number of comparisons against any object
outside the macrovertex. The comparison structure in V and N \V can be arbitrary. The
existence of a macrovertex depends only on the matches matrix M , or, in other words, on
the comparison multigraph of the ranking problem.

Axiom 4.1. Macrovertex independence (MV I) (Chebotarev, 1994, Property 8): Let
V ⊆ N be a macrovertex in ranking problems (N, T ), (N, T ′) ∈ Rn and Xi, Xj ∈ V be
two different objects such that (N, T ) and (N, T ′) are identical but t′

ij 6= tij . Scoring
procedure f : Rn → R

n is called macrovertex independent if fk(N, T ) ≥ fℓ(N, T ) ⇒
fk(N, T ′) ≥ fℓ(N, T ′) for all Xk, Xℓ ∈ N \ V .

Macrovertex independence says that the order of objects outside a macrovertex is
independent of the number and result of comparisons between the objects inside the
macrovertex.

Corollary 4.1. IIM implies MV I.

Note that if V is a macrovertex, then N \ V is not necessarily another macrovertex.
Hence the ’dual’ of property MV I can be introduced.

Axiom 4.2. Macrovertex autonomy (MV A): Let V ⊆ N be a macrovertex in ranking
problems (N, T ), (N, T ′) ∈ Rn and Xk, Xℓ ∈ N \ V be two different objects such that
(N, T ) and (N, T ′) are identical but t′

kℓ 6= tkℓ. Scoring procedure f : Rn → R
n is called

macrovertex autonomous if fi(N, T ) ≥ fj(N, T ) ⇒ fi(N, T ′) ≥ fj(N, T ′) for all Xi, Xj ∈
V .

Macrovertex autonomy says that the order of objects inside a macrovertex is not
influenced by the number and result of comparisons between the objects outside the
macrovertex.

Corollary 4.2. IIM implies MV A.

Similarly to IIM , changing the matches matrix – as allowed by properties MV I and
MV A – may lead to an unconnected ranking problem.

11



Figure 4: The comparison multigraph of Example 4.1

X1

X2

X3 X4

X5

X6

Example 4.1. Consider a ranking problem with the comparison multigraph in Figure 4.
The object set V = {X1, X2, X3} is a macrovertex as the number of (red) edges from
any node inside V to any node outside V is the same (two to X4, one to X5, and zero to
X6). V remains a macrovertex if comparisons inside V (represented by dashed edges) or
comparisons outside V (dotted edges) are changed.

Macrovertex independence requires that the relative ranking of X4, X5, and X6 does
not depend on the number and result of comparisons between the objects X1, X2, and
X3.

Macrovertex autonomy requires that the relative ranking of X1, X2, and X3 does not
depend on the number and result of comparisons between the objects X4, X5, and X6

The implications of MV I and MV A are clearly different since object set N \ V =
{X4, X5, X6} is not a macrovertex because m14 = 2 6= 1 = m15.

Corollary 4.3. The row sum method satisfies macrovertex independence and macrovertex
autonomy.

Proof. It is an immediate consequence of Lemma 3.1 and Corollaries 4.1 and 4.2.

Lemma 4.1. The generalized row sum and least squares methods are macrovertex inde-
pendent and macrovertex autonomous.

Proof. Chebotarev (1994, Property 8) has shown that generalized row sum satisfies MV I.
The proof remains valid in the limit ε → ∞ if the least squares ranking is defined to be
unique, for instance, the sum of ratings of objects in all components of the comparison
multigraph is zero.

Consider MV A. Let s = s(N, T ), s′ = s(N, T ′), x = x(ε)(N, T ), x′ = x(ε)(N, T ′) and
q = q(N, T ), q′ = q(N, T ′). Let V be a macrovertex and Xi, Xj ∈ V be two arbitrary
objects. Suppose to the contrary that xi ≥ xj , but x′

i < x′
j , hence x′

i − xi < x′
j − xj . Let

x′
k − xk = maxXg∈V (x′

g − xg) and x′
ℓ − xℓ = minXg∈V (x′

g − xg), therefore x′
k − xk > x′

ℓ − xℓ

and x′
k − xk ≥ x′

g − xg ≥ x′
ℓ − xℓ for any object Xg ∈ V .

