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Abstract

This paper introduces a novel aerial building detection method based on
region orientation as a new feature, which is used in various steps throughout
the presented framework. As building objects are expected to be connected
with each other on a regional level, exploiting the main orientation obtained
from the local gradient analysis provides further information for detection
purposes. The orientation information is applied for an improved edge map
design, which is integrated with classical features like shadow and color.
Moreover, an orthogonality check is introduced for finding building candi-
dates, and their final shapes defined by the Chan-Vese active contour algo-
rithm are refined based on the orientation information, resulting in smooth
and accurate building outlines. The proposed framework is evaluated on mul-
tiple data sets, including aerial and high resolution optical satellite images,
and compared to six state-of-the-art methods in both object and pixel level
evaluation, proving the algorithm’s efficiency.

Keywords: orientation selectivity, modified Harris for edges and corners,
building detection, active contour

1. Introduction

Automatic building detection is currently a relevant topic in aerial image
analysis, as it can be an efficient tool for accelerating many applications,
like urban development analysis and map updating, also providing great
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support in crisis and disaster management, and in aiding municipalities in
long-term residential area planning. Large, continuously changing areas have
to be monitored periodically, requiring a huge effort if performed manually.
Therefore, there is a high interest for automatic processes to facilitate such
analysis.

A wide range of publications is available in remote sensing for building de-
tection for sparsely located building objects, often based on shape estimation
or contour outlining. Earlier works like Huertas and Nevatia (1988) intro-
duced a technique for detecting buildings with rectangular components and
shadow information. Line based segmentation techniques, like Lin and Neva-
tia (1998) were based on the extraction of line segments, processed with var-
ious methods. Following this principle, Unsalan and Boyer (2005) proposed
an extension, where the street network was extracted from the segmented
images and houses were detected based on graph theoretical algorithms. In
the same manner, Sirmacek and Unsalan (2008) – denoted by BoxFit in the
experiments – fused shadow and invariant color features with edge informa-
tion in a two-step process. First, a building candidate was defined based
on color and shadow features, then a rectangle was fitted using a Canny
edge map. This sequential method was very sensitive to the deficiencies of
both steps: inappropriate shadow and color information causing false candi-
dates and inexact edge maps causing inaccurate detections. As the proposed
method uses similar information sources, we can highlight the impacts of our
contributions by direct comparisons during the evaluation.

Following the region-based trend, Song et al. (2006) introduced a segment-
merge technique (SM ), which considered building detection as a region level
task and assumed buildings to be homogeneous areas (considering either
color or texture). First, a building model prior was constructed with texture
and shape features from a training building set. After selecting building-
like regions, shape and size constraints were used to merge such regions into
building candidates, followed by shadow and geometrical rules to finalize can-
didates. However, the basic assumptions influenced the success of the whole
approach: when buildings could not be distinguished from the background
by using color and texture features, further steps would also fail. Moreover,
they assumed simple building models, so complex shapes could not be recon-
structed. The orientation of a candidate building region seed was introduced
as a useful feature, defining potential rectangle orientations.

A point process based technique was introduced in Ortner et al. (2008),
which used stochastic geometry based on the superposition of segment and
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rectangle processes. The work of Katartzis and Sahli (2008) is based on a
stochastic image interpretation model and applies a Markov random field
model to describe the dependencies between the available hypotheses.

Latest publications can be grouped into hierarchical and graph model
based approaches: A hierarchical approach was introduced in Benedek et al.
(2012), using a multitemporal Marked Point Process (MPP) model combined
with a bi-layer Multiple Birth and Death (bMBD) optimization for rectan-
gular building detection. Object-level features (exploiting low level features)
were integrated into a configuration function, which was then evaluated by
a bMBD stochastic optimization process. The result of the process was a
group of rectangles, representing detected buildings. Although the hierarchi-
cal approach of the method was able to handle diverse objects, it was limited
by the applied features (gradient, color, shadow), therefore it had problems
when detecting objects with weak features, like non-red roofs. Moreover,
the applied strictly rectangular templates prevented the accurate detection
of complex shapes.

A graph model based algorithm for polygonal building shape detection
was developed in Izadi and Saeedi (2012), employing lines, line intersections,
and their relations. Ok et al. (2013) introduced the GrabCut partitioning al-
gorithm for building extraction. The algorithm first investigated the shadow
evidence to select potential building regions by applying a fuzzy landscape
generation approach to model the directional spatial relationship between
buildings and their shadows (which motivated our orientation selective fu-
sion step in the proposed method). Then a pruning process was developed
to eliminate non-building objects. Finally, GrabCut partitioning detected
the building regions. However, a drawback of the algorithm was its sensitiv-
ity to the shadow extraction step, therefore it had problems when detecting
buildings without shadow or having only fragmented shadow parts.

The method presented here is based on the fact that feature point detec-
tors can be applied efficiently for man-made object detection, also indicated
in Martinez-Fonte et al. (2005), where Harris and SUSAN detectors, pub-
lished in Harris and Stephens (1988) and Smith and Brady (1997), were
validated for distinguishing man-made versus natural structures. The prin-
ciple was followed also in Peng et al. (2005) using the Tomasi and Kanade
corner detector and in Sirmacek and Unsalan (2009), introducing a graph
construction approach (denoted by SIFT-graph) for urban area and building
detection using SIFT keypoints proposed in Lowe (2004). The method ap-
plied a light and a dark template to represent buildings. First, SIFT feature
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points were extracted from the image, followed by graph based techniques to
detect urban areas. The given templates helped to divide the point set into
separate building subsets and to define the locations of the different objects
without any shape estimation. However, in many cases, not all building ob-
jects could be represented by only two templates, moreover, the given features
were not always enough to distinguish the buildings from the background.

Cui et al. (2008) and Cote and Saeedi (2013) introduced a method using
Harris corner points; Sirmacek and Unsalan (2011) tested directional Gabor
filter based feature points, Harris corner points and the FAST points of Ros-
ten et al. (2010) for extracting different local feature vectors (LFV ), estimat-
ing a joint probability density function for urban area detection, assuming
that around such points there is a high probability for urban characteristics.
This technique motivated our previous work in Kovacs and Sziranyi (2013)
for introducing the Modified Harris for Edges and Corners (MHEC) feature
point set for efficient urban area detection.

The main contribution of the present approach is the application of ori-
entation as a novel feature in a direction-selective framework for detecting
buildings. Earlier approaches like Sirmacek and Unsalan (2008) and Ok et al.
(2013) usually dealt with orientation in terms of the illumination angle. Oth-
ers applied orientation based techniques for indirect solutions, like Unsalan
and Boyer (2004) to identify line support regions. Ortner et al. (2008) intro-
duced the alignment interaction in the MRF energy term. Cui et al. (2012)
followed a novel interpretation of orientation information, by using perpen-
dicular building borders to define dominant directions. They were looking for
lines in Hough space with orientations indicating potential straight building
borders. Similarly, Benedek et al. (2012) extracted a local gradient orien-
tation density function, published in Kumar and Hebert (2003), to find the
main orientations characterizing a building and measuring the orthogonality
of the candidate area.

However, these approaches concentrated only on one building and its
neighborhood to perform the directional analysis, while our proposed method
handles orientation as a region level feature and combines it with other fea-
tures throughout the approach (see Fig. 1):

• The orientation feature is calculated for the whole image and an im-
proved edge map is defined, which emphasizes edges only in the main
orientations. This improved edge map is fused with color and shadow
features, resulting in accurate localization of building candidates.
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Figure 1: Main steps of the proposed method and the corresponding section numbers of
the paper.

• An orthogonality checking of the possible building blobs is applied
to find remaining candidates with limited feature evidence.

• A directional refinement step is performed after the Chan-Vese
active contour based building detection phase: the shapes of the final
blobs are refined by a novel directional operator to efficiently smooth
the irregularities of the active contour outline.

