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Abstract

In this paper we establish approximation preserving reductions between schedul-
ing problems in which jobs either consume some raw materials, or produce some
intermediate products, and variants of the knapsack problem. Through the re-
ductions, we get new approximation algorithms, as well as inapproximability
results for the scheduling problems.

Keywords: Approximation preserving reductions, scheduling problems,
knapsack problems

1. Introduction

In this paper we study approximation preserving reductions between single
machine scheduling problems extended with non-renewable resources, and vari-
ous knapsack problems. We will consider two types of scheduling problems: (i)
scheduling of jobs producing some intermediate products, and (ii) scheduling
of jobs consuming some raw materials. In the former case, the jobs produce
intermediate products to meet demands at given dates, whereas in the second
case, jobs consume raw materials whose stock is replenished at given dates and in
known quantities. On the other hand, we will consider two variants of the knap-
sack problem. Beside the basic knapsack problem, in which there is a set of items
each having a size and a profit, and a subset of items of maximum profit, but
of limited total size must be chosen, we will also consider the multi-dimensional
knapsack problem in which the knapsack has sizes in multiple dimensions.

Approximation preserving reductions are useful for obtaining both positive
and negative results. Consider, say, the PTAS reduction, which reduces an
optimization problem Π1 to another optimization problem Π2 in such a manner
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that if there is a PTAS for Π2, then this yields a PTAS for Π1 as well (for formal
definitions, see Section 3). So, we can get a positive result for an optimization
problem Π1, i.e., a PTAS, if we can identify another optimization problem Π2

which admits a PTAS, and if we manage to devise a PTAS reduction from Π1

to Π2. On the other hand, if we want to prove that some problem Π2 does not
admit a PTAS unless P = NP, it suffices to find another optimization problem
Π1 which does not admit a PTAS unless P = NP, and a PTAS reduction from
Π1 to Π2. Among the many types of reductions published in the literature, we
will only use the PTAS-, the FPTAS- and the Strict-reductions (see Section 3).

Before we proceed we provide a more formal definition of those problems
studied in this paper.

1.1. Knapsack Problems

In the (basic) Knapsack Problem (KP ) there is a set of n items j with profit
vj and weight wj . One has to select a subset of the items with the largest total
profit so that the total weight of the selected items is at most a given constant
(’capacity’) b′. Formally:

OPTKP := max

n∑
j=1

vjxj (1)

n∑
j=1

wjxj ≤ b′ (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

We will use the notation OPTKP for the optimal value of this problem.
In the r-dimensional Knapsack Problem (r-DKP) each item has r weights

and there are r constraints:

OPTr−DKP := max

n∑
j=1

vjxj (4)

n∑
j=1

wijxj ≤ b′i, i = 1, . . . , r (5)

xj ∈ {0, 1}, j = 1, . . . , n. (6)

The optimum value of this problem is denoted by OPTr−DKP .

1.2. Resource Scheduling Problems

In this section we recapitulate two resource scheduling problems, the De-
livery tardiness problem (see [10]) and the Material consumption problem (see
e.g. [5],[15]).

In the Delivery tardiness problem (DTP rq ) there are a single machine, a
finite set of n jobs, and a set of r materials produced by the jobs. The machine
can perform only one job at a time, and preemption is not allowed. Job Jj , j ∈
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{1, . . . , n}, has a processing time pj ∈ Z+, and produces some materials, which is
described by an r-dimensional non-negative vector aj ∈ Zr+. There are due dates
along with required shipments, i.e., pairs (u`, b`) with u` ∈ Z+, and b` ∈ Zr+, ` =
1, . . . , q, and 0 ≤ u1 < · · · < uq. The solution of the problem is a sequence σ of

the jobs. The starting time of the ith job is then Sσ(i) =
∑i−1
k=1 pσ(k). A shipment

(u`, b`) is met by S, if the total production of those jobs finishing by u` is at

least b̃` :=
∑`
k=1 bk, i.e.,

∑
(j : Sj+pj≤u`) aj ≥ b̃` (coordinate wise), otherwise it

is tardy. Let C`(S) be the earliest time point t ≥ 0 with
∑

(j : Sj+pj≤t) aj ≥ b̃`.
The tardiness of a shipment is T`(S) := max{0, C`(S) − u`}. The maximum
tardiness of a schedule is Tmax(S) := max` T`(S). The objective is to minimize
the maximum tardiness. We denote this problem by 1|dm = r|Tmax, where
’dm = r’ indicates that the number of products is fixed to r (not part of the
input). An important special case of this problem is when there are only two
time points (0 ≤ u1 < u2) when some product is due (denoted by 1|dm = r, q =
2|Tmax). Since Tmax can be 0 in an optimal solution, we will consider the shifted
delivery tardiness objective function defined as T smax := Tmax + const, where
const is a positive constant, depending on the problem data.

In the Material consumption problem (MCP rq ) there are a single machine, a
finite set of n jobs, and a set of r materials consumed by the jobs. The machine
can perform only one job at a time, and preemption is not allowed. There are
n jobs Jj , j = 1, . . . , n, each characterized by two numbers: processing time pj
and quantities consumed from the resources aj ∈ Zr+. The resources have initial
stocks, and they are replenished at given moments in time, i.e., there are q pairs
(u1, b1), . . . , (uq, bq), with 0 = u1 < · · · < uq being the time points and the
b` ∈ Zr+ the quantities supplied. A schedule S specifies a starting time for each
job such that the jobs do not overlap in time, and the total material supply up
to the starting time of every job is at least the total request of those jobs starting
not later than Sj , i.e.,

∑
(` : u`≤Sj) b` ≥

∑
(j′ : Sj′≤Sj) aj′ (coordinate wise). The

objective is to minimize the makespan defined as the maximum job completion
time. We denote this problem by 1|rm = r|Cmax, where ’rm = r’ indicates
that the number of the raw materials is fixed to r (not part of the input). An
important special case of this problem is when there are only two time points
(u1 = 0 and u2 > 0) when some resource is supplied (1|rm = r, q = 2|Cmax).

Assumption 1. In both problems
∑
` b` =

∑
j aj holds without loss of general-

ity.

The notation used throughout the paper is summarized in Appendix A.