For object Xk, definition 2.2 results in

xk = (1 + εmn)sk + ε
∑

Xg∈V

mkg(xg − xk) + ε
∑

Xh∈N\V

mkh(xh − xk). (1)

12



Apply (1) for object Xℓ. The difference of these two equations is

xk − xℓ = (1 + εmn)(sk − sℓ) + ε
∑

Xg∈V

[mkg(xg − xk) − mℓg(xg − xℓ)] +

+ε
∑

Xh∈N\V

[mkh(xh − xk) − mℓh(xh − xℓ)] . (2)

Note that mkh = mℓh for all Xh ∈ N \ V since V is a macrovertex, therefore (2) is
equivalent to



1 + ε
∑

Xh∈N\V

mkh



 (xk − xℓ) = (1 + εmn)(sk − sℓ) +

+ε
∑

Xg∈V

[mkg(xg − xk) − mℓg(xg − xℓ)] . (3)

Apply (3) for the ranking problem (N, T ′):



1 + ε
∑

Xh∈N\V

m′
kh



 (x′
k − x′

ℓ) = (1 + εmn)(s′
k − s′

ℓ) +

+ε
∑

Xg∈V

[

m′
kg(x′

g − x′
k) − m′

ℓg(x′
g − x′

ℓ)
]

. (4)

Let ∆ij = (x′
i − x′

j) − (xi − xj) for all Xi, Xj ∈ V . Note that m′
kh = mkh for all

Xh ∈ N \ V , m′
kg = mkg and m′

ℓg = mℓg for all Xg ∈ V as well as s′
k = sk and s′

ℓ = sℓ

since only comparisons outside V may change. Take the difference of (4) and (3)



1 + ε
∑

Xh∈N\V

mkh



 ∆kℓ = ε
∑

Xg∈V

(mkg∆gk − mℓg∆gℓ) . (5)

Due to the choice of indices k and ℓ, ∆kℓ > 0 and ∆gk ≤ 0, ∆gℓ ≥ 0. It means that
the left-hand side of (5) is positive, while its right-hand side is nonpositive, leading to a
contradiction. Therefore only x′

i − xi = x′
j − xj , the condition required by MV A, can

hold.
The same derivation can be implemented for the least squares method. With the

notation ∆ij = (q′
i − q′

j) − (qi − qj) for all Xi, Xj ∈ V , we get – analogously to (5) as
ε → ∞ –

∑

Xh∈N\V

mkh∆kℓ =
∑

Xg∈V

(mkg∆gk − mℓg∆gℓ) . (6)

But ∆kℓ > 0, ∆gk ≤ 0, and ∆gℓ ≥ 0 is not enough for a contradiction now: (6) may hold
if

∑

Xh∈N\V mkh = 0, namely, Xk is not connected to any object outside the macrovertex
V as well as ∆gk = 0 and ∆gℓ = 0 when mkg = mℓg > 0. However, if there exists no object
Xg ∈ N \ V such that mkg = mℓg > 0, then there is no connection between object sets V
and N \ V since V is a macrovertex, and we have two independent ranking subproblems,
where the least squares ranking is unique according to the extension of definition 2.3,
so MV A holds. On the other hand, if there exists an object Xg ∈ N \ V such that
mkg = mℓg > 0, then ∆gk = 0 and ∆gℓ = 0, but ∆kℓ = ∆gℓ − ∆gk > 0, which is a
contradiction. Therefore q′

i − qi = q′
j − qj , the condition required by MV A, holds.

Lemma 4.1 leads to another possibility result.
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Proposition 4.4. The generalized row sum and least squares methods are macrovertex
autonomous, macrovertex independent and self-consistent.

This statement turns out to be more general than the one obtained by restricting the
domain to round-robin ranking problems in Proposition 4.3.

Corollary 4.4. MV A or MV I implies IIM on the domain of round-robin ranking prob-
lems RR.

Proof. Let (N, T ), (N, T ′) ∈ Rn
R be two ranking problems and Xi, Xj, Xk, Xℓ ∈ N be four

different objects such that (N, T ) and (N, T ′) are identical but t′
kℓ 6= tkℓ.

Consider the macrovertex V = {Xi, Xj}. Macrovertex autonomy means fi(N, T ) ≥
fj(N, T ) ⇒ fi(N, T ′) ≥ fj(N, T ′), the condition required by IIM .

Consider the macrovertex V ′ = {Xk, Xℓ}. Macrovertex independence means fi(N, T ) ≥
fj(N, T ) ⇒ fi(N, T ′) ≥ fj(N, T ′), the condition required by IIM .

4.3 Weakening of self-consistency

We think self-consistency is more difficult to debate than independence of irrelevant
matches, but, on the basis of the motivation of SC in Section 3.2, there exists an ob-
vious way to soften it by being more tolerant in the case of opponents: Xi is not required
to be better than Xj if it achieves the same result against stronger opponents.

Axiom 4.3. Weak self-consistency (WSC): A scoring procedure f : Rn → R
n is

called weakly self-consistent if the following implication holds for any ranking problem
(N, R, M) ∈ Rn and for any objects Xi, Xj ∈ N : if there exists a decomposition of the
ranking problem (N, R, M) into m unweighted ranking problems – that is, R =

∑m
p=1 R(p),

M =
∑m

p=1 M (p), and (N, R(p), M (p)) ∈ Rn
U is an unweighted ranking problem for all

p = 1, 2, . . . , m – in a way that enables a one-to-one mapping g(p) from O
(p)
i onto O

(p)
j

such that r
(p)
ik ≥ r

(p)

jg(p)(k)
and fk(N, R, M) ≥ fg(p)(k)(N, R, M) for all p = 1, 2, . . . , m and

Xk ∈ O
(p)
i , then fi(N, R, M) ≥ fj(N, R, M), furthermore, fi(N, R, M) > fj(N, R, M) if

r
(p)
ik > r

(p)

jg(p)(k)
for at least one 1 ≤ p ≤ m and Xk ∈ O

(p)
i .