2. Proposed framework

In this paper, a novel framework, called Orientation Selective Building
Detection (OSBD) is proposed, based on the exploitation of multiple fea-
tures: color, shadow map, and a novel orientation descriptor. Our guiding
principle is that, when detecting buildings, orientation is a valuable informa-
tion, as the alignment of buildings usually depends on the structural proper-
ties of their surroundings (e. g. the road network). Therefore the main edges
of neighboring buildings should have similar orientations. The main contri-
bution of this paper is to introduce region orientation as a novel feature for
building detection and to use this information in a direct manner, unlike pre-
vious works e. g. Ortner et al. (2008) where only alignment interaction was
calculated between building candidates, avoiding the use of the orientation
value itself.

Moreover, we exploit orientation information in multiple steps: the di-
rectional descriptor also helps in the verification of the building candidates
in the detection step. An orthogonality check is created to validate whether
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the candidate is a real building or some other image structure. Finally, a di-
rectional morphological operator is applied for the remaining building blobs
to smooth the final outline, resulting in more accurate detection results.

The main steps of the proposed method with the corresponding subsec-
tions are shown in Figure 1. The two main parts are Feature extraction
(Sec. 2.1) and Feature fusion and contour detection (Sec. 2.2). As a first
step, a feature point set is extracted which is based on the modification
of the Harris corner detector (Sec. 2.1.1), proposed in Kovacs and Sziranyi
(2012a). This point set is used as a directional sampling set to compute
orientation statistics in Section 2.1.2. Local orientation information is cal-
culated as the main orientation of gradients in the close proximity of the
feature points, and extended to the whole image to produce a directional
map. Using this map, dominant directions describing the urban regions are
defined, helping the construction of a more accurate edge map in Section
2.1.3 by specifying the favorable edge orientations. Joint edge and color
information (later called as structure information in Section 2.1.4) is then
integrated with shadow information (Sec. 2.1.5) in Section 2.2.2 using il-
lumination direction (Sec. 2.2.1) to verify the possible building candidates
and filter out false positive color and edge blobs. After a novel orthogo-
nality check (Sec. 2.2.3), building shapes are detected with the Chan-Vese
non-parametric active contour algorithm and the final outlines are refined
by a proposed directional morphological operator, described in Section 2.2.4.
The experimental evaluation (Section 3) includes parameter analysis and de-
tailed experiments indicating the method’s superiority over state-of-the-art
approaches.

2.1. Feature extraction

As the first step, a novel orientation feature is extracted based on the
Modified Harris for Edges and Corners (MHEC) feature point set. Ori-
entations, describing the building areas, are applied to create an accurate
edge map, complementing color features to form efficient structure informa-
tion. Shadow features are then integrated with structure information like in
Benedek et al. (2012) and Ok et al. (2013), introducing a novel orientation
inspired framework for building candidate localization.

2.1.1. Modified Harris for edges and corners (MHEC)

The MHEC feature point set was first introduced in Kovacs and Sziranyi
(2012a) and was proven to be efficient for urban area detection in Kovacs
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and Sziranyi (2013). The proposed algorithm adapts the Rmod (Eq. 1) modi-
fication of the original characteristic function of Harris and Stephens (1988).

Rmod = max(l1, l2), (1)

where l1 and l2 denote the eigenvalues of the Harris matrix. Eigenvalues
distinguish different regions: both of them are large in corner regions, only
one of them is large in edge regions and both of them are small in homo-
geneous regions. Therefore the Rmod function separates homogeneous and
non-homogeneous regions efficiently.

The advantage of the improved detector is an automatic balanced recog-
nition of corners and edges. Therefore, it is an efficient tool for characterizing
contour-rich regions, such as urban areas in aerial images.

Feature points are calculated as local maxima of Rmod. A pixel
pi = (xi, yi) is the element of the P feature point set, if it has the
largest Rmod(pi) value compared to its neighbors in a surrounding bi =
{[xi − 1, xi + 1]× [yi − 1, yi + 1]} window and its Rmod(pi) value exceeds a
given Tmax threshold:

P =

{
pi : Rmod(pi) > Tmax AND pi = argmax

r∈bi
Rmod(r)

}
. (2)

Here, the Tmax threshold is adaptively calculated by Otsu’s method Otsu
(1979) for each image.

The extracted MHEC point set for a sample aerial image is in Figure 2(d),
showing points in both corner (like buildings) and edge (like roads) regions,
points having higher density in urban areas. Only a few points are situated
in non-urban areas.

Our previous work Kovacs and Sziranyi (2013) compared the MHEC point
set to other feature point detectors, like SIFT of Lowe (2004), FAST of Ros-
ten et al. (2010) or SUSAN of Smith and Brady (1997) and revealed that
the MHEC point set represents urban areas efficiently, therefore the features
extracted from the local neighborhood of these points contain valuable infor-
mation for describing urban areas.

2.1.2. Local orientation analysis

A novel, orientation based concept for building detection was introduced
in Kovacs and Sziranyi (2012b) which was extended for handling multidirec-
tional areas in Manno-Kovacs and Sziranyi (2013). The idea was to calculate
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main gradient orientations in the small neighborhood around the feature
points and by collecting such data, define the orientation histogram of the
image.

Let us denote the gradient vector by ∇gi with ∥∇gi∥ magnitude and φ∇
i

orientation for the ith point (pixel) pi. By denoting the n× n neighborhood
around the point in image I withWn(i) (where n depends on the resolution),
the weighted density of φ∇

i is as follows:

λi(φ) =
1

Ni

∑
r∈Wn(i)

1

h
· ∥∇gr∥ · k

(
φ− φ∇

r

h

)
, (3)

with Ni =
∑

r∈Wn(i)
∥∇gr∥ and k(.) kernel function with h bandwidth pa-

rameter (See Figure 2).
The main orientation for the ith feature point is defined as:

φi = argmax
φ∈[−90,+90]

{λi} . (4)

The process is illustrated in Figure 2 for a selected ith feature point,
marking its neighborhood with a white rectangle. The neighborhood with
n = 15 size is then enlarged in Figure 2(b) and the corresponding λi(φ) local
gradient orientation density function is in Figure 2(c). The maximum value
of the λi(φ) function, assigning φi = −51 orientation value for the point is
marked in red.

As buildings usually have orthogonal edges, in such case the λi(φ) func-
tion is supposed to have two main peaks with a 90 degree difference. To
test this assumption, the function was correlated with a bimodal Mixture of
Gaussian (MG) function, where the two components had 90 degree difference
between them, and the candidate was categorized based on the rate of the
correlation.

In this approach λi is applied in a region-level context. The orientation
histogram is computed for the whole image. After calculating the dominant
direction for all K feature points, the histogram function ϑ is defined:

ϑ(φ) =
1

K

K∑
i=1

Hi(φ), (5)

where Hi(φ) is a logical function:

Hi(φ) =

{
1, if φi = φ
0, otherwise.

(6)
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(a) (b) (c)

(d) (e)

Figure 2: Local orientation analysis: (a) is the original image, denoting the neighborhood
(n = 15) of the ith feature point by a white rectangle; (b) is the cropped image show-
ing only the investigated neighborhood of the point; (c) shows the λi(φ) local gradient
orientation density function for the feature point, with the main orientation φi = −51
marked in red; (d) shows all the K MHEC feature points in yellow and (e) is the cal-
culated ϑ(φ) orientation histogram of the urban area in blue and the correlated bimodal
Gaussian function in red, indicating main orientations of the urban area.