1.3. Results

Our goal in this paper is to systematically examine reducibility relations
between knapsack problems and scheduling problems with consumer or producer
jobs. Our main results are approximation preserving reductions among three
problem classes: (i) special cases of scheduling problems with producer jobs, (ii)
special cases of scheduling problems with consumer jobs, and (iii) variants of
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the knapsack problem. We will proceed as follows: pick a pair of problems, and
prove some approximation preserving reductions in both directions. However,
as we will see, the strength of the reductions in the two directions may well be
different. The reductions presented are not of mere theoretical interest. Roughly
speaking, by reducing a scheduling problem to a knapsack problem, we can
use approximation algorithms or heuristics available for solving the knapsack
problem as a subroutine for solving the scheduling problem.

r-DKP

MCPr
2 DTPr

2

FPTASFPTAS
Strict

Strict

Strict

Strict

MCPr
q DTPr

q

Strict

Strict

(a) (b)

Figure 1: Summary of approximation preserving reductions between scheduling and knapsack
problems.

Our findings are summarized in Figure 1 and Table 1. In the figure, a directed
arc from problem Π1 to problem Π2 labeled by some reduction indicates that
Π1 is reducible to Π2 by that kind of reduction. In the table we summarize the
implications in terms of algorithms of the reductions among the problems. The
most important results are: (i) There is a Strict reduction from the problem of
minimizing the makespan with consumer jobs, and the scheduling problem with
producer jobs and the shifted delivery tardiness objective, and vice versa. This
finding allows us to convert approximation algorithms for one type of scheduling
problems to the other (part (a) of the figure). (ii) If there are only two supply
periods, and a single raw material, then scheduling of consumer jobs to minimize
the makespan admits a Strict reduction to the basic knapsack problem (part
(b) of the figure), which yields a PTAS as well as an FPTAS for the former
problem, i.e., we can use any approximation algorithm devised for the knapsack
problem to solve the scheduling problem. (iii) There is no FPTAS for the
scheduling problem with consumer jobs and at least two raw materials unless
P = NP, because there is an FPTAS reduction from the multi-dimensional
knapsack problem to the scheduling problem (part (b) of the figure), and the
multi-dimensional knapsack problem does not admit an FPTAS unless P = NP
if the number of dimensions is at least two.

The structure of the paper is as follows. We begin with a brief literature
review in Section 2, and then we recapitulate basic notions of approximation
algorithms and approximation preserving reductions in Section 3. After some
preliminaries in Section 4, we establish Strict reduction between MCP rq , and
DTP rq with the shifted delivery tardiness objective (Section 3) in both direc-
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tions. We proceed with reductions between MCP 1
2 and the knapsack problem

in Section 6, and then with reductions between MCP r2 and the r-Dimensional
Knapsack Problem in Section 7 along with consequences in terms of approxima-
bility. Finally, we conclude the paper in Section 8.

Problem PTAS FPTAS Source
MCP 1

2 1|rm = 1, q = 2|Cmax yes yes [15], Section 6
MCP 1

const 1|rm = 1, q = const|Cmax yes ? [15]
MCP r2 1|rm = r, q = 2|Cmax yes noa Section 7
DTP 1

2 1|dm = 1, q = 2|Tmax yes yes [10], Section 6
DTP 1

const 1|dm = 1, q = const|Tmax yes ? Section 5
DTP r2 1|dm = r, q = 2|Tmax yes noa Section 7

aif P 6= NP

Table 1: Approximation schemes for MCP r
q and DTP r

q . A questionmark ”?” indicates that
we are not aware of any definitive answer.

We close this section by the terminology used throughout the paper. For an
optimization problem Π, let cΠ denote its cost function, which assigns to every
instance I, and feasible solution x to I a scalar value cΠ(I, x). Let RΠ(I, x)
denote the ratio of the optimum value of problem instance I of Π, and the
value of some feasible solution x to I. If Π is a maximization problem, then
RΠ(I, x) := OPTΠ(I)/cΠ(I, x), while for a minimization problem RΠ(I, x) :=
cΠ(I, x)/OPTΠ(I). Notice that RΠ(I, x) ≥ 1.

2. Previous work

Scheduling problems with producer jobs only is also known as scheduling of
inventory releasing jobs, and this model has been recently proposed by Boy-
sen et al. [2]. They studied the problem of minimizing inventory levels while
satisfying all the external demands on time (there, the delivery requests have
strict deadlines). They proved the NP-hardness of the problem and proposed
polynomial algorithms for several variants. Drótos and Kis [10] has introduced
the delivery tardiness problem and, among other results, devised an FPTAS for
the problem DTP 1

2 .
Scheduling of jobs consuming some non-renewable resources (like raw ma-

terials, money, energy, etc.) is an old problem class: the original model was
described by Carlier [5] and by Carlier and Rinnooy Kan [6] in the early 80’s.
Since then several authors studied scheduling problems with jobs consuming
non-renewable resources (e.g. [26], [28], [24], [14], [3], [12], [4], [15]). In par-
ticular, Carlier and Rinnooy Kan [6] defined the problem with precedence con-
straints, but without machines, and derived polynomial algorithms for various
special cases. Carlier [5] showed algorithmic and complexity results. Slowin-
ski [26] studied problems with preemptive jobs on parallel unrelated machines
with renewable and non-renewable resources. Toker et al. [28] proved that the
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problem 1|rm = 1|Cmax reduces to the 2-machine flow shop problem provided
that the resource has a unit supply at each time period. Grigoriev et al. [14]
studied problems with one machine and presented some basic complexity re-
sults and simple approximation algorithms. Gafarov et al. [12] complemented
the findings of Grigoriev et al. by additional complexity results. Neumann and
Schwindt [24] studied general project scheduling problems with inventory con-
straints in a more general setting, where jobs (activities) may consume as well as
produce non-renewable resources. In case of a single machine, the problem was
proved NP-hard in the strong sense by Kellerer et al. [17], and for minimizing
the maximum stock level, the authors proposed three different approximation
algorithms with relative error 2, 8/5, 3/2, respectively. Briskorn et al. [3] pro-
vided complexity results for several variants, while Briskorn et al. [4] described
an exact algorithm for minimizing the weighted sum of the job completion times
on a single machine. Györgyi and Kis [15] provided an FPTAS for the problem
1|rm = 1, q = 2|Cmax and a PTAS for the problem 1|rm = 1, q = const|Cmax.

