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Abstract—The fuel efficiency of future aircraft can be improved
by reducing the weight and structure and by increasing the
wingspan. This makes the aircraft structure more flexible and
results in increased aeroservoelastic (ASE) effects. The use of
active control systems to suppress ASE effects is an important
aspect for future flight control systems. The basis of active
control system design is an appropriate control oriented model,
usually given in the linear parameter-varying (LPV) framework.
The ASE model is based on the integration of aerodynamics,
structural dynamics and flight dynamics. These subsystems can
be developed separately and combined to form the ASE model.
The dynamic order of such ASE models is usually too large
for control synthesis and implementation. Thus, model order
reduction is required. However, model order reduction of LPV
systems can still lead to challenges. The aim of the paper is to
overcome this reduction step by using a ”bottom-up” modeling
approach. The main idea is to use low order, simple subsystems
and/or reduce them before integrating them into the nonlinear
model. Therefore, a low order control oriented model is cre-
ated that captures the key ASE dynamics of the aircraft. An
important benefit of this modeling approach is that the physical
meaning of the states is retained. The specific flexible aircraft
example is the mini MUTT (Multi Utility Technology Testbed)
vehicle. The bottom-up modeling approach, by reducing the
linear structural dynamics and the parameter dependent aero-
dynamics subsystems, resulted in a 33 state low order nonlinear
model (LOM). The nonlinear model is then linearized about a
family of ”trim points” by Jacobian linearization leading to a
grid based LPV model. A full order model (FOM) is developed
in order to evaluate the accuracy of the 33 state LOM. The
FOM is developed in the same way as the LOM. However, the
subsystems are not reduced in this case, leading to a 97 states
model. The accuracy of the low order model is confirmed by
evaluating the ν-gap metric with respect to the full order model
and by time domain simulations.
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1. INTRODUCTION
The fuel efficiency of future aircraft can be improved by
reducing the weight and structure and by increasing the
wingspan. This makes the aircraft structure more flexible
and increases aeroservoelastic (ASE) effects. Aeroelastic
flutter involves the adverse interaction of aerodynamics with
structural dynamics and produces an unstable oscillation [1].
The use of active control systems to suppress ASE effects is
an important aspect for future flight control systems. Active
control system design is based on an appropriate control ori-
ented model [2–6]. A natural approach to model ASE systems
for control design is the linear parameter-varying (LPV) [7,8]
framework, which captures the parameter varying dynamics
of the aircraft. The paper focuses on the grid-based LPV
framework [9]. A grid based LPV model can be obtained
by linearizing the nonlinear model over a set of equilibrium
points [10].

Modeling ASE systems is based on the integration of aero-
dynamics, structural dynamics and flight dynamics [11–15].
These models are developed separately and combined to form
the ASE model. Depending on the modeling approach and
the assumptions/approximations involved, the resulting ASE
models can be highly coupled nonlinear equations. The paper
focuses on ASE models with the following assumptions.
The unsteady aerodynamics is modeled using the doublet
lattice method (DLM) [16]. The structural dynamics model is
obtained from a finite element model (FEM) by linear Euler
beams. The nonlinear equations of motions are derived based
on a mean axes reference frame [17–19]. The mean axes
approach describes the dynamics of the flexible body by a
set of equations which decouple the rigid body modes from
the vibrational modes. The mean axes coordinates ensure
that the coupling is restricted to external forcing terms only
[19]. The mean axes are a floating reference frame in which
the dynamics of the flexible aircraft can be defined. The
axes move with respect to an inertial frame as the elastic
body moves but they are not attached to any material point
on the body itself. The translation and rotation of the axes
are governed by a specific set of equations known as the
mean axes constraints. The resulting ASE model is a set of
equations of motion that is an extension of the well known
rigid body equations. The limitations of the approach are
given in [20]. Response to [20] is given in [21]. Additional
research was carried out by [13,18, 22] to resolve the unclear
aspects of the mean axes derivations.