Figure 2(d) shows all feature points in yellow and the calculated ϑ(φ)
orientation histogram is marked with blue in Figure 2(e). As the histogram
is calculated for the whole image, unlike in Benedek et al. (2012) where the
aim was to decide whether a building is situated around a point or not, the
ϑ(φ) orientation histogram is expected to have multiple dominant peak pairs
with 90 degree difference between them, caused by perpendicular edges of
different buildings groups at various locations. Therefore the ϑ histogram
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has to be correlated to an unknown number of bimodal MGs.
To estimate the optimal number of MGs we introduce the Iterative Bi-

modal Mixture of Gaussian Matching (IBMGM) process (see Algorithm 1).
In every iteration, a bimodal Gaussian function is correlated to the ϑ(φ) data
function. The rate of correlation is measured by α:

α(m) =

∫
ϑ(φ)η2(φ,m, dϑ) dφ, (7)

where η2(.) denotes a two-component MG, with m and m + 90 mean val-
ues and dϑ standard deviation, which was set by training. The orthogonal
directions represented by this MG are marked by θ, θo. The first dominant
direction can be obtained as the value at the maximum correlation:

θ1 = argmax
m∈[−90,+90]

{α(m)} . (8)

Algorithm 1 Iterative Bimodal Mixture of Gaussian Matching (IBMGM)
process

Input: ϑ(φ) orientation histogram

while αj−1 = αj AND CPR ≤ ϵ do

1. Correlate η2(.) MG to data ϑ(φ);

2. Calculate αj;

3. Update CPR and ϑ(φ);

if αj ≥ αj−1 OR αj ≤ αth then
αj−1 = αj;

end if
end while

Result: Main orientations: θ1, . . . , θq

The corresponding orthogonal direction, the other peak of the two-
component MG:

θo,1 =

{
θ − 90, if θ ≥ 0
θ + 90, otherwise.

(9)

Thus, in every iteration the most correlating MG is extracted. The αj

value is calculated in the jth iteration to measure the correlation, along with
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the number of the total correlated points (CPj) to follow the overall likeli-
hood. CPj is calculated as the sum of the ϑ(φ) histogram values, involved in
the actual η2 MG. Bins having η2 MG value more than 1% of the amplitude
are selected. Therefore, the full width h of the Gaussian curve with A am-
plitude was measured at the height of 0.01 · A. The first component of the
η2 MG is:

η2,1(φ) = A · e
−φ2

2d2
ϑ . (10)

We calculate the width h at height value 0.01 · A as:

0.01 · A = A · e
−h2

2d2
ϑ , (11)

h =
√

2log(100) · dϑ ≈ 3 · dϑ. (12)

This means that the bins involved in η2 MG in the jth iteration are:
[θj − 3 dϑ, . . . , θj + 3 dϑ] and [θo,j − 3 dϑ, . . . , θo,j + 3 dϑ]. The Correlated
Point Ratio (CPRj) is calculated as: CPRj = CPj/K, where K is the total
number of feature points. In every iteration, the CPRj value is updated
and the iterative process is stopped if this value exceeds an ϵ threshold. The
behavior of the αth and ϵ IBMGM parameters is analyzed in Section 3.2.

This iterative process is responsible for picking the optimal number of
MGs, and prevents the extraction of orientations which are not significant
enough. The histogram data is also updated in each iteration, eliminating
the already involved bins, as follows:

ϑ(θj − 3 dϑ, . . . , θj + 3 dϑ) = 0, (13)

ϑ(θo,j − 3 dϑ, . . . , θo,j + 3 dϑ) = 0. (14)

Figure 3 shows the iterations of the IBMGM process for defining the num-
ber of dominant directions (q). The calculated MHEC points (790 in total)
are shown in Fig. 3(b). The correlating bimodal MGs and the belonging αj

and CPj parameters are in Figs. 3(c)-3(e). We can see that the αj parameter
is increasing continuously and the CPRj parameter reaches a high ratio in
the second step, representing CPR2 = 768/790 ≈ 0.97 of the point set. The
third MG (Fig. 3(e)) is included to illustrate the behavior in the next itera-
tion: although αj is still increasing, the newly correlated point set is small,
containing only CP3 − CP2 = 18 points. Therefore, the estimated number
of main orientations is q = 2, with peaks at θ1 = 22 (θo,1 = −68) and θ2 = 0
(θo,2 = 90).
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(a) Original image (b) MHEC point set

(c) 1 correlating bimodal MG:
α1 = 0.042; CP1 = 558

(d) 2 correlating bimodal MGs:
α2 = 0.060; CP2 = 768

(e) 3 correlating bimodal MGs:
α3 = 0.073; CP3 = 786

Figure 3: Correlating increasing number of bimodal mixture of Gaussians (MGs) with the
ϑ orientation density function (marked in blue). The measured αj and CPj parameters
are represented for each j step. The third component is determined insignificant, as it
covers only 18 MHEC points. Therefore the estimated number of main orientations is
q = 2.

12



To separate the influence of MHEC and the orientation-selective frame-
work, we performed the local orientation analysis for different feature point
detectors in Sec. 3.1. Results showed that the main orientations representing
the urban area are not sensible to the applied feature point detector and
remain almost constant in all cases.

2.1.3. Orientation selective edge feature

After obtaining the main orientations, this information can be applied
to construct an improved edge map by only including edges in the main
directions. This map is later combined with other lower level features (like
color and shadow). Efficient edge detection is especially important in the
case of buildings with weak color (e.g., gray or black roofs).

There are different approaches applying directional information, like
Canny edge detection Canny (1986) using the gradient orientation, or Perona
(1998) which is based on anisotropic diffusion, but they cannot handle cases
with multiple orientations (like corners). Other single orientation methods
exist, like Mester (2000) and Bigun et al. (1991), but their main issue is that
they calculate orientation on the pixel-level and lose the scaling nature of ori-
entation, therefore they cannot be used for edge detection in a higher level
interpretation (like for object detection). Edge detection methods like shear-
lets of Yi et al. (2009) are using histogram bins instead of fixed directions. In
the present case, edges constructed by joint pixels have to be enhanced, thus
the applied edge detection method has to be able to handle the extracted
orientation values. Moreover, as we are looking for building contours, the
algorithm must handle corner points as well.

The Morphological Feature Contrast (MFC) operator was introduced in
Zingman et al. (2014) for extracting isolated structures while suppressing
textured details of the background. For doing so, the following operators
were introduced for dark and bright features:

ψ+
MFC(f) = |f − γr2δr1(f)|

+ , (15)

ψ−
MFC(f) = |δr2γr1(f)− f |+ , (16)

where γ is a morphological opening, δ is a morphological closing and r1, r2
denote the size of the square-shaped morphological structuring element (SE).
The parameters of the SEs are chosen so that r1 should be greater than the
maximal distance between details of texture to be suppressed and r2 should
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(a) (b)

(c) (d)

Figure 4: Edgemaps extracted with different approaches for (a) original image (extracted
edges in white, background is black): (b) for Canny edge detector Canny (1986); (c) for
shearlet based edge detection Yi et al. (2009); (d) for MFC operator Zingman et al. (2014).
Results show that the applied MFC-based technique is able to emphasize edges efficiently,
while generating low number of false hits.

be greater than the size of the features to be extracted (chosen according to
the resolution). Detailed parameter analysis is included in Sec. 3.2.

The motivation for using MFC is its ability to extract object boundaries
(edge features) from textured backgrounds with high accuracy (Fig. 4(d)).
Moreover, after applying the MFC operator, a subsequent filter γlin, obtained
by the point-wise maximum of morphological openings with linear SE, ex-
tracts narrow linear structures with respect to the defined orientation of the
SE. Therefore, it can be used for fast edge extraction in the defined main ori-

14



entations. Figure 4 shows the results of different edge extraction algorithms,
comparing Canny, shearlet and MFC, showing that MFC produces less false
detections than the shearlet based method and that it includes more of the
real building edges than Canny.

2.1.4. Structure feature

Previous methods applied the roof color feature as an evidence for build-
ing candidates. The u component of the CIE Luv colorspace was typically
used with an adaptive Otsu thresholding published in Otsu (1979) to get a
Bc binary color map (see Figure 5(b)). This color map is designed for roof
colors with significant red component, typically for orange, red, brown roofs.
However, in case of other colors without significant red channel, like gray
or black roofs, this color feature does not provide enough information and
additional features are needed to aid the detection.

To compensate for the drawbacks of the color feature, the improved MFC-
based edgemap is fused with Bc and will be called structure feature. Figure
5(c) shows the fused structure feature map Bt, indicating that non-red roofs
are also represented fairly for further detection.