Knapsack problems are among the most-studied problems in combinatorial
optimization. There are many variants and methods of all kinds have been
devised over the years to get some solutions, see e.g. the book of Kellerer et
al. [20] for an excellent overview. These problems have played an important
role in the design of algorithms for scheduling problems, see e.g., [23], [21], [27],
[29], [11], [15] to mention but a few examples.

3. Approximation preserving reductions

In this section we recapitulate the basic definitions of approximations schemes,
and that of the approximation preserving reductions, and in particular we pro-
vide formal definitions of the Strict-, the PTAS-, and FPTAS-reductions. Our
discussion follows [8] and [9], see also [1] and [25].

A Polynomial Time Approximation Scheme (PTAS) for an optimization
problem Π is a family of algorithms {Aε}ε>0 such that Aε has polynomial time
complexity in the length of any input I for every fixed ε > 0, and always delivers
a solution x to I with RΠ(I, x) ≤ 1+ε. A Fully Polynomial Time Approximation
Scheme (FPTAS) is a family of algorithms {Aε}ε>0 with the same properties
as a PTAS, plus each Aε runs in polynomial time in 1/ε as well.

Formally, a reduction is a pair of functions f and g, where f maps the
instances of problem Π1 to that of problem Π2, and g provides a feasible solution
for instance I1 of problem Π1 from a feasible solution y for the corresponding
instance f(I1) of Π2. The following diagram illustrates the functions f and g:

Problems: Π1 Π2

Instances: I1 −→f f(I1)y
Solutions: g(I1, y) g ←− y

6



(f, g) is a Strict-reduction from problem Π1 to problem Π2 (Π1 ≤Strict Π2)
if f and g are computable in polynomial time in the size of their parameters,
and for every instance I1 of Π1, and for every solution y to f(I1) we have

RΠ1(I1, g(I1, y)) ≤ RΠ2(f(I1), y).

A reduction (f, g) is a PTAS-reduction from problem Π1 to problem Π2

(Π1 ≤PTAS Π2) if there exists a function α(·) such that

i) for any instance I1 of Π1, and for any ε > 0, f(I1, ε) is an instance of Π2

and it is computable in tf (|I1|, ε) time,

ii) for any solution y of f(I1, ε), g(I1, y, ε) is a solution to I1, and it is com-
putable in tg(|I1|, |y|, ε) time,

iii) for every fixed ε > 0, both tf (·, ε) and tg(·, ·, ε) are bounded by a polyno-
mial, and

iv) α maps error parameters for problem Π1 to that for problem Π2 such that
for every solution y to f(I1, ε):

RΠ2
(f(I1, ε), y) ≤ 1 + α(ε) implies RΠ1

(I1, g(I1, y, ε)) ≤ 1 + ε. (7)

The following statement is from [8].

Lemma 1. Let Π1 and Π2 be optimization problems such that Π1 ≤PTAS Π2.
If Π2 admits a PTAS, then there is a PTAS for Π1 as well.

The following lemma shows the connection between the Strict-reduction and
the PTAS-reduction (for a proof see [9]):

Lemma 2. Every Strict-reduction is a PTAS-reduction as well.

Therefore, Lemma 1 remains valid if we replace the PTAS-reduction by
Strict-reduction in the statement. Finally, an FPTAS-reduction is like a PTAS-
reduction with the following modifications:

iii’) Both tf (·, ε) and tg(·, ·, ε) must be bounded by a polynomial in 1/ε as well.

iv’) α maps instances and error parameters for problem Π1 to error parameters
for Π2 such that for every solution y to f(I1, ε):

RΠ2(f(I1, ε), y) ≤ 1 + α(I1, ε) implies RΠ1(I1, g(I1, y, ε)) ≤ 1 + ε. (8)

That is, (8) replaces (7) in the definition of FPTAS.

v’) α can be computed in polynomial time in |I1| and 1/ε.

vi’) There exists a two-variable polynomial poly(·, ·) such that 1/α(I1, ε) ≤
poly(|I1|, 1/ε) for any ε > 0.
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Remark 1. In the above definition, ε may be restricted 0 < ε ≤ c, where c is a
positive constant, since we usually want to choose ε arbitrarily close to 0.

In [8] the following statement was made:

Lemma 3. If there is an FPTAS-reduction (f, g) from problem Π1 to problem
Π2, and if Π2 admits an FPTAS, then there is an FPTAS for Π1 as well.

Observe that an FPTAS-reduction is not a PTAS-reduction in general. To
see this, suppose we have a pair of optimization problems Π1 and Π2, and there is
an FPTAS-reduction from Π1 to Π2 with α(I1, ε) := ε/n, where n is the number
of some objects in I1, and the n objects in I1 are mapped to n objects in f(I1, ε).
Moreover, suppose we have a PTAS for Π2 of running time O(n1/ω), where ω
is the desired error ratio. Now, the running time of the PTAS on instance
f(I1, ε) with error parameter ω := α(I1, ε) is O(n1/α(I1,ε)) = O(nn/ε), which is
not polynomial in n. Clearly, a PTAS-reduction is not an FPTAS-reduction in
general, since the time complexity of computing f and g is not required to be
bounded by a polynomial in 1/ε, cf. condition iii) of the PTAS-reduction.

As in the case of PTAS reductions, one can show the following:

Lemma 4. Every Strict-reduction is an FPTAS-reduction as well.

The next lemma follows from [8] and [25]:

Lemma 5. The defined reductions are transitive.

4. Preliminaries

In this section we overview basic facts about knapsack problems and resource
scheduling problems. Consider first the Knapsack Problem KP :

1. We always assume that wj ≤ b′, ∀j = 1, . . . , n.

2. There is an FPTAS for KP (see [16] or [19] for faster FPTAS algorithms).

3. There is a 2-approximation algorithm (cf. end of Section 1) for the KP in
linear time (see e.g. [20]). There are better approximation algorithms, but
these require more time (see [20] for an overview).