The structural dynamics and DLM based aerodynamics make
the dynamic order of the ASE models too large for control
synthesis and implementation. Thus, model order reduction
is required before the control synthesis step. This is in
general done in the following way. First, a grid based LPV
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model is obtained from the nonlinear ASE model. Second,
the resulting LPV model is reduced by LPV model order
reduction techniques. However, model order reduction of
LPV systems is still not a completely straightforward task.
Recent LPV model order reduction approaches can be found
in [23–28]. The aim of the paper is to overcome the LPV
reduction step by a ”bottom-up” modeling approach. The key
idea is the following. The FEM and DLM based subsystems
modeling the structural dynamics and the aerodynamics have
simpler structure than the combined ASE model. Thus, the
order of these subsystems can be reduced by the application
of simpler, more tractable reduction techniques. The key
considerations for building low order subsystems are the fol-
lowing. The actuator bandwidth for ASE aircraft determines
the modes that can be effectively controlled. Thus, the linear
structural model needs to include only the lower frequency
modes that lie within the actuator bandwidth. The DLM
based unsteady aerodynamic model has a continuous state
space form with special properties. This can be efficiently
reduced, for example as given in [29]. Combining these
reduced order subsystems results in a low order nonlinear
ASE model. A grid based LPV model can then be obtained by
Jacobian linearization. The resulting LPV model is suitable
for control synthesis. On the one hand, it is of sufficiently
low order. On the other hand, it is capable of capturing the
key aeroelastic behavior of the flexible aircraft. An important
benefit of such ”bottom-up” modeling approach is that the
physical meaning of the states is preserved. Therefore, the
interpolation between the LPV grid points can be easily
solved.

The resulting LPV model can be further reduced if necessary,
for example by LPV balanced reduction [23] that is limited to
systems with low dynamic order [24, 25].

The specific flexible aircraft example is the mini MUTT
(Multi Utility Technology Testbed) [30] vehicle described
in Section 2. The aircraft and the software for the FEM
model and DLM aerodynamics are built at the University
of Minnesota [12, 31]. The ”bottom-up” modeling based
nonlinear ASE model is derived in Section 2. A grid based
LPV model is obtained in Section 3. The accuracy of the low
order LPV model is assessed in Section 4, which is followed
by the Conclusions.

2. AEROSERVOELASTIC MODEL
The current section describes the main considerations and
assumptions leading to the development of the nonlinear ASE
model. The aircraft under consideration is the mini MUTT
aircraft [30]. The mini MUTT is based on the aerodynamic
design of the Body Freedom Flutter (BFF) vehicle built by
Lockheed Martin and the Air Force Research Laboratory
[32]. The aircraft exhibits the so called body freedom flutter,
in which the first wing bending mode couples with the rigid
short period mode to create instability which can lead to loss
of aircraft [2]. Figure 1 depicts the mini MUTT aircraft.

The aircraft has 8 control surfaces, 4 on each side. These
are termed L1, L2, L3, L4, R1, R2, R3 and R4, where L1
and R1 are located on the body and L4 and R4 are located
at the wing tips. Control surfaces L2 and R2 are used as
ailerons and L3 and R3 as elevators while the remaining
control surfaces are used for flutter suppression. A Futaba
S9254 servo is used as actuator on the mini MUTT. A second-

Figure 1: mini MUTT aircraft

order model

Gact(s) =
96710

s2 + 840s+ 96710
(1)

is constructed via frequency-domain identification techniques
using a chirp input signal. Validation is performed in the
frequency domain using a second set of data with an input
chirp at a higher voltage and in the time domain via step
response data [33]. The Futaba S9254 servo has a bandwidth
of approximately 133 rad/s. Therefore, the frequency region
of interest of the ASE model is chosen to be up to 100 rad/s.