2.1.5. Shadow feature

When the color feature is not relevant, the shadow feature can provide
useful information about building objects. Moreover, it may also assist in
distinguishing false color-based hits from real buildings. Shadow evidence
has been used for building detection in recent works (Benedek et al. (2012);
Ok et al. (2013)).

A shadow mask can be extracted by filtering pixels from the dark grayish
and blueish color domain. Following the recommendations of Tsai (2006),
we have tested many color spaces (like YIQ, YCbCr and HSV) and finally
applied the YCbCr color space for shadow detection.

After applying spectral ratioing, the ratio image was calculated as follows:

Rsh =
Cr + 1

Y + 1
, (17)

which enhances the increased hue property of shadows with low luminance.
After an Otsu thresholding, we get the binary shadow map Bsh. As the ratio
image is sensitive to greenish colors, Bsh may also contain vegetation areas
which have to be eliminated.
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(a) Original image (b) Bc

(c) Bt (d) Bs

Figure 5: Color, structure and shadow features: (a) is the original image; (b) is the color
map, the detected color blobs are marked in white, while background is black; (c) shows
the structure feature given as the fusion of color and edge information; (d) is the binary
shadow map (Eq. 20).

Normalized Difference Vegetation Index (NDVI), calculated as a com-
parison of near-infrared (NIR) and red (R) channels is widely applied for
vegetation extraction:

RNDV I =
NIR−R

NIR +R
. (18)

However, in the lack of the NIR channel, the NDVI index has been mod-
ified for RGB aerial images in the following way:

Rveg =
G−R

G+R
. (19)
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The Bveg binary vegetation map will be a binarization of Rveg using Otsu’s
method.

The final Bs binary shadow map (Fig. 5(d)) is given after eliminating the
vegetation by a logical subtraction:

Bs = Bsh −Bveg. (20)

2.2. Feature fusion and building contour extraction

On the next level of the segmentation process we integrate the extracted
structure and shadow features for obtaining building candidate blobs. Fur-
thermore, candidates supported by only one feature are also investigated.
The main steps of the feature fusion and final building contour detection are
the following:

1. Orientation-selective structuring element for fusing shadow and struc-
ture features, using illumination direction;

2. Fusion of structure and shadow features to get coherent blobs for build-
ing candidates;

3. Orthogonality checking to find the remaining candidate blobs;

4. Calculation and refinement of building contours for the localized can-
didates.

2.2.1. Application of illumination direction

Illumination direction (denoted by χ in the paper) connects different fea-
tures enabling the definition of their relations. While the structure informa-
tion usually indicates the exact location of the building, shadow evidence in-
dicates the presence of the building based on its dimensions (size and height).
Moreover, in the lack of the structure feature, shadow information combined
with illumination direction may estimate the possible location of a building.

Earlier methods Benedek et al. (2012); Ok et al. (2013) also applied the
illumination direction, which was either provided in the image metadata or
could be calculated automatically as in Sirmacek and Unsalan (2008) after
considering the influencing facts such as building height and off-nadir posi-
tion. In our algorithm, the illumination direction is assumed to be available,
therefore we do not go into details about its calculation. A supplementary
metadata file is supposed to be given with image acquisition details about
date and time, the solar illumination angles (azimuth and elevation) and
viewing geometry, from which the direction of solar illumination can be com-
puted.
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(a) (b) (c)

Figure 6: Initialization for the feature fusion process for Figure 5(a): (a) is the original and
reverse illumination direction (χ = 78◦) ; (b) shows the anisotropic structuring element;
(c) Shadow (Bs, gray) and structure (Bt, white) features visualized together.

Using the illumination direction, we define a direction-selective structural
element which is applied for the fusion of shadow and structure evidence of
the same building candidate. A similar idea was proposed in Aksoy and
Cinbis (2010), but it was only used for estimating the building location from
shadow evidence. In our case, the proposed direction-selective structuring
element has a major role.

The direction-selective or anisotropic structuring element is constructed
as a linear element directed along the reverse illumination direction (χ−), and
an anisotropic kernel is created with this linear element’s origin in the center,
denoted by Sχ− . For a sample χ = 78◦ illumination direction, the created
kernel in the reverse illumination direction is shown in Figure 6(b). The 0◦

direction is the horizontal axis and the value is calculated counterclockwise.
The size of the kernel (the length of the linear element is 13) is chosen
adaptively according to the resolution of the image, which is tested in Sec. 3.2

2.2.2. Fusion of structure and shadow features

The Bt structure and Bs shadow feature maps can be seen in Figure
6(c), showing the structure feature in white and the shadow feature in gray.
If a structure blob and a shadow blob have the proper relation, we fuse
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them to create a building candidate. This proper relation is defined by the
orientation-selective structural kernel. We investigate the following morpho-
logically modified shadow map:

Bχ
s = (Bs ⊕ Sχ−)⊖ Sχ, (21)

which means that the blobs of Bs are shifted in the opposite illumination
direction, with a morphological dilation (⊕) in the χ− direction, followed by
a morphological erosion (⊖) in the χ illumination direction. According to the
resolution, a certain shadow size is expected in case of buildings, therefore the
smaller blobs of Bs are eliminated; we only deal with shadow blobs having
at least 20 connected pixels. This also guarantees to find important shadow
blobs in a densely built area, where a shadow of one building falls on the
other building. Sometimes color space transformation or spectral ratioing
errors might occur, resulting in large, continuous shadow regions. Thus, we
also remove blobs with more than 2000 pixels. These thresholds are based on
image resolution and selected after training, which is discussed in Sec. 3.2.

In the first step of the fusion process, a building candidate is given by
the ith separate shadow blob of Bs (marked as Bs,i) and the corresponding
structure blob of Bt, marked as Bt,j if the following condition is satisfied:

Bt,j = argmax
k∈{1...Nt}

∣∣Bt,k ∩Bχ
s,i

∣∣ , (22)

which means that the jth blob of Bt corresponds to the ith blob of Bs if
it has the largest intersection with Bχ

s,i. Nt denotes the total number of
separate blobs in Bt. An example for the fusion step can be seen in Figure
7, where the original Bs,i and the shifted Bχ

s,i shadow maps can be seen for
a sample ith shadow blob and the structure map for the corresponding jth
blob, together creating a BC building candidate in Figure 7(d). Iterating
the fusion step over all shadow blobs gives the opportunity to join broken
shadow parts of the same building.

2.2.3. Orthogonality checking of candidate blobs

The fusion step provides evidence for structure blobs with size over the
threshold. Smaller structure and shadow blobs may form false candidates
with higher probability, as they might indicate noise and might be adjacent
only by chance. Also, there might be some structure blobs without any
shadow evidence at all. To eliminate false candidates and to find the remain-
ing true ones, we extended the fusion step with a filter function, which is
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(a) (b)

(c) (d)

Figure 7: Fusion process: (a) is the original image with the marked sample area; (b) shows
the sample shadow blob (Bs,i), (c) shows the shifted shadow blob (Bχ

s,i) in gray together
with the original Bs,i in white; (d) shows the BC building candidate: shadow part (white)
together with the corresponding Bt,j structure blob (gray).

performed for candidates that have a structure part smaller than 100 pixels.
This consideration is for accelerating the process and the threshold is based
on the analysis of building sizes in different image resolutions.

The filter function was created to measure the orthogonality of a candi-
date. We used an approach similar to the local orientation analysis in Section
2.1.2, investigating only the blob area: theWn(i) window of Eq. 3 is replaced
with the total area of the BC building candidate in the I image. The αBC

correlation of λBC local gradient orientation density information of BC to a
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bimodal Gaussian function is:

αBC(m) =

∫
λBC(φ)η2(φ,m, dϑ) dφ, (23)

please see Eq. 7 for comparison. The mean value of the η2 function (Eq. 8)
corresponding to the maximum αBC is denoted by mBC in this case.