It can be seen that self-consistency (Axiom 3.2) formalizes conditions ✠1-✠6, while
weak self-consistency only requires the scoring procedure to satisfy ✠1, ✠2, and ✠4-✠6.

Corollary 4.5. SC implies WSC.

Lemma 4.2. The row sum method is weakly self-consistent.

Proof. Let (N, R, M) ∈ Rn be a ranking problem such that R =
∑m

p=1 R(p), M =
∑m

p=1 M (p) and (N, R(p), M (p)) ∈ Rn
U is an unweighted ranking problem for all p =

1, 2, . . . , m. Let Xi, Xj ∈ N be two objects and assume that for all p = 1, 2, . . . , m

there exists a one-to-one mapping g(p) from O
(p)
i onto O

(p)
j , where r

(p)
ik ≥ r

(p)

jg(p)(k)
and

sk(N, R, M) ≥ sg(p)(k)(N, R, M).
Obviously, si(N, R, M) =

∑m
p=1

∑

Xk∈O
(p)
i

rik ≥
∑m

p=1

∑

Xk∈O
(p)
j

rjg(p)(k) = sj(N, R, M).

Furthermore, si(N, R, M) > sj(N, R, M) if r
(p)
ik > r

(p)

jg(p)(k)
for at least one p = 1, 2, . . . , m.

The last possibility result comes immediately.
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Proposition 4.5. The row sum method is independent of irrelevant matches and weakly
self-consistent.

Proof. It follows from Lemmata 3.1 and 4.2.

According to Lemma 4.2, the violation of self-consistency by row sum (see Corol-
lary 3.1) is a consequence of condition ✠3: the row sums of Xi and Xj are the same even
if Xi achieves the same result as Xj against stronger opponents.

It is a crucial argument against the use of row sum for ranking in tournaments which
are not organized in a round-robin format, supporting the empirical findings of Csató
(2017) for Swiss-system chess team tournaments.

5 Conclusions

Table 1: Summary of the axioms

Axiom Abbreviation Definition

Independence of irrelevant matches IIM Axiom 3.1
Self-consistency SC Axiom 3.2
Macrovertex independence MV I Axiom 4.1
Macrovertex autonomy MV A Axiom 4.2
Weak self-consistency WSC Axiom 4.3

Is it satisfied by the particular method?
Axiom Row sum

(Defini-
tion 2.1)

Generalized
row sum
(Defini-
tion 2.2)

Least squares
(Defini-
tion 2.3)

Independence of irrelevant matches ✔ ✗ ✗

Self-consistency ✗ ✔ ✔

Macrovertex independence ✔ ✔ ✔

Macrovertex autonomy ✔ ✔ ✔

Weak self-consistency ✔ ✔ ✔

The paper has discussed the problem of ranking objects in a paired comparison-based
setting, which allows for different preference intensities as well as incomplete and multiple
comparisons, from a theoretical perspective. We have used five axioms for this purpose,
and have analysed three scoring procedures with respect to them. Our findings are presen-
ted in Table 1.

However, our main contribution is a basic impossibility result (Theorem 3.1). The
theorem involves two axioms, one – called independence of irrelevant matches – posing a
kind of independence concerning the order of two objects, and the other – self-consistency
– requiring to rank objects with an obviously better performance higher.

We have also aspired to get some positive results. Domain restriction is fruitful in
the case of round-robin tournaments (Proposition 4.3), whereas limiting the intensity and
the number of preferences does not eliminate impossibility if the number of objects is
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meaningful (Proposition 4.2, but Proposition 4.1). Self-consistency has a natural weak-
ening, satisfied by row sum besides independence of irrelevant matches (Proposition 4.5),
although SC seems to be the more plausible property than IIM . Independence of irrel-
evant matches can be refined through the concept of macrovertex such that the relative
ranking of two objects should not depend on an outside comparison only if the comparison
multigraph have a special structure. The implied possibility theorem (Proposition 4.4) is
more general than the positive result in the case of round-robin ranking problems (consider
Corollary 4.4).

There remains an unexplored gap between our impossibility and possibility theorems
since the latter allows for more than one scoring procedure. Actually, generalized row
sum and least squares methods cannot be distinguished with respect to the properties
examined here, as illustrated by Table 1.3 The loss of independence of irrelevant matches
makes characterizations on the general domain complicated since self-consistency is not an
axiom easy to seize. Despite these challenges, axiomatic construction of scoring procedures
means a natural continuation of the current research.
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