The aircraft has 30 sensors in total. 12 of these sensors
are located at the center of gravity (CG) of the undeformed
body. These measured outputs are the attitude angles φ and θ,
angular rates p, q and r, accelerations ax, ay and az , absolute
value of the ground speed without wind components Vs, angle
of attack α, sideslip angle β and flight path angle γ. There are
18 additional accelerometers and angular rate sensors located
on the body, at the middle of the wing or at the wing tips to
measure the effects of elastic deformation. The sensors with
their positions are given in Figure 1. The coordinate systems
of the sensors located on the wing are aligned with the sweep
angle of the wing.

The ASE model is based on a subsystem approach as shown
in Figure 2. The modeling of the subsystems is discussed
further in the following subsections.

Structural
dynamics

Rigid dynamics

Aerodynamics
Gact

Fmodal

[
η
η̇
η̈

]
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Figure 2: ASE subsystem interconnection

Rigid Body Dynamics - Mean Axes Constraints

The following section reviews the key points of the mean
axes based derivation of the equations of motion for flexible
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aircraft. The reference frame of the aircraft is chosen such
that it satisfies the translational and rotational mean axes
constraints. The translational mean axes constraint states that
there is no net generation of internal translational momentum
[17, 19]. The nonlinear rotational mean axes constraint states
that there is no net generation of internal angular momentum
[13, 17, 18]. The mean axes reference frame always exists
[17]. However, in general it is non trivial to identify. There-
fore, the practical mean axes can be introduced. The practical
mean axes satisfies an approximate angular momentum con-
dition, the so called linear rotational constraint [19].

The following assumptions are were made for the derivation
of the nonlinear equations of the ASE model.

Assumption 1: The instantaneous inertia tensor is equivalent
to the undeformed, or rigid body, inertia tensor Jrig.

Assumption 2: All derivatives of the inertia tensor are as-
sumed to be zero.

It was shown in [18, 22] that in case of straight and level
flight or flight with only gentle maneuvers the coupling terms
resulting from the rotation rate will be very small.

Assumption 3: It is assumed that the elastic deformation oc-
curs primarily in one direction within the reference frame,
meaning that the deflection and deflection rates are collinear.
If collinear, the deflection and deflection rates satisfy

δi ×
d

dt

∣∣∣∣
rel
δi = 0 (2)

where δi stands for the elastic deformation of the ith particle
of the deformable body.

The nonlinear rotational constraint and the linear rotational
constraint are equivalent based on Assumption 3. The as-
sumption of collinearity is typically valid for beam and plate-
like structures [14, 34].

Under Assumptions 1 and 2 the nonlinear equations of mo-
tions simplify as

[
mI 0
0 Jrig

] [
V̇r

Ω̇r

]
+

[
mIΩr × Vr
Ωr × JrigΩr

]
=

[∑
Fi∑
Mi

]
(3)

where m and Jrig are the mass and rigid inertia of the aircraft,
Vr and Ωr the translational and angular velocities in the mean
axes with respect to inertial axes and Fi andMi are the forces
and moments along the mean axes.

Further details about Newtonian and Lagrangian based
derivations of the equations of motions for flexible aircraft
in the mean axes framework can be found in [18] and [19]
respectively.

FEM Structural Dynamics

The structural model of the mini MUTT aircraft is developed
based on a Finite Element (FE) approach [12,13]. A common
element in such applications is the Euler-Bernoulli-beam with
added torsional effects. The interconnection of the beams is
shown if Figure 3.

The mass distribution of the wing is assumed to be replaced
by a concentrated mass system based on physical consid-
erations of components such as winglets, actuators, flight

Figure 3: FEM model of the mini MUTT aircraft [13]

computer and other electronics. The center body of the
aircraft is assumed rigid. Therefore, the beams corresponding
to the center body have very high stiffness. The model has
14 nodes interconnected with beams which have 3 degrees
of freedom - heave, twist and bending. The resulting FEM
model has 12 modes and the development details are given in
[11, 12, 31].

The structural model can be written as

Mη̈ + Cη̇ +Kη = F (4)

whereM, C andK are the modal mass, damping and stiffness
matrices respectively, η is the modal coordinate vector and F
is the external excitation in modal coordinates.