Previously, in Benedek et al. (2012) the orthogonality of a region was
measured by αBC (Eq. 23), but Figure 8 shows that αBC can also have high
values for false objects, like road parts. To compensate for such drawbacks of
αBC , we have to measure the balance between the two correlated peaks of the
bimodal Gaussian function, instead of an overall correlation. Therefore, the
correlation for the two peaks (αBC,1, αBC,2) has to be calculated separately,
and compared:

αBC,1(mBC) =

∫
λBC(φ)η2,1(φ,mBC , dϑ) dφ, (24)

αBC,2(mBC) =

∫
λBC(φ)η2,2(φ,mBC , dϑ) dφ, (25)

where η2,1 and η2,2 denote the Gaussian components corresponding to η2.
Thus, the orthogonality ratio is defined as:

QBC =
min(αBC,1, αBC,2)

max(αBC,1, αBC,2)
. (26)

According to the QBC value the blob is either defined as a candidate, or
it is supposed to be a false hit and eliminated. As it is shown in Figure 8,
QBC (Eq. 26) provides additional information for αBC about the balance of
the correlation and distinguishes building blobs (2. building candidate) and
other objects (1. building candidate) more efficiently. When selecting the
QBC value accepted for buildings, we investigated the side ratios of typical
buildings. Such objects usually have an elongated shape, with a certain ratio
between their widths and lengths. For the general case, we use an acceptance
ratio threshold of 0.5.

Figure 9 shows the steps of the building candidate localization. On the
left, the resulting candidates of the fusion are presented. We can see that
the grayish building in the lower right part of the image is missed by the
feature fusion, as its structure information is poor. During the subsequent
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Figure 8: Orthogonality check for candidates. Two selected structure blobs are analyzed:
1. is a road part, 2. is a building part. While the α is high for the 1. candidate, the Q
value shows that only one orientation is present, the orthogonality ratio is zero. For the
2. candidate, the α value is lower, but Q indicates the higher rate of orthogonal edges.

orthogonality check, the smaller blobs are also analyzed and due to the high
QBC value (see Figure 8) the building is localized in two parts: one of them
is a joint structure and shadow blob (upper), the other is solely a structural
hit (lower). The result of the orthogonality blob check is shown in Figure
9(b), where the overall results of the candidate localization process can be
seen.
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(a) (b)

Figure 9: Result of the building candidate localization: (a) is the result after the fusion
of shadow and structure blobs, (b) shows the additional candidates as well, given by the
orthogonality check.

2.2.4. Building contour detection and shape refinement

After localizing the building candidates, their accurate contour has to be
detected. Instead of applying a shape template or only providing a pixel-
level location, the present approach estimates the real building outline, by
applying the non-parametric Chan-Vese active contour algorithm from Chan
and Vese (2001) similarly to Cote and Saeedi (2013). As the application
of this iterative technique in not a novel approach for detecting building
contours, we will not go into details. The specialty of our method is in the
initialization of the Chan-Vese contours: the areas of the candidate blobs are
used. For every candidate, the contour is initialized with the convex hull of
the structural part’s outline (gray in Fig. 9(b)). However, the active contour
may result in diverse and cluttered outlines as shown in Figure 10(b), thus,
an orientation selective morphological refinement process is introduced as a
novel contribution.

To describe this refinement process, we refer to Section 2.1.2 where the
main directions of the urban area have been calculated with the IBMGM
iterative method. The obtained directionally classified point set for the sam-
ple image is shown in the first row in Figure 10. The center of the selected
building candidate is in the green area having [θj, θo,j] = [−24, 66] dominant
directions. An orientation selective morphological operator is created based
on the dominant directions characterizing the area: Figure 10(c) shows these
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Figure 10: The building detection process: The first row shows the original image with
the marked sample area; and on the right the result of the local orientation analysis with
different directions marked with different colors. In the second row: (a) shows the sample
building candidate area; (b) is the result of the Chan-Vese active contour algorithm; (c)
shows the main directions [−24, 66] of the area and (d) is the result of the orientation
selective refinement process.

main directions as a joint cross structuring element. During the refinement
process, the two orthogonal directions (θ and θo) are handled separately,
both of them represented with a linear element as the two orthogonal lines
of the cross (Sθ and S

o
θ). The size of the operator is depending on the image

resolution, a detailed analysis is given in Sec. 3.2.
Let AC denote a sample binary area for a building candidate, with pixels

inside the contour detected with the Chan-Vese method having values of 1,
and 0 outside (see Figure 10(b)). First, the holes of the inner area are filled:
for the outer pixels having all the 4-connected neighbors in the inner area
(value of 1), the pixel itself is also transferred to the inner area (changed to
1):

AC(x± 1, y) = 1 ∩ AC(x, y ± 1) = 1 → AC(x, y) = 1. (27)

Then, the hole-filled AC is refined with Sθ and So
θ linear structuring
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(a) (b)

Figure 11: Result of the building detection: (a) shows the detected contours; (b) defines
the estimated locations of the detected buildings.

elements in the following way:

ACref = γSθ
γSo

θ
(AC) ∩ γSo

θ
γSθ

(AC), (28)

where γ is a morphological opening using either Sθ or So
θ linear structuring

element.
The ACref refined building area is clear, with smaller noisy blobs elim-

inated (see Figure 10(d)). The main advantage of the orientation selective
refinement process ensures that important edges are preserved, while the con-
tour becomes smoother and more accurate. Moreover, the calculated local
orientation information is applied for creating the building-specific structur-
ing element, which means that valuable orientation information is exploited
in multiple ways throughout the method. If two different candidates have
joint pixels in the calculated final contour, then they are merged into one
building object: see the 2nd example in Figure 8 and the related blobs of the
same building in Figure 9(b) compared to the result in Figure 11(a). The
locations of the buildings are estimated as the centers of the detected blobs.
The result of the OSBD process for the sample image is presented in Figure
11.

3. Experimental validation

This section starts with the discussion of interest point detectors per-
formance and parameter estimation, investigating groups of parameters and
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their behavior. Then, we will continue with the evaluations, with the details
of the processed image data sets provided in Table 4. First, an object-level
evaluation is performed on the SZTAKI-INRIA Building Detection Bench-
mark and a comparison is given with five state-of-the-art methods. This data
set was designed initially to test the performance of bMBD method and was
introduced in Benedek et al. (2012). QuickBird satellite images were provided
by Ali Ozgun Ok together with pixel-wise ground truth data, used previously
to test GrabCut in Ok et al. (2013). A pixel-level quantitative evaluation has
been performed in the second part of the evaluation and bMBD and GrabCut
methods were compared with the proposed method. As bMBD performed
similarly in the first part of the evaluation as the proposed method, it was
also included in the second part along with GrabCut. GrabCut was designed
for multispectral images and required the NIR band, which was not avail-
able for the first data set, so we could not include it in the first part of the
evaluation.

To show the method’s performance on higher resolution, publicly available
data set, some test patches (#1, #3, #7, #11, #13, #17, #34) of the
Vaihingen data set (Cramer, 2010) were evaluated. As the ground truth
classification of the images is also provided with the data set, it was possible
to perform a pixel-level evaluation. Finally, we also provide computational
time data for the proposed method to show its efficiency.

3.1. Detector performance analysis

To separate the influence of the MHEC feature point detector from the ori-
entation sensitive classification, the first, local orientation analysis step was
applied for different, standard interest point detectors on Fig. 5(a). Beside
the MHEC, the SIFT, Gabor points used in Sirmacek and Unsalan (2011),
the SUSAN, the MSER of Donoser and Bischof (2006) and the SURF of
Bay et al. (2008) were compared. The locations of the interest points were
extracted by the different detector approaches and the local orientation anal-
ysis (Sec. 2.1.2) was carried out on the extracted point sets. After calculating
the φi main orientation for all feature points the main peaks of the ϑ(φ) ori-
entation histogram (Eq. 5) were investigated. Figure 12 shows the detected
θi main orientations for the different point detectors. The main directions,
generated by the applied MHEC detector, are marked with black horizontal
lines to help the comparison. As it is shown, the main directions are sim-
ilar for each point detector, in some cases extra directions are present, but
the main characteristics are constant. Using this information, the improved,
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Figure 12: Main directions of the Fig. 5(a) image: main peaks of ϑ(φ) orientation his-
togram for different interest point detectors. The main directions are almost insensitive
to the detector, resulting in a constant improved edge map.