4. There is an easily computable upper bound UKP on the optimum value
of KP with OPTKP ≤ UKP ≤ 2 · OPTKP . Let ej := vj/wj denote the
efficiency of item j. Sort the items by their efficiency in decreasing order
(assume that e1 ≥ . . . ≥ en). Let k be the smallest index such that
w1 + · · · + wk ≥ b′, unless

∑n
j=1 wj < b′ in which case k := n, and let

UKP := v1 + · · ·+ vk.

5. We know that n ·OPTKP ≥
∑n
j=1 vj .

As for the r-dimensional Knapsack Problem r −DKP :
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1. There is a PTAS for r −DKP in [7].

2. Ur−DKP =
∑n
j=1 vj is an upper bound onOPTr−DKP such thatOPTr−DKP ≤

Ur−DKP ≤ n ·OPTr−DKP .

Finally, some key facts about the Material Consumption Problem. Let S be
a schedule for 1|rm = 1, q = 2|Cmax (MCP 1

2 ). We say a job j is assigned to
the time point u1 if and only if the total requirement of the jobs that start not
later than j in S is at most b1. Let P1(S) denote the sum of processing times
of these jobs and P2(S) denote the total processing time of the remaining jobs.
Clearly, P1(S) + P2(S) = P , where P :=

∑n
j=1 pj .

Observation 1. Let S∗ be an optimal schedule for MCP r2 . We have

i) C∗max = max{P1(S∗) + P2(S∗), u2 + P2(S∗)}.

ii) C∗max ≥ P and C∗max > u2.

Proof. Notice that

i) P1(S∗) ≥ u2 implies C∗max = P1(S∗) + P2(S∗) and P1(S∗) < u2 implies
C∗max = u2 + P1(S∗).

ii) C∗max ≥ P is obvious from the previous point, and C∗max > u2 holds because
of Assumption 1. �

5. Strict reductions between the Delivery tardiness and the Material
consumption problems

In this section we prove that there is a Strict-reduction between DTP rq and
MCP rq in both directions. To illustrate the main idea, we present an example in
Figure 2. In the top, there is a schedule for an instance of the DTP 1

4 problem,
and in the bottom, a schedule for the MCP 1

4 problem. The rectangles are
the jobs, where the horizontal width indicates the processing time, and the
vertical height the amount of resource produced (DTP problem), or the material
required (MCP problem). The two schedules consist of the same jobs, and the
sequence in the bottom is just the reverse of that in the top. The delay in the
top indicates the late delivery by job Jj∗ with respect to due date u3, whereas
in the bottom, the same delay occurs before job Jj∗ due to waiting for resource
supply.

Lemma 6. Given an instance ID = {n, q, (pj , aj)nj=1, (u`, b`)
q
`=1} of the Deliv-

ery tardiness problem. Define an instance IM = {n, q, (pj , aj)nj=1, (u
′
`, b
′
`)
q
`=1} of

the Material consumption problem:

u′` = uq − uq+1−`

b′` = bq+1−`
` = 1, . . . , q.

9



t

S

u1 u2 u3 u4

Jj∗

delay

1. shipment 2. shipment 3. shipment 4. shipment

Cumulative demand

Cumulative
production

t

S

u′2 u′3 u′4u′1 Cmax

Jj∗

delay Cumulative supply

Cumulative
consumption

1. supply 2. supply 3. supply 4. supply

Figure 2: Corresponding schedules for the DTP (top) and MCP (bottom) problems.

Then, if σ is a sequence of jobs giving a maximum delivery tardiness of Tσmax

for ID, then scheduling the jobs in reverse σ order gives a schedule of makespan
uq + Tσmax for instance IM .

Proof. Without loss of generality, σ = (J1, . . . , Jn), and then the reverse order
of jobs is σ−1 = (Jn, Jn−1, . . . , J1). For the problem instance I ′, let S(σ−1) be
the schedule obtained by scheduling the jobs in the order of σ−1, and scheduling
each job to start as early as possible while respecting the resource constraints.

By contradiction, suppose the makespan C
S(σ−1)
max of schedule S(σ−1) is larger

than uq + Tσmax (notice that uq is the last due-date of problem instance I of
the Delivery tardiness problem). Then by the definition of the makespan, there
exist a resource supply date u′`∗ and a job index j∗ such that

CS(σ−1)
max = u′`∗ +

j∗∑
j=1

pj (9)
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Take the earliest such `∗ and the corresponding index j∗. Since job Jj∗ is
scheduled at the earliest possible time, we also have

n∑
j=j∗+1

aj ≤
`∗−1∑
`=1

b′` (10)

n∑
j=j∗

aj >

`∗−1∑
`=1

b′` (11)

Notice that if `∗ = 1, then since u′1 = 0 by definition, it follows that j∗ = n
(the makespan is the sum of processing times of all the jobs, since no job may
start before time 0), and the right-hand-sides in (10), and (11) are 0. Since∑
` b` =

∑
j aj , (10) and (11) are equivalent to

j∗∑
j=1

aj ≥
q∑

`=`∗

b′` =

q∑
`=`∗

bq+1−` =

q−`∗+1∑
`=1

b` (12)

j∗−1∑
j=1

aj <

q∑
`=`∗

b′` =

q−`∗+1∑
`=1

b` (13)

This means that in the instance I of the Delivery tadiness problem, the first
j∗ − 1 jobs are not enough to satisfy the demand of the first q − `∗ + 1 time
periods. Since u′`∗ = uq − uq−`∗+1, we have

uq + Tσmax < CS(σ−1)
max = u′`∗ +

j∗∑
j=1

pj = uq − uq−`∗+1 +

j∗∑
j=1

pj ,

where the first inequality follows from our indirect assumption, and the second
and third equations from the definition. However, this implies

Tσmax <

j∗∑
j=1

pj − uq−`∗+1.

Therefore, schedule σ for instance ID of the Delivery tardiness problem cannot
have maximum tardiness Tσmax, a contradiction. �

Lemma 7. Given an instance IM = {n, q, (pj , aj)nj=1, (u`, b`)
q
`=1} of the Mate-

rial consumption problem. Define an instance ID = {n, q, (pj , aj)nj=1, (u
′
`, b
′
`)
q
`=1}

of the Delivery tardiness problem:

u′` = uq − uq+1−`

b′` = bq+1−`
` = 1, . . . , q.