The elastic deformation of the nodes can be written as a
summation of the elastic mode shapes Φi multiplied by their
respective modal coordinates ηi.

δ =



δ1
...
δn


 =

∑

j

Φjηj = Φη (5)

Modal mass orthogonality is assumed which leads to the
following conditions for the vibration modes of unrestrained
bodies [18, 19, 34, 35].

∑

i

miδi = 0 (6)

∑

i

mi
d

dt

∣∣∣∣
rel
δi = 0 (7)

∑

i

misi ×
d

dt

∣∣∣∣
rel
δi = 0 (8)

where mi is the mass of the ith particle, si denotes the
undeformed position of the ith particle in the inertial frame.
Equation (6) states that the vibration modes do not displace
the center of mass. Equation (7) states that the vibration
modes do not generate any net translational momentum,
which is identical to the translational mean-axis condition.
Equation (8) states that the vibration modes do not generate
any net approximate angular momentum, which is identical
to the linear rotational mean-axis constraint [18].

The structural dynamics model is reduced in the following
way. As pointed out before, the actuator bandwidth sets a
limit for the frequency region of interest. Therefore, only the
first 4 modes fall in the frequency region of interest. The
remaining 8 modes are truncated from the linear structural
dynamics model. The resulting structural dynamics model
has 8 states, η1...4 and η̇1...4.

Aerodynamics

Doulbet Lattice Method aerodynamics—The aerodynamics
for the mini MUTT aircraft is modeled with the subsonic
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DLM [16, 31] along with a standard vortex lattice method
(VLM) to take care of the steady part [36]. The model is
divided into aerodynamic panels as shown in Figure 4.

Figure 4: Aerodynamic grid of the mini MUTT aircraft [31]

The following aerodynamic derivation is a short summary
based on [13, 31]. The DLM results in the AIC (Aerody-
namic Influence Coefficient) matrices that relate the normal-
wash vector w̄ to the normalized pressure difference vector p̄
about the panels as

p̄ = [AIC(ω, V )] w̄ (9)

where ω is the oscillating frequency and V is the air speed.
These two parameters are in general transformed into a single
dimensionless parameter, the reduced frequency

k =
ωc̄

2V
(10)

where c̄ is the reference chord length of the aircraft. The
resulting aerodynamic force Faero can be calculated as

Faero = q̄Sp [AIC(k)] w̄ (11)

where q̄ is the free stream dynamic pressure and Sp is the
panel area matrix. The aerodynamic model is connected
with the structural dynamic model in two steps. First, the
nodal displacements δi are projected on the aerodynamic
model resulting in the normalwash vector w̄. Second, the
aerodynamic force Faero is transformed to modal coordinates
Fmodal. The connection is done by splining interpolation.
The normalwash vector can be calculated from the modal
displacement vector as

w̄ = (D1 + ikD2)TasΦη (12)

where D1 and D2 are the differentiation matrices and Tas
is the interpolation matrix that projects the structural grid
deformation on to the aerodynamic panels in form of their
pitch and heave deformation [37]. The aerodynamic force
distribution can now be written as

Faero = q̄S [AIC(k)] (D1 + ikD2)TasΦη (13)

where S is the integration matrix. The force distribution in
modal coordinates can be obtained as

Fmodal = ΦTTTasFaero (14)

Combining (13) and (14) and leaving out the dynamic pres-
sure and modal coordinate results in the so called generalized
aerodynamic matrix (GAM)

Q(k) = ΦTTTasS [AIC(k)] (D1 + ikD2)TasΦ (15)

The GAM maps the modal deformation η to the aerodynamic
force distribution in modal coordinates Fmodal as

Fmodal = q̄ [Q(k)] η (16)

Since the GAM matrices are frequency dependent the re-
sulting aerodynamic model is dynamic. It is important to
emphasis that the GAM matrices are obtained only over
a discrete reduced frequency grid. However, time domain
aeroelastic simulations require a continuous model. There
are several methods to obtain such models. Roger’s rational
function approximation (RFA) method [38] is applied. The
resulting aerodynamic model is obtained in the form