MFC-based edge map (Sec. 2.1.3) is not sensitive to the applied detector.
The motivation for using MHEC is its efficiency for representing the urban
areas in Kovacs and Sziranyi (2013).

3.2. Parameter settings

The parameters of the introduced OSBD method can be divided into
three main groups. The first group includes the threshold parameters for
binarization, typically when creating binary feature maps as Bc, Bsh and they
are calculated with the adaptive Otsu method (Otsu, 1979), which is proved
to be robust and reliable in many state-of-the-art works. These thresholds
are connected to the actual image, and are calculated separately for every
sample. Selection of optimal values for other parameters are described in
this section; Table 1 summarizes the parameters, their settings and influence
in the different processing steps.

The second group includes parameters depending on the image resolution
and accordingly on the expected size of the building objects. Such parameters
are the sizes of orientation-selective morphological structuring elements (Sχ− ,
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Processing step Parameter Setting Influence
Local orientation analysis overall correlation (αth) 0.04 IBMGM algorithm

(Sec. 2.1.2) CPR threshold (ϵ) 0.9 main directions
Edge map MFC SE (r1) 7 improved, MFC-based
(Sec. 2.1.3) MFC SE (r2) 5 orientation selective

linear SE (γlin) 4 edge map
Fusion of structure

fusion SE (Sχ−) 13
illumination direction

& shadow selective fusion
(Sec. 2.2.2) min. /max. shadow size adaptively filter shadow blobs

Orthogonality check
orthogonality threshold (QBC) 0.5

filtering false
(Sec. 2.2.3) building candidates

Building contour detection
orthogonal SE (Sθ) adaptively

orientation selective
and shape refinement morphological

(Sec. 2.2.4) shape refinement

Table 1: Overview on parameters, their setting and influence in the processing steps.

Sθ) and the thresholds for blob sizes in the fusion and detection steps. The
used values for different parameters are marked in the related sections of the
paper.

The MFC operator is responsible for creating the improved, orientation
selective edge feature (Sec. 2.1.3). It is based on a morphological opening
and closing, where the structuring elements (SE) should be chosen according
to the sizes of the background structure and the feature to be extracted.
Following the recommendations of Zingman et al. (2014), results of a few
different parameter settings are shown in Figure 13 for the original image in
Figure 5(a) and a part of Area17 from the Vaihingen data set. The analysis
shows that if the SE of opening and closing are chosen too small, many
background structures remain in the edge map (Fig.13(a) and Fig.13(d));
on the contrary, too large values cause the loss of important information
(Fig.13(c) and Fig.13(f)). Thus, for both data sets, r1 = 7 and r2 = 5 values
are applied in the evaluation. The length of the linear SE in γlin denoted by
∥γlin∥ is also tested for ∥γlin∥ = 4 and ∥γlin∥ = 10 values. However, in the
latter case, very limited number of structures is extracted for both images,
which may cause inaccurate detection results. Therefore, only the results for
∥γlin∥ = 4 are shown in Fig. 13.

The Sχ− is the morphological operator (Sec. 2.2.1), representing the il-
lumination direction in the fusion of the structure and the shadow features.
The size of the linear element in the kernel is analyzed for the optimal setting,
testing multiple values. For each case, the complete algorithm was executed
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(a) r1 = 5,r2 = 3,∥γlin∥ = 4 (b) r1 = 7,r2 = 5,∥γlin∥ = 4 (c) r1 = 15,r2 = 9,∥γlin∥ = 4

(d) r1 = 5,r2 = 3,∥γlin∥ = 4 (e) r1 = 7,r2 = 5,∥γlin∥ = 4 (f) r1 = 15,r2 = 9,∥γlin∥ = 4

Figure 13: Analysis of the MFC-based edge feature operator. Different parameters are
tested for two sample images from different data sets: First row is the sample image shown
in Figure 5(a); Second row: A part of Area17 from the Vaihingen data set. Results show
that in both cases r1 = 7 and r2 = 5 values are the most efficient.

and the overall F-score performance was measured on pixel-level.

P =
TD

TD+ FD
, R =

TD

TD+MD
, F = 2 · P ·R

P +R
, (29)

where TD, FD and MD denote the number of true detections (true positives),
false detections (false positives) and missed detections (false negatives) re-
spectively; P stands for precision, R for recall.

To measure the performance on pixel-level, two images with ground truth
data were chosen: image2 fromGrabCut data set (Ok et al., 2013) and Area17
from the Vaihingen data set. The performance remains constant for different
parameter values, included in Table 2, which means that the algorithm is
not sensible to the size of the Sχ− morphological operator. In the overall
evaluation the size of the linear element in the operator was set to 13.

To justify the selected maximum and minimum blob sizes for structure
and shadow, the building sizes in the different databases are analyzed in
Table 3. This shows that the average building sizes in SZTAKI-INRIA and
GrabCut databases are very similar, therefore the same limits are applied:
minimum shadow blob is 20 pixels, maximum shadow blob is 2000 pixels.
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Linear element of Sχ− (pixel)
F-score

GrabCut image2 Vaihingen Area17
13 93.5% 85.1%
23 93.5% 85.1%
33 93.5% 85.1%
43 93.5% 84.9%

Table 2: Overall performance of the method for different Sχ− sizes. The analysis is
performed for two samples from different data sets. Results show that the method is not
sensible to this parameter.

When selecting the maximum threshold for shadow blob, it is also taken into
consideration, that neither SZTAKI-INRIA, nor GrabCut database contains
images with elongated, large shadow blobs. In case of Vaihingen database,
the resolution is higher and the sizes of buildings are larger and more varied,
so 100 and 10000 minimum and maximum values are used in the evaluation.

To refine the final shape of building objects, an orientation selective mor-
phological refinement process is proposed in Sec. 2.2.4 with Sθ (and orthogo-
nal So

θ) structuring element. Different buildings were selected from GrabCut
database image2 (Fig. 14) and Vaihingen Area17 (Fig. 15) images to test the
length of the linear element in the SE (denoted by ∥Sθ∥). Different values
are tested for ∥Sθ∥, 7, 17 and 27 for GrabCut database image2; 7, 17, 27 and
37 for Vaihingen Area17. In each case, the overall F-score is given for the
building blob. Results show that the ∥Sθ∥ is depending on the image reso-
lution: too small values may not cause effective refinement, too large values
may clear real building parts. Moreover, proper selection of ∥Sθ∥ may also
eliminate falsely detected building-like objects (typically cars). In the evalu-
ation process ∥Sθ∥ = 7 is used for SZTAKI-INRIA and GrabCut databases,
∥Sθ∥ = 27 is applied for Vaihingen test patches.

The third group, including some local orientation analysis parameters
(see Section 2.1.2), is defined in a training process. The main point of the

Data Set Building sizes (pixel) Mean size (pixel)
SZTAKI-INRIA 348–4186 912

Grabcut 31–6165 1123
Vaihingen 93–52098 7131

Table 3: Occurring building sizes in the databases for the selection of optimal blob sizes.
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(a) F-score: 91.5% 92.6% 0%

(b) F-score: 95.1% 68.6% 0%

Figure 14: Shape refinement structuring element analysis for selected buildings: first
column: original images; second column: preliminary detection result with Chan-Vese
method; Refinement process with different ∥Sθ∥ sizes (in pixel): third column ∥Sθ∥ = 7;
fourth column ∥Sθ∥ = 17; fifth column ∥Sθ∥ = 27.

parameter tuning in these cases is to find such values which balance between
accuracy and efficiency. The first parameter in the analysis is the n window
size indicating the neighborhood size around a feature point, where local
orientation is defined. Tests with different n sizes have been performed for
the test set in Figure 2(a), which is shown in Figure 16. While the main
characteristics of the ϑ(φ) function remains similar using the larger n =
15 value (compared to the smaller n = 5), the ϑ(φ) orientation histogram
becomes less noisy. Therefore, n = 15 parameter was applied for extracting
local gradient orientation.