Then, if S is a schedule with a makespan of CSmax for IM , then scheduling
the jobs in reverse order (without any delays among them) gives a schedule of
maximum tardiness at most CSmax − uq for instance ID.
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Proof. Suppose S completes the jobs in the order σ = (J1, . . . , Jn). The
reverse order is σ−1 = (Jn, . . . , J1). Let S(σ−1) be the schedule corresponding to
the reverse order σ−1, i.e., Sj(σ

−1) :=
∑n
j′=j+1 pj′ . By contradiction, suppose

Tmax(S(σ−1)) > CSmax − uq. By the definition of Tmax(S(σ−1)), there exist
`∗ ∈ {1, . . . , q}, and some job j∗ such that

Tmax(S(σ−1)) =

n∑
j=j∗

pj − u′`∗ .

Moreover,

n∑
j=j∗

aj ≥
`∗∑
`=1

b′` (14)

n∑
j=j∗+1

aj <

`∗∑
`=1

b′` (15)

Observe that

CSmax − uq < Tmax(S(σ−1)) =

n∑
j=j∗

pj − u′`∗ =

n∑
j=j∗

pj − (uq − uq+1−`∗),

which implies

CSmax < uq+1−`∗ +

n∑
j=j∗

pj . (16)

In addition (14) and (15) and the assumption
∑
` b` =

∑
j aj imply

j∗−1∑
j=1

aj ≤
q∑

`=`∗+1

b′` =

q∑
`=`∗+1

bq−`+1 =

q−`∗∑
`=1

b` (17)

j∗∑
j=1

aj >

q∑
`=`∗+1

b′` =

q−`∗∑
`=1

b` (18)

However, (17) and (18) mean that the first j∗ jobs in instance I of the Ma-
terial consumption problem require more resource than that supplied in the
first q − `∗ supply periods. Therefore, the makespan of the schedule is at least
uq−`∗+1 +

∑n
j=j∗ pj , which is more than the makespan of schedule S by (16), a

contradiction. �

Corollary 1. Let (ID, IM ) be corresponding instances of the Delivery tardiness
and the Material consumption problems. Then the optimum value T ∗max(ID) of
the Delivery tardiness problem equals C∗max(IM )− uq, the optimum value of the
Material consumption problem minus uq, where uq is the last material shipment
date in IM .
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Now we turn to reductions. Since Tmax may be 0 in an optimal solution to
DTP rq , we shift the objective function by a positive constant depending on the
problem data: T smax := max` T`+uq−u1, where u1 and uq are the first, and the
the last due-date in the DTP rq problem instance, respectively. Now we prove
the following:

Theorem 1. There is a Strict-reduction from the Material consumption prob-
lem to the Delivery tardiness problem, and vice versa, there is a Strict-reduction
from the Delivery tardiness problem to the Material consumption problem.

Proof. Firstly, we show that there is a Strict-reduction from MCP rq to DTP rq .
We use the transformation of Lemma 7 to construct function f which maps
instances of MCP rq to that of DTP rq . Clearly, the transformation can be com-
puted in linear time in the size of any instance IM of MCP rq . Let IM be any
instance of MCP rq , and let 0 = u1 < u2 < · · · < uq be the dates when some
resource is supplied. Then in the corresponding instance ID := f(IM ) of DTP rq ,
the due-dates are u′1 = uq−uq = 0, u′2 = uq−uq−1, . . . , u′q = uq−u1 = uq. Let
σD be the order of jobs any solution of instance ID. The inverse transformation
g consists of reversing σD. Then, by Lemma 6 we have

Cmax(S(σ−1
D ))− uq + uq ≤ Tmax(S(σD)) + uq = T smax(σD) = (1 + ε)(T smax(ID))∗

= (1 + ε)(Tmax(ID)∗ + uq) = (1 + ε)((C∗max(IM )− uq) + uq),

where ε ≥ 0 is chosen such that T smax(σD) = (1+ε)(T smax(ID))∗, and the second
equation follows from u′q = uq and u′1 = 0.

Now we prove that there is a Strict-reduction from DTP rq to MCP rq . We
use the transformation of Lemma 6 to construct the function f which maps
instances of DTP rq to that of MCP rq . Let ID be any instance of DTP rq with
due-dates 0 ≤ u1 < · · · < uq. Then in the corresponding instance IM := f(ID)
of MCP rq , u′1 = uq − uq = 0,. . . , u′q = uq − u1. Let σM be the order of jobs in
any solution to IM . The inverse transformation g reverses the order of jobs in
σM . We use Lemma 7 to derive

T smax(S(σ−1
M )) = Tmax(S(σ−1

M )) + uq − u1 ≤ Cmax(S(σD))− u′q + (uq − u1)

= (1 + ε)C∗max(IM ) = (1 + ε)(T ∗max(ID) + u′q) = (1 + ε)(T ∗max(ID) + uq − u1),

where ε ≥ 0 is chosen such that Cmax(S(σD)) = (1 + ε)C∗max(IM ). �

As a consequence, if we manage to get some kind of approximation algorithm
from MCP rq , then this yields immediately essentially the same algorithm for
DTP rq with the shifted delivery tardiness objective, and vice versa. Therefore,
from now on, we deal with variants of MCP rq only.

Corollary 2. There is a PTAS for DTP 1
const.

Proof. [15] provided a PTAS for MCP 1
const, thus we can apply Lemma 2 and

Theorem 1. �
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6. Reductions between KP and MCP1
2

In this section we prove that there is a Strict-reduction from the problem
MCP 1

2 to KP and there is an FPTAS-reduction in the opposite direction. Since
every Strict-reduction is an FPTAS-reduction as well, we find a new FPTAS for
MCP 1

2 with a much better running time than the previously known FPTAS.
We start with some preliminary observations.

Lemma 8. Consider the following two problems :

Knapsack Problem (KP): There are n items with profits vj, item weights wj
(j = 1, . . . , n), and the knapsack has a capacity of b′.

Material consumption problem: 1|rm = 1, q = 2|Cmax (MCP 1
2 ) with process-

ing times pj, resource requirements aj (j = 1, . . . , n), and supply dates
0 = u1 < u2, and amount of resource supplied b1 and b2 at u1 and u2,
respectively.