Qpanel(k) =Qpanel0 +Qpanel1ik +Qpanel2(ik)2+
np∑

l=1

Qpanell+2

ik

ik + bl

(17)

where Qpanel0 , Qpanel1 and Qpanel2 stand for the quasi-
steady, velocity and acceleration terms of the aerodynamic
model. The Qpanell+2

terms take the lag behavior of the
aerodynamic model into account. The poles of the lag states
are given by bl. np number of poles are selected for each
modal coordinate a priori. This implies that the resulting
aerodynamic model in general is of much higher dimension
than the structural model.

The aero lag terms can be given in the following state space
form

ẋaero =
2V

c̄
Alagxaero +Blag [ẋrigid η̇ u̇]

T ||

yaero = Clagxaero

(18)

Such form of the GAM matrix results in a linear parameter-
varying (LPV) aerodynamic model that is affine with the
square of the airspeed. The number of lag states and structural
modes taken into account to develop the aeroelastic model in-
fluences how accurate the aerodynamic and structural models
are respectively. The resulting number of the aerodynamic
states can be given as

nxaero = nlagpoles × (nrigid + nη + ninput) (19)

Note that RFA form of the GAM matrix given as (17) requires
the rigid states, the modal coordinates η, input u and their the
first and second time derivatives as input parameters.

A low order DLM model is derived in the following way.
First, the GAM matrices are obtained based on the reduced set
of 4 elastic modes leading to 36 lag states. Note that in [31]
12 elastic modes are used, leading to a 52 state aerodynamic
model. Second, a minimal realization for the state space
model defined by Alag, Blag and Clag is applied. This step
removes 22 states, resulting in a 14 state unsteady aerody-
namics. Third, a linear balancing transformation matrix T
is computed for the 14 state aerodynamic model given by
Alag14 , Blag14 and Clag14 . A 4 state aerodynamic model
is obtained by residualizing the 10 states with the smallest
Hankel singular values. Note that other methods, for example
[29], can be also applied to obtain a low order aerodynamic
model.

Rigid body aerodynamics and throttle model—Since the struc-
tural grid points have 3 degrees of freedom, the VLM/DLM
based aerodynamic model described in the previous section
provides lift force, roll and pitch moments. The drag and
side forces with yaw moment are modeled via classical
aerodynamic models. These models are based on the rigid
version of the mini MUTT aircraft. The throttle model has
1 state and provides propulsion forces and moments. The
rigid body aerodynamic coefficients and the throttle model is
available at the UAV group of the University of Minnesota
http://www.uav.aem.umn.edu/.
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Output Equations

Equation (3) results in the accelerations and angular rates
in the mean axes. In case of flexible vehicles the sensor
measures the total local accelerations or angular rates, which
would include the effects of the elastic deformations [19].
Consequently, the local angular rates can be given as

Ωlocal = Ωr + Φangη̇ (20)

where Φang contains the mode shapes for angular elastic
deformation. The local accelerations are similarly affected by
the elastic deformation. The local accelerations can be given
as

alocal = ar + Φtransη̈ (21)

where Φtrans contains the mode shapes for translational elastic
deformation. The rigid body acceleration vector ar at the
sensor location p is given by

ar =
d

dt

∣∣∣∣
rel
Vr +Ωlocal×Vr +Ωlocal×Ωlocal×p+

d

dt

∣∣∣∣
rel

Ωlocal×p

(22)

For simplicity, it is assumed that the accelerometers and
rate sensors of the mini MUTT aircraft are aligned with the
structural model grid nodes.

The Resulting Nonlinear ASE Model

Combining the components described above leads to the
nonlinear ASE model of the mini MUTT aircraft. The model
has 33 states. These include 8 rigid body states (attitude
angles φ and θ, angular rates p, q and r and velocity u, v
and w); 8 structural dynamics states (modes η1...4 and η̇1...4);
4 aerodynamics states xaero1...4 ; 12 actuator states of the 6
servos (2 state servos for the aileron, elevator and L1, L4, R1
and R4 flaps); 1 state of the throttle model.