The parameters of the IBMGM process are also analyzed: we have to
define the value of αth and ϵ in Algorithm 1. The αth is the lowest correlation
rate, ϵ is the lowest CPR which we accept to stop the iterative process. To
tune these parameters, Figure 17 shows the results for 2 images used for
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(a) F-score: 95.7% 95.5% 95.4% 93.6%

(b) F-score: 81.6% 83.4% 88.3% 87.3%

(c) F-score: 81.7% 81.6% 82.0% 77.8%

Figure 15: Shape refinement structuring element analysis for selected buildings: first
column: original images; second column: preliminary detection result with Chan-Vese
method; Refinement process with different ∥Sθ∥ sizes (in pixel): third column ∥Sθ∥ = 7;
fourth column ∥Sθ∥ = 17; fifth column ∥Sθ∥ = 27; sixth column ∥Sθ∥ = 37.

training. CPRj is shown in blue and 10 ·αj in red, for every iteration. While
CPRj is constantly growing, α is typically having some local maxima. After
analyzing the behavior of both parameters, ϵ = 0.9 has been selected for
CPR threshold and αth = 0.04 (in Figure 17 0.4 is marked for 10 · αth in
red) for the lowest acceptable rate of correlation to stop the IBMGM. The
selected parameters for αj and CPRj are applied for every test set in the
evaluation.

3.3. Object-level evaluation

Multiple quantitative experiments have been carried out on different im-
age databases. In the first case, an object level evaluation was performed
on a large data set, including images from different test sites: Budapest,
Szada (both in Hungary); Cote d’Azur, Bodensee and Normandy, altogether
with 453 building objects. The sources for the images are various: Budapest
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(a) n = 5 (b) n = 15

Figure 16: Local neighborhood size analysis for Image 2(a): the calculated ϑ(φ) functions
for different n neighborhood sizes. Results show that while the main characteristics of the
function remain similar, the bigger the chosen n, the less noisy the resulting function.

(a) (b)

Figure 17: Iterational behavior of IBMGM parameters for different images together with
the selected thresholds: blue indicates CPR, red marks 10 · α.

aerial images were provided by the City Council, Szada aerial images are pro-
vided by Hungarian Institute of Geodesy, Cartography and Remote Sensing
(FÖMI); Cote d’Azur, Bodensee and Normandy are satellite images acquired
from the Google Earth. Database details are summarized in Table 4. These
databases were also used in Benedek et al. (2012) for evaluation. Figure
18 shows the object level quantitative comparison for the data set. Each
column shows the ratio of false negative/missed (lower, darker) and false
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Figure 18: Object level quantitative comparison with state-of-the-art methods. Different
patterns denote different approaches (see Sec. 1). Results are evaluated on 5 data sets.
The ratio of false and missed objects is shown.

positive/false (upper, lighter) detected objects (including false multiple de-
tections) for each respective database. Image sizes are changing from 0.3 to
1.5 megapixel.

Evaluation results show that the proposed OSBD method is able to out-
perform the compared approaches producing the lowest number of mistaken
objects in nearly all test cases. To give an extended discussion about the
performance of the compared methods, a sample result from the Cote d’Azur
data set is shown in Figure 19 for all methods. The selected site includes
some challenging objects: buildings with gray rooftops and varying shapes.
The detection results show that some of the compared methods are not able
to cope with the difficult objects. Moreover, the remaining methods, while
handling the variations in rooftop colors well, cannot accurately detect the
scalloped, elongated building in the left part of the image. To aid the visual
inspection of the results, the ground truth is also shown in Figure 19(h).
It should be mentioned, that the ground truth was created for the bMBD
method, therefore the elongated building is covered with multiple rectangle-
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(a) Original (b) SIFT-graph (c) LFV (d) BoxFit

(e) SM (f) bMBD (g) Proposed (h) Ground Truth

Figure 19: Sample result for the sample part of Cote d’Azur data set. The detection
result for different methods are shown separately: (a) is the original image part; (b) SIFT-
graph, Sirmacek and Unsalan (2009); (c) LFV, Sirmacek and Unsalan (2011); (d) BoxFit,
Sirmacek and Unsalan (2008); (e) SM, Song et al. (2006); (f) bMBD, Benedek et al. (2012);
(g) proposed OSBD; (h) is the ground truth created for bMBD with rectangle templates.

shaped objects.
The SIFT-graph method is sensitive to the selected building template.

When the limited number of templates are not enough to represent all build-
ing variations in the images, the detection accuracy decreases.

The LFV is not sensitive to altering building characteristics, but features
in the background can cause false positive detections. Both SIFT-graph and
LVF perform better for the satellite images. These methods are optimized
for less densely situated buildings, which is a disadvantage in city regions.

The BoxFit method is hardly able to find accurate building outlines, de-
spite localizing objects correctly. As the method strongly depends on color
and shadow information, the lack of these features results in missed detec-
tions. Background blobs that are similar to buildings (like pools) can also
generate false positive hits. The shape detection step is not able to find
complex building contours either.

Similarly, SM is also sensitive to insufficient color and texture information.
It is also unable to detect inhomogeneous objects, due to the method’s main
hypotheses about homogeneity. The Cote d’Azur test site has gray colored
buildings, surrounded by dark green vegetation (see the building in the lower-
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Data set #obj. Source Type Resolution Image size(s)

Budapest 41 City Council Aerial 0.5 m/pixel 600× 490

Szada 57 FÖMI Aerial 0.5 m/pixel

800× 600

1076× 444

996× 588

Cote d’Azur 123 Google Earth
HR optical

2.5 m/pixel
800× 473

satellite 800× 455

Bodensee 80 Google Earth
HR optical

2.5 m/pixel 910× 618
satellite

Normandy 152 Google Earth
HR optical

2.5 m/pixel 1437× 814
satellite

GrabCut 230 QuickBird 0.61 m/pixel

367× 325

382× 393

VHR optical 524× 539

satellite 506× 490

827× 624

550× 416

Vaihingen 306 RWE Power Aerial 0.09 m/pixel

1919× 2569

2006× 3007

1887× 2557

1893× 2566

2818× 2558

2336× 1281

1388× 2555

Table 4: Details of image datasets used for object-level validation.
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right part of Fig. 19(a)), which proved to be a great challenge for this method.
Additionally, complex building outlines are often detected as multiple hits.

The bMBD method also prefers homogeneous building objects, therefore
it is difficult for it to detect partially shadowed rooftops. As it handles a
building candidate as a rectangular region, the features inside the region are
calculated in the energy term. This means that the method also has problems
with diverse building shapes, like the scalloped one in the left part of Figure
19(a).

The proposed OBSD method localizes the buildings correctly, therefore
the object-level result is of high quality. Results show that the OSBD method
is able to outperform the compared approaches and produces the lowest
number of mistaken objects in nearly all test cases. However, two issues might
occur: sometimes objects might be reduced and only a smaller building part
will be detected; occasionally, parts of the surrounding vegetation might be
covered by the object outline. These issues are mainly caused by the variation
reducing behavior of the Chan-Vese method.

3.4. Pixel-level evaluation

The second part of the evaluation was a pixel-level evaluation. First,
a comparison was performed with 2 state-of-the-art methods, bMBD and
GrabCut from Ok et al. (2013). The data set was kindly provided by Ali
Ozgun Ok and it was also evaluated in Ok et al. (2013) for the GrabCut
method. Therefore, the detection results for GrabCut were taken from Ok
et al. (2013) directly. The data set contains QuickBird satellite images,
including four multispectral bands (R, G, B, and NIR) with a radiometric
resolution of 11 bits per band, the images are selected to represent diverse
urban area and building characteristics with varying illumination conditions.
The data set was provided along with ground truth data, which was produced
manually by a qualified human operator.