Suppose pj = vj, aj = wj (∀j ∈ J ), b1 = b′ and b2 =
∑
j aj − b1. Let OPTKP

denote the optimum value of KP, and C∗max that of the Material consumption
problem.

i) If P1(S∗) < u2 for some optimal schedule S∗ of the scheduling problem,
then P1(S′) < u2, C∗max = u2 + P2(S′) and OPTKP = P1(S′) for every
optimal schedule S′.

ii) If P1(S∗) ≥ u2 for an optimal schedule S∗, then C∗max = P1(S′) +P2(S′) =
P for every optimal schedule S′, and OPTKP ≥ u2.

Proof. i) Firstly, notice that P1(S′) = P (S∗) for every optimal schedule S′,
because if there were an optimal schedules S′ such that P1(S∗) < P1(S′),
then P2(S∗) > P2(S′) would follow, and thus C∗max = Cmax(S∗) = u2 +
P2(S∗) > max{u2 +P2(S′), P1(S′)+P2(S′)} = Cmax(S′), which contradicts
the optimality of S∗. Since P2(S′) = P−P1(S′), C∗max = u2+P2(S′) follows.

Consider an optimal schedule S∗. Pack the items to the knapsack that
correspond to the jobs assigned to u1 in schedule S∗. Since b′ = b1, this is a
feasible packing and the total profit is P1(S∗), therefore OPTKP ≥ P1(S∗).

It remains to prove OPTKP ≤ P1(S∗). Let K denote the set of the packed
items in an optimal solution of KP. Now we build a new schedule S′ by
scheduling the jobs that correspond to the items in K in arbitrary order
from t = 0 without any gaps, and schedule the remaining jobs in arbitrary
order from t = max{u2, p(K)} without any gaps. Since b1 = b′, S′ is
feasible, hence, Cmax(S′) = max{u2 + P2(S′), P1(S′) + P2(S′)} ≥ u2 +
P2(S∗) = Cmax(S∗). Since P1(S′)+P2(S′) = P < u2 +P2(S∗), as P1(S∗) <
u2 by assumption, we must have Cmax(S′) = u2 + P2(S′), and therefore,
OPTKP = p(K) = P1(S′) ≤ P1(S∗).

14



K

OPTKP

a)

t

u1 u2P1

OPTKP = P ∗1 C∗max = u2 + P ∗2
Cmax

K J \ K

b1)

t

u1 u2P1

P ∗1
OPTKP

C∗max = P
Cmax

K J \ K

b2)

t

u1 u2 P1 OPTKP Cmax = C∗max = PP ∗1

K J \ K

Figure 3: The corresponding solutions of KP and MCP 1
2 . On the left: the approximate

and optimal solutions of KP (the height indicates the value of a solution). On the right: the
approximate and optimal solution of MCP 1

2 in case of a) P ∗1 < u2, b1) P ∗1 ≥ u2 > P1 and
b2) P1, P ∗1 ≥ u2. The length of the red zigzag line equals OPTKP , that of the blue wavy line

equals OPTKP −
∑

j∈K pj , and the length of the green dashed line is P −OPTKP .

ii) The first part of the statement is trivial. For the second part consider
the schedule S∗. Pack those items into the knapsack that correspond to
the jobs assigned to u1 in schedule S∗. Since S∗ is a feasible schedule
and b′ = b1, this yields a feasible packing for KP of profit P1(S∗), and
thus OPTKP ≥ P1(S∗). Since P1(S∗) ≥ u2 by assumption, we deduce
OPTKP ≥ P1(S∗) ≥ u2. �

The first main result of this section is a strict reduction from MCP 1
2 to KP .

That is, we show that any instance I of MCP 1
2 can be mapped to an instance

f(I) of KP in such a way that any solution y of f(I) can be mapped back to
a solution g(I, y) of MCP 1

2 with the property that the ratio of the value of the
solution g(I, y) and the value of an optimal solution to I is not greater than the
ratio of the optimum value of f(I) and the value of the solution y. The idea of
the transformation is shown in Figure 3. There is a one-to-one correspondence
between the jobs of the scheduling problem, and the items of the corresponding
instance of the knapsack problem. Moreover, if K is the set of items packed into
the knapsack in a feasible solution of the KP problem instance, then the cor-
responding jobs are scheduled consecutively from time 0 on, and the remaining
jobs from time max{u2,

∑
j∈K pj} on. Let Pk := Pk(g(I, y)) and P ∗k := Pk(S∗)

for k = 1, 2 where S∗ is an optimal schedule to I. The three schedules on the
right of Figure 3 depend on the relations between P1, P ∗1 , and u2, and will be
elaborated in the proof of the next statement.

Theorem 2. MCP 1
2 ≤Strict KP .
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Proof. Firstly, we define functions f and g. For a given instance I = {n,
(pj , aj)

n
j=1, (u`, b`)

2
`=1} of MCP 1

2 , let f(I) := {n, (vj , wj)nj=1, b
′} be an instance

of KP with vj = pj , wj = aj , j = 1, . . . , n, and b′ = b1. For a given feasible
solution y of instance f(I) of KP, let K be the set of items that are packed into
the knapsack. Define a solution g(I, y) of the Material consumption problem
as follows: schedule the jobs that correspond to the items in K in arbitrary
order from time t = 0 without any gaps. Define p(K) :=

∑
j∈K vj which equals∑

j∈K pj by the definition of the vj . Schedule the remaining jobs in arbitrary
order after max{u2, p(K)} without any gaps. Since b′ = b1, g(I, y) is a feasible
solution of the scheduling problem, and let Cmax denote its makespan.

