# A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs

Bonnet, Édouard and Escoffier, B and Paschos, V T and Stamoulis, G
(2016)
*A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs.*
LECTURE NOTES IN COMPUTER SCIENCE, 9644.
pp. 235-248.
ISSN 0302-9743
10.1007/978-3-662-49529-2_18

Text
Bonnet_235_3173339_ny.pdf Download (499kB) |

## Abstract

We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821. © Springer-Verlag Berlin Heidelberg 2016.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Graph theory; Vertex Cover problems; Vertex cover; Polynomial time approximation; Greedy approaches; Computer-assisted analysis; Combinatorial algorithm; Bipartite graphs; Polynomial approximation; information science; Computer Aided Analysis; Combinatorial mathematics; Approximation algorithms; Algorithms |

Subjects: | Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |

Divisions: | Informatics Laboratory |

SWORD Depositor: | MTMT Injector |

Depositing User: | MTMT Injector |

Date Deposited: | 08 Feb 2017 13:55 |

Last Modified: | 08 Feb 2017 13:55 |

URI: | http://eprints.sztaki.hu/id/eprint/9072 |

Update Item |