The overall performance of different techniques was measured by the F-
score. Pixel-level quantitative evaluation results can be seen in Table 5 and
a corresponding result for the first image of the data set (image1) is shown in
Figure 20, where true positives are green, false negatives are blue and false
positives are red.

bMBD shows slightly decreased performance compared to the other two
approaches which is due to complex building shapes and the lack of color
and shadow components in some cases. Figure 20(b) shows that the method
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Database
Performance

bMBD GrabCut Proposed OSBD
Image F R P F R P F R P
image1 86.6% 87.7% 85.5% 88.1% 89.4% 86.9% 94.0% 91.4% 96.7%
image2 80.7% 78.6% 83.0% 89.1% 93.6% 85.0% 93.5% 91.2% 95.9%
image3 82.6% 81.0% 84.3% 90.4% 93.5% 87.5% 90.6% 87.6% 93.9%
image4 72.5% 90.7% 60.3% 92.4% 95.8% 89.3% 91.4% 87.1% 96.0%
image5 62.9% 72.6% 55.5% 81.1% 89.2% 74.4% 81.8% 74.6% 90.5%
image6 67.3% 78.9% 58.6% 75.9% 95.9% 62.8% 77.4% 66.7% 92.3%

Average 75.4% 81.6% 71.2% 86.2% 92.9% 81.0% 88.1% 83.1% 94.2%

Table 5: Quantitative results of the pixel-level evaluation step for bMBD, Benedek et al.
(2012); GrabCut, Ok et al. (2013) and the OSBD method.

has problems with the detection of the white building (third row) and the
inhomogeneous rooftop (second row).

GrabCut performs with high accuracy; since it is based on shadow de-
tection, buildings without such features are generally missed. Moreover, the
GrabCut process misses building parts more often than the proposed OBSD
method that uses a refinement step based on the combination of Chan-Vese
contours and morphological shape refinement. The advantage of GrabCut is
the high recall value, which means a lower number of missed detections. It is
also interesting to mention, that GrabCut and OSBD often detect the same
false positives, due to the active contour based final outline detection (see
the building in the lower right corner in Figure 20).

OSBD exploits the advantages of orientation as a novel feature, therefore
irrelevant features can be eliminated more efficiently. It is also able to detect
building objects without shadow information, using only orientation selective
edge features, which is the main reason for the performance improvement.
However, the active contour based building outline detection still has its dis-
advantages: sometimes inhomogeneous buildings are only partially detected
and similar surroundings can result in false positive detections. Overall, we
can say that due to the novel contributions of the proposed OSBD algorithm,
our method is able to outperform the other two state-of-the-art approaches.

To measure the method’s performance objectively, a few test patches of
the Vaihingen data set (Cramer, 2010) have been evaluated. It is important
to mention, that only the true orthophoto mosaics of the test set were used
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(a) Original image1 (Ok et al., 2013) (b) bMBD Benedek et al. (2012)

(c) GrabCut (from Ok et al. (2013)) (d) Proposed

Figure 20: Sample result of the building detection for image1: (a) is the original image1;
(b)–(d) are the detection results for bMBD Benedek et al. (2012), GrabCut Ok et al.
(2013) and the proposed OSBD. True positives are green, false negatives are blue and
false positives are red.

for the detection, neither the provided ALS, nor the DSM data. Moreover,
as this data set has IR, R and G color channels, the color conversion and
application of CIE Luv colorspace cannot be performed effectively. For this
reason, only 7 mosaics of the test set was used for evaluation. The results in
Table 6 show that the algorithm is still able to achieve a fine detection rate,
and its advantage is the ability of detecting various building shapes efficiently
(Fig. 21).
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Vaihingen database
Performance

F R P
Area1 59.5% 73.2% 50.0%
Area3 70.4% 67.8% 73.3%
Area7 68.5% 63.7% 74.2%
Area11 58.5% 54.2% 63.5%
Area13 73.1% 71.8% 74.4%
Area17 85.1% 78.9% 92.4%
Area34 71.7% 72.9% 70.5%

Average 69.5% 68.9% 71.2%

Table 6: Detection results for selected true orthophoto mosaics of the Vaihingen dataset.

(a) Area3 (b) Area17

Figure 21: Sample test results for the Vaihingen dataset, original and detection result
images are merged, the results are shown as lighter blobs.

To analyze and compare the method’s performance, Table 7 shows the
computational times for each data set included in the object-level evaluation
step (Figure 18). As the final, active contour based detection step is the
most computationally intensive step of the method, the candidate localization
and contour detection part is also indicated separately beside the overall
execution time. Our tests were performed on a PC with an Intel(R) CoreTM
i7 2.67GHz CPU with 4 GB RAM using Matlab R2014a. By comparing the
execution times to other state-of-the-art methods from Benedek et al. (2012),
the speed of our algorithm falls in the middle, meaning comparable efficiency.
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Data Set
Computational time (seconds)

Localization Detection Overall
Budapest 11.0 7.4 18.4
Szada 38.9 14.6 53.5

Cote D’Azur 37.5 28.8 66.3
Bodensee 18.7 10.4 29.1
Normandy 109.6 45.1 154.7

Table 7: Computational time for OSBD method (candidate localization + contour detec-
tion) for the database in Figure 18.

Based on Benedek et al. (2012), LFV is proclaimed to be the most efficient
from a computational complexity point-of-view with an average run time of
42s per image for the 5 used data sets, followed by the SM method with
52s. Calculating the average computational time for the proposed method,
it takes 64s for one image, showing that the proposed method is competitive
with the compared techniques. Considering the data sets separately, for the
Normandy data set our method is a bit slower, as the large number of building
candidates cause an increased detection time; nevertheless for the other 4,
the computational time is in the mid-range. Further considerable speedup
could be achieved by an optimized multi-threaded C++ implementation.

As Ok et al. (2013) is only providing average computation times, in the
pixel-level evaluation phase we have also calculated an average processing
time for one image of the test data, which was 16.2 seconds. This value
was the result of a lower number of building candidates in the image and
richer feature information, which meant that the final building contour was
extracted by a lower number of iterations in the active contour method. Due
to the strong low level features, the bMBD method was also performing at a
high speed, resulting in an average of 8 seconds per image. However, as it is
shown in Table 5, the accuracy is a bit lower, than for the two other methods.
Practically, this means that ordinary buildings (red roofs with strong gradi-
ent and shadow features) are detected very fast, but extraordinary ones are
missed. Both bMBD and OSBD perform fairly well compared to the average
time of 23 seconds of the GrabCut algorithm, even considering the fact that
GrabCut ’s performance was tested on a Core i5 2.6 GHz CPU.
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4. Conclusion

We have proposed an orientation selective building detection framework
for aerial images, introducing orientation as a novel feature for object ex-
traction purposes. The algorithm starts with feature point detection, used
as a directional sampling set to compute orientation statistics and to define
the dominant directions of the urban area. The orientation information is
then applied to create a novel improved edge map, emphasizing edges only
in the main directions. By integrating color, shadow and the improved edge
features, and using the illumination information, building candidates are lo-
calized. To find the remaining candidates with limited feature evidence, an
orthogonality check is introduced. The contours of the localized candidates
are extracted by the Chan-Vese active contour algorithm, which might re-
sult in diverse, yet less accurate contours. To compensate for this, a novel
orientation-selective morphological operator is introduced to refine the final
outlines. The extensive object- and pixel-level quantitative evaluation and
comparison with six state-of-the-art methods confirm and support the supe-
riority of the introduced approach.

The present work can be improved in the future by a C++ implemen-
tation, considering optimization and multi-threaded design, concentrating
especially on the active contour calculation, which is the most computation-
ally intensive part. The exploitation of orientation information looks very
promising and it can be extended for different remote sensing applications:
it can provide a new perspective for feature based building detection al-
gorithms, for application in building verification besides shadow, color and
texture information. Moreover, the orientation based feature concept can be
a novel trend in object detection, especially in such applications where the
object has a specified shape (like traffic sign detection).
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