Let y be an approximate solution to f(I). It suffices to prove that for any
solution y to the instance f(I) of KP, RMCP 1

2
(I, g(I, y)) ≤ RKP (f(I), y). Let

ε ≥ 0 be such that RKP (f(I), y) = 1/(1 − ε). Since RKP (f(I), y) ≥ 1, ε is
well defined, and ε < 1. It is enough to show that RMCP 1

2
(I, g(I, y)) ≤ 1 + ε,

since 1 + ε < 1/(1 − ε) for any 0 ≤ ε < 1. Let S∗ be an optimal schedule,
P ∗k := Pk(S∗) for k = 1, 2. Let P1 := p(K), and P2 := P − P1. Using Lemma 8,
we distinguish between two cases:

a) P ∗1 < u2: in this case C∗max = u2 + P ∗2 , and OPTKP = P ∗1 (see Figure 3a)
for illustration). By the definition of ε, P1 = (1 − ε)OPTKP . Therefore,
P2 = P − (1 − ε)OPTKP . Since P ∗1 < u2 by assumption, we have Cmax =
u2 + P2 = u2 + P − (1− ε)OPTKP . Since P ∗2 = P − P ∗1 = P −OPTKP , we
have C∗max = u2 +P −OPTKP , hence Cmax = C∗max +(1− (1−ε))OPTKP ≤
(1 + ε)C∗max.

b) P ∗1 ≥ u2: in this case C∗max = P ∗1 + P ∗2 = P , and OPTKP ≥ u2, thus
p(K) ≥ (1 − ε)u2 (see Figure 3 b1) and b2) for illustration). Then P2 ≤
P − (1− ε)u2. Notice that Cmax = max{P1 +P2;u2 +P2} by Observation 1.
Since P1 +P2 = P = C∗max, we only have to prove that u2 +P2 ≤ (1+ε)C∗max:
u2 + P2 ≤ u2 + P − (1− ε)u2 = P + (1− (1− ε))u2 ≤ (1 + ε)C∗max.

Finally, notice that both of the transformations f and g take linear time and
space in the size of I. �

Corollary 3. There is an FPTAS for MCP 1
2 in O(n · min{log n, log(1/ε)} +

(1/ε2) log(1/ε) ·min{n, (1/ε) log(1/ε)}) time and in O(n+ 1/ε2) space.

Proof. Since every Strict-reduction is an FPTAS-reduction and there is an FP-
TAS for KP (see e.g. [16]) we can use Lemma 3 to obtain an FPTAS for MCP 1

2 .
Since the currently best FPTAS for KP requires O(n · min{log n, log(1/ε)} +
(1/ε2) log(1/ε) · min{n, (1/ε) log(1/ε)}) time and O(n + 1/ε2) space (see [19],
[18]), and the transformations f and g take linear time and space, we have
proved the complexity results. �

Remark 2. It has been known that there is an FPTAS for MCP 1
2 (see [15]),

but it requires O(n7 · 1/ε4) time and space, therefore the new FPTAS based on
the Knapsack Problem is more effective.
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u1 u2 = UKPvKP = P y
1 P ∗1 C∗max Cy

max

=

OPTKP

F J \ F

F

vKP

OPTKP

UKP

Figure 4: The corresponding solutions of MCP 1
2 (on the left) and KP (on the right, the height

of a solution indicates its value). The length of the red zigzag line equals P ∗1 = OPTKP , that
of the blue wavy line equals OPTKP − vKP , and the length of the green dashed line is
P −OPTKP .

Corollary 4. There is an 3/2-approximation algorithm for MCP 1
2 of time

complexity O(n log n).

Proof. We have shown in the proof of Theorem 2 that if KP admits a (1/(1−
ε))-approximation algorithm (A) then MCP 1

2 admits an (1 + ε)-approximation
algorithm. The complexity of this algorithm is that of A plus the linear time
transformation. Let ε := 1/2 and use the 2-approximation algorithm for KP
(see e.g. [20], cf. Section 1). �

Remark 3. We can create other approximation algorithms for MCP 1
2 if we

transform other algorithms originally devised for KP (for an overview of these
algorithms see [20]).

Theorem 3. KP ≤FPTAS MCP 1
2 .

Proof. Let us define functions f and g as follows. For a given instance
I = {n, (p′j , w′j)nj=1, b

′} of KP, let f(I, ε) := {n, (pj , aj)nj=1, (u`, b`)
2
`=1} be

an instance of MCP 1
2 with pj = p′j , aj = w′j , j = 1, . . . , n, b1 = b′, b2 =∑n

j=1 w
′
j − b′, u1 = 0, u2 = UKP (where UKP is an upper bound for OPTKP

with OPTKP ≤ UKP ≤ 2 · OPTKP , see section 1.1). For a given feasible solu-
tion y of instance f(I, ε) of MCP 1

2 , let F be the set of jobs that are assigned
to u1 in y. Define a solution g(I, y, ε) of the Knapsack Problem as follows: put
the items into the knapsack that correspond to the jobs in F . Let vKP denote
the total profit of the items in F . See Figure 4 for illustration.

Since b1 = b′, g(I, y, ε) is a feasible solution for KP. Notice that the trans-
formation of instance x to f(I) and that of the solution of f(I, ε) back to a
solution of x all take linear time and space in the size of I.

Let α(I, ε) := ε/((1+ε)(n+1)), and suppose that y is an α(I, ε)-approximate
solution (schedule) to f(I, ε). We have to show that g(I, y, ε) is an (1 + ε)-
approximate solution for KP. Notice that 1/α(I, ε) = (n+1)(1+ε)/ε is bounded
by a polynomial in |I| and 1/ε for any constant bound on ε (cf. Remark 1
after the definition of the FPTAS-reduction in Section 3). Let Cymax denote
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the makespan of the approximate solution y, P yk := Pk(y) for k = 1, 2, and
δ := ε/((1+ε)(n+1)). Let S∗ be an optimal solution to the scheduling problem
of makespan C∗max, and let P ∗k := Pk(S∗) for k = 1, 2.

We know that OPTKP ≤ UKP , thus P ∗1 ≤ u2, C∗max = u2 + P ∗2 (see Lemma
8) and Cymax = u2 + P y2 ≤ (1 + δ)C∗max. We have vKP = P y1 = P − P y2 = P +
u2−Cymax. Since OPTKP = P ∗1 from Lemma 8, thus C∗max = u2 +P −OPTKP ,
therefore vKP ≥ P + u2 − (1 + δ)C∗max = P + u2 − (1 + δ)u2 − (1 + δ)P + (1 +
δ)OPTKP = −δP − δu2 + (1 + δ)OPTKP . Since u2 = UKP ≤ 2OPTKP , P ≤
n ·OPTKP and δ > 0, we deduce that vKP ≥ −δn ·OPTKP − 2δOPTKP + (1 +
δ)OPTKP = (1− (n+ 1)δ)OPTKP = (1− ε/(1 + ε))OPTKP = OPTKP /(1 + ε).
�

Remark 4. Since the best FPTAS for MCP 1
2 is built on the best FPTAS for

KP, this theorem does not have any practical use. However, we can draw an
important conclusion from a generalized version of this result for MCP r2 (see
Corollary 8).