3. LPV MODEL OF THE MINI MUTT
AIRCRAFT

The aim of this section is to derive an LPV model of the mini
MUTT aircraft. An LPV system is described by the state
space model

ẋ(t) = A(ρ(t)) x(t) +B(ρ(t)) u(t) (23a)
y(t) = C(ρ(t)) x(t) +D(ρ(t)) u(t) (23b)

with the continuous matrix functions A : P → R× , B : P →
R× , C : P → R× , D : P → R× , the state x : R → R ,
input u : R → R , output y : R → R and a time-varying
scheduling signal ρ : R → P , where P is a compact subset
of Rρ . The parameter vector ρ may include elements of the
state vector x, in this case the system belongs to the class
of quasi LPV models. In a grid representation, the LPV
system is described as a collection of LTI models (Ak, Bk,
Ck, Dk) = (A(ρk) , B(ρk) , C(ρk) , D(ρk)) obtained from
evaluating the LPV model at a finite number of parameter
values {ρk}

ngrid
1 = Pgrid ⊂ P .

The grid based LPV model of the mini MUTT aircraft can
be obtained from the nonlinear ASE model by Jacobian
linearization as given in [10]. The aircraft is first trimmed
for straight and level flights at various airspeeds after which
the linearization is carried out. Therefore, the scheduling
parameter is defined as ρ = Vs in the interval [16, 30] m/s
over a grid of 141 equidistant points. Note that since ρ

depends on rigid body states u, v and w, the developed model
of the mini MUTT aircraft belongs to the class of quasi LPV
systems. The pole migration of the LPV model is given in
Figure 5. Flutter occurs at 23.5 m/s airspeed at 25.6 rad/s.
Based on the pole migrations it can be also concluded that
the aircraft has unstable spiral mode at low speed which goes
stable at higher speeds.

−40 −30 −20 −10 0 10
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0

50

100
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30

V
s
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/
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Figure 5: Pole migration of the 33 state mini MUTT aircraft

4. ASSESSMENT OF THE LPV MODEL
The objective of the proposed bottom-up modeling approach
is to obtain low order models suitable for the design of an
active aeroservoelastic control law that also performs well
on a higher fidelity system. A high fidelity nonlinear ASE
model, termed full order model (FOM), is developed based
on the same assumptions and subsystem modeling approach
as in case of the 33 state low order model. The only difference
is that the subsystems are not reduced before combining them
into the ASE model. Specifically, the original 12 modal
coordinates of the structural dynamics are retained and the
unsteady aerodynamic model also retains the original 52
states. Therefore, the full order ASE nonlinear model has
97 states. In addition, an LPV model of the full order model
is derived in the same way as for the 33 state model.

Comparison with the Full Oder LPV model

The ”bottom-up” modeling based 33 state LPV model is
compared with the 97 state full order LPV model based on
several aspects.

Pole migration—Figure 6 shows the pole migrations of the
low and full order LPV models. The high frequency poles
of the full order model are not shown in the figure for better
visibility. The poles of both models migrate on a very similar
trajectory. The full order LPV model predicts flutter at 24
m/s with 26.1 rad/s frequency and the low oder model has
23.5m/s flutter speed with 25.6 rad/s. The flutter speed and
frequency accuracy of the low order model is good enough for
control design.

5



−40 −30 −20 −10 0 10
−100

−50

0

50

100

<

=

Figure 6: Pole migrations the 33 ( ) and 97 ( ) states
LPV models

ν-gap metric—The ν-gap metric δν(·, ·) is used as a measure
since it takes into account the feedback control objective. It
takes values between zero and one, where zero is attained for
two identical systems. A system P1 that is within a distance ε
to another system P2 in the ν-gap metric, i. e. δν(P1, P2) < ε,
will be stabilized by any feedback controller that stabilizes
P2 with a stability margin of at least ε. [39] A plant at a
distance greater than ε from the P2, on the other hand, will
in general not be stabilized by the same controller. The ν-gap
metric thus captures the likelihood that a feedback controller
designed on the low order model will perform well on the full
order model. It can be calculated frequency by frequency as