Corollary 5. DTP 1
2 ≤Strict KP and KP ≤FPTAS DTP 1

2 .

Proof. It is a trivial corollary from Lemmas 4, 5 and from Theorems 1, 2 and
3. �

From this we get the following, like we have got Corollaries 3 and 4 from
Theorem 2:

Corollary 6. There is an FPTAS for DTP 1
2 in O(n · min{log n, log(1/ε)} +

(1/ε2) log(1/ε) · min{n, (1/ε) log(1/ε)}) time and in O(n + 1/ε2) space (it is
much better than the previous FPTAS, presented in [10], it requires O(n7 ·
1/ε4)). There is an 3/2-approximation algorithm for DTP 1

2 of time complexity
O(n log n).

7. Reductions between r-DKP and MCPr
2

It is easy to generalize the results of the previous sections: there are very
similar connections between the problems r-DKP and MCP r2 . With these re-
sults we can prove that there is no FPTAS for the problem MCP r2 if r ≥ 2
unless P = NP. To begin, we generalize Lemma 8 to r-DKP and MCP r2 :

Lemma 9. Consider the following two problems :

r-Dimensional Knapsack Problem (r-DKP): There are n items with profits vj,
item weights wij (i = 1, . . . , r; j = 1, . . . , n), and there are capacities of b′i
(i = 1, . . . , r).

Material Consumption Problem: 1|rm = r, q = 2|Cmax (MCP r2 ) with process-
ing times pj, resource requirements aij (i = 1, . . . , r; j = 1, . . . , n), and
supply dates 0 = u1 < u2, and amount of resource i supplied b1,i, b2,i at
u1 and u2, respectively.
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Suppose pj = vj, aij = wij (∀i ∈ R and ∀j ∈ J ), b1,i = b′i and b2i =
∑
j aij−b1,i

(∀i ∈ R). Let OPTr−DKP denote the optimum value of r-DKP, and C∗max that
of the Material consumption problem.

i) If P1(S∗) < u2 for some optimal schedule S∗ of the scheduling problem,
then P1(S′) < u2, C∗max = u2 + P2(S′) and OPTr−DKP = P1(S′) for every
optimal schedule S′.

ii) If P1(S∗) ≥ u2 for an optimal schedule, then C∗max = P1(S′) + P2(S′) = P
for every optimal schedule S′, and OPTr−DKP ≥ u2.

Theorem 4. MCP r2 ≤Strict r −DKP

The proof is identical to that of Theorem 2.

Corollary 7. For any fixed r, there is a PTAS for MCP r2 .

The corollary follows from a result of [7], which provides a PTAS for r-DKP for
any fixed r.

Theorem 5. r-DKP ≤FPTAS MCP r2 .

The proof is very similar to that of Theorem 3, the crucial difference being that
we use Lemma 9 instead of Lemma 8. That is, we let u2 = Ur−DKP in the
transformation of an instance of r − DKP to that of MCP r2 , and we use the
bound Ur−DKP ≤ n · OPTr−DKP in the proof. Remark 5 shows what we can
prove exactly:

Remark 5. For any ε > 0, if MCP r2 admits an

(
1 +

ε

(2n− 1)(1 + ε)

)
-approximation

algorithm, then there is an (1 + ε)-approximation algorithm for r-DKP.

Corollary 8. If r ≥ 2 then there is no FPTAS for MCP r2 unless P = NP.

Proof. If there were an FPTAS for MCP r2 , then there would exist an FPTAS
for r − DKP by Lemma 3 and Theorem 5. However, there is no FPTAS for
2−DKP unless P = NP (see [13] or [22]), a contradiction. �

Remark 6. When r is part of the input, no PTAS is known for r −DKP .

Corollary 9. DTP r2 ≤Strict r −DKP and r −DKP ≤FPTAS DTP r2 .

Proof. Follows from Lemmas 4, 5 and from Theorems 1, 4 and 5. �

Corollary 10. For any fixed r, there is a PTAS for DTP r2 . If r ≥ 2 then there
is no FPTAS for DTP r2 unless P = NP.
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8. Conclusions

In this paper we have described approximation preserving reductions among
three problem classes, the resource delivery and the material consumption prob-
lems, and variants of the knapsack problem. The reductions led to better (faster)
algorithms for some special cases of the resource delivery and the material con-
sumption problem, and also to a deeper understanding of the resource delivery
and material consumption problems, i.e., the two are essentially the same. We
have also shown than neither the material consumption problem, nor the de-
livery tardiness problem with the shifted tardiness objective admit an FPTAS
unless P = NP.

There remain several open problems: for instance, is there a PTAS for the
material consumption problem with a fixed number r ≥ 2 resources and a fixed
number of q time periods? Does there exist an FPTAS for the same problem
class with r = 1, and q = 3? How can we approximate the problem if q or r is
not fixed?

Appendix A

Z+ set of non-negative integers {0, 1, 2, . . .}
n number of jobs
J set of jobs {J1, . . . , Jn}
pj processing time of job Jj
r number of the resources
R set of r resources
q number of due dates (delivery tardiness problem), or number

of replenishments (material consumption problem)
u` due dates (delivery tardiness problem), or time moments when

some resource is supplied (material consumption problem), 0 ≤
u1 < u2 < . . . < uq

b` delivery requirement (delivery tardiness problem), or amount
of the resource supplied (material consumption problem) at u`
in case of rm = 1

b`,i in case of multiple resources, it is like b`, but for resource i ∈ R
aj resource requirement of job Jj in case of rm = 1
ai,j requirement of job Jj from resource i
P

∑n
j=1 pj

P1(S) the total processing time of the jobs assigned to u1 in schedule
S for 1|rm, q = 2|Cmax

P2(S) P − P1(S)
C∗max the optimal makespan
T ∗max the optimal value of the maximum tardiness
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n number of items
vj profit of item j
wj weight of item j
b′ capacity of the knapsack
OPTKP the optimal value of the Knapsack Problem
wij weight of item j in the ith constraint of r −DKP
b′i the capacity of the knapsack of r −DKP in dimension i
OPTr−DKP the optimal value of r −DKP
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