δν(P1(jω) , P2(jω)) =

‖ (I + P2(jω) P ∗2 (jω))
−1/2

(P1(jω)−

− P2(jω)) (I + P ∗1 (jω) P1(jω))
−1/2 ‖∞

(24)

Figure 7 shows the frequency-dependent ν-gap metric of the
33 state low order and of the 97 state full order LPV models
at all grid points. The ν-gap values are around 0.2 for up to
90 rad/s frequency and grow rapidly beyond the frequency
range of interest. Therefore, the accuracy of the low order
LPV model is good within the frequency range of interest.

10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

Frequency (rad/s)

ν
ga

p

Figure 7: Variation of the ν-gap values for the 33 and 97
states LPV models

Bode diagram comparison— Figure 11 depicts Bode plots
of the low and full order LPV models at 19 m/s and 24 m/s
airspeeds. The low order model captures the input-output
behavior of the full order model very well in the frequency
range of interest.

Comparison with the Full Order Nonlinear Model

Time domain simulation is conducted to compare the low
order LPV model with the full order nonlinear ASE model.
The two models are run in open loop. The 33 state LPV
model and the trim inputs of the 97 state nonlinear model are
scheduled by VsLPV and VsNL respectively. The simulation
starts with straight and level flight trim condition at Vs =
18m/s. The airspeed is then increased to approximately 24.5
m/s, slightly above the flutter speed, by adding a ramp signal
to the throttle trim value. The models are excited by applying
5◦ doublets on the elevator and the aileron as shown in Figure
8. The responses of the low order LPV model and the full
order nonlinear models are given in Figures 9 and 10. The
two models show very similar behavior.
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Figure 8: Doublets acting as disturbance on the elevator and
aileron
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Figure 9: Vs of the nonlinear ( ) and the LPV model
( )

Future Steps

The future steps include developing a flutter suppression
controller based on the low order ASE model and validating
it on the full order model. In addition, the goal is to apply the
proposed method for developing low order ASE models of
the FLEXOP aircraft [40], which has more complex structural
and aerodynamics components.
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Figure 10: Responses of the nonlinear ( ) and the LPV model ( )
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Figure 11: Bode plots of low order model at 19 m/s ( ) and 24 m/s ( ) and full order model at 19 m/s ( ) and 24 m/s
( ). The shaded gray area denotes the frequency range beyond the desired bandwidth of 100 rad/s
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5. CONCLUSIONS
A ”bottom-up” modeling approach is proposed for developing ASE
aircraft models. The modeling is based on the subsystem ASE
modeling, where the aerodynamics, structural dynamics and rigid
body dynamics models are developed separately and then combined
to from the ASE model. In general, these subsystems have simpler
structure than the combined model. The key idea of the ”bottom-up”
modeling is therefore to reduce these components before combining
them into the nonlinear ASE model. This way the proposed mod-
eling approach avoids the application of challenging model order
reduction techniques for LPV systems. In addition, the proposed
modeling method preserves the physical meaning of the states. The
approach is applied to develop a low order ASE model of the mini
MUTT aircraft. The resulting nonlinear model is of 33 states upon
which a grid based LPV model is obtained by Jacobian linearization.
In order to assess the accuracy of the developed low order model
a full order model is developed without reducing the subsystems.
The ν-gap metric between the full order and the proposed low order
model is around 0.2 everywhere in the frequency range of interest
and all unstable modes of the mini MUTT aircraft are captured
accurately. The Bode plots of the low and full order models show
similar input-output behavior. In addition, time domain simulations
show that the low order LPV model and the full order nonlinear
models respond similarly to excitations that mimic wind gusts.
Therefore, and with its much lower dynamic order, the low order
model is expected to be well suited for control design. The next
necessary step is to design a controller based on the low order model
and validate it on the full order model.
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