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Abstract

Background: A standard procedure in many areas of bioinformatics is to use a single multiple sequence alignment
(MSA) as the basis for various types of analysis. However, downstream results may be highly sensitive to the alignment
used, and neglecting the uncertainty in the alignment can lead to significant bias in the resulting inference. In recent
years, a number of approaches have been developed for probabilistic sampling of alignments, rather than simply
generating a single optimum. However, this type of probabilistic information is currently not widely used in the
context of downstream inference, since most existing algorithms are set up to make use of a single alignment.

Results: In this work we present a framework for representing a set of sampled alignments as a directed acyclic
graph (DAG) whose nodes are alignment columns; each path through this DAG then represents a valid alignment.
Since the probabilities of individual columns can be estimated from empirical frequencies, this approach enables
sample-based estimation of posterior alignment probabilities. Moreover, due to conditional independencies between
columns, the graph structure encodes a much larger set of alignments than the original set of sampled MSAs, such
that the effective sample size is greatly increased.

Conclusions: The alignment DAG provides a natural way to represent a distribution in the space of MSAs, and allows
for existing algorithms to be efficiently scaled up to operate on large sets of alignments. As an example, we show how
this can be used to compute marginal probabilities for tree topologies, averaging over a very large number of MSAs.
This framework can also be used to generate a statistically meaningful summary alignment; example applications
show that this summary alignment is consistently more accurate than the majority of the alignment samples, leading
to improvements in downstream tree inference.
Implementations of the methods described in this article are available at http://statalign.github.io/WeaveAlign.
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Background
Sequence alignment is one of the most intensely studied
problems in bioinformatics, and is an important step in a
wide range of different analyses, including identification
of conserved motifs [1], analysis of molecular coevolution
[2-4], estimation of phylogenies [5], and homology-based
protein structure prediction [6,7].
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Many of the most popular alignment methods seek to
compute a single optimal alignment, using dynamic pro-
gramming algorithms [8,9] as well as a variety of heuristic
procedures [10-15]. Similar approaches can be used to
find maximum likelihood alignments under certain prob-
abilistic models of insertion, deletion and substitution
events [16-20].

Effect of alignment on downstream inference
It has become increasingly clear in recent years that
downstream analyses are often highly sensitive to the
specific choice of alignment. There may be many plausi-
ble but suboptimal alignments within the vicinity of the
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optimum, containing additional—often complementary—
information regarding the evolutionary relationships
between the sequences [21]; selecting a single point esti-
mate results in the loss of this additional information, and
fails to account for the statistical uncertainty associated
with different regions of the alignment [22].
A number of studies have highlighted the impact of the

choice of alignment on subsequent phylogenetic inference
[23-31]; in many cases different alignment methods, or
different guide trees, can give rise to very different phy-
logenies [23,32-36]. Sensitivity to the alignment is also
observed in the context of many other types of down-
stream analysis, including homology modelling of pro-
tein structures [37-39], detection of correlated evolution
[40,41], prediction of RNA secondary structure [42], and
inference of positive selection [36,43-45].

Filtering methods
A common approach to tackling the issue of alignment
uncertainty has been to attempt to annotate particular
regions of the alignment as unreliable, and to remove
these before carrying out subsequent analysis. Filtering
methods have in some cases been observed to yield
improved inference for phylogenies [46-48] and positive
selection [44,45].
However, the specific choice of filtering method may

have a strong influence on the results [49], and uncer-
tain regions of the alignment may also contain important
information that is lost through the use of such methods.
For example, tree accuracy is not related in a straightfor-
ward fashion to alignment uncertainty [27], and seemingly
unreliable regions may be important for accurately resolv-
ing phylogenies [50,51]. Regions of high alignment uncer-
tainty can also correspond to sites with higher indel rates
[22,52], as well as regions of structural variability [53] or
intrinsic disorder [54] in protein structures, and filtering
these out may lead to unpredictable biases in subsequent
analysis.

Joint sampling approaches
Within the Bayesian paradigm, alignment uncertainty can
be addressed in a more methodical fashion by consider-
ing alignments, along with other parameters of interest,
as samples from an unknown posterior distribution. In
this framework, regions of high alignment variability then
correspond to regions of high variance in the posterior.
The last decade has seen the development of several
fully Bayesian approaches for performing joint inference
on alignments along with other objects of interest, such
as mutation rates [55], phylogenetic trees [56-58], infor-
mation about the evolution of protein structure [59-62],
and the locations of putative regulatory elements [63-65];
inference on these quantities after accounting for align-
ment uncertainty can then be obtained by averaging over

alignments according to their posterior probability under
the joint model.
However, although such approaches may be analytically

tractable for comparison of a small number of sequences
[63,64,66], the computational complexity involved in
analysing these hierarchical joint models typically does
not scale well with the number of sequences; procedures
such as Markov chain Monte Carlo can only increase
the range of tractability to a limited extent [56,57,65].
Moreover, adding in another level of annotation or infor-
mation may require a new model to be formulated, such
that in many cases this fully Bayesian approach may be
impractical for problems of interest.

Alternatives to joint sampling
In this work we focus on a tractable alternative that can
be used when joint sampling approaches are impractical.
This approach takes a collection of alignments sampled
according to a particular model, and uses an efficient
graph-based representation to generate a much larger set
of possible alignments from the initial collection. The
acyclic structure of the graph allows many types of anal-
ysis to be easily carried out on the whole ensemble of
alignments rather than just a single representative, such
that the alignment uncertainty quantified by the ensem-
ble can be incorporated into downstream analysis without
the need for designing computationally intensive joint
sampling approaches. If a single representative of the
ensemble is required, this framework also allows for the
efficient computation of the single alignment that max-
imises the expected value of a variety of different accuracy
scores.
The simple and computationally efficient nature of

this representation makes it practical to adopt a more
principled, probabilistic approach to quantifying and
making use of alignment uncertainty, and we discuss
examples of cases where this may prove particularly
useful.

Quantifying alignment uncertainty
A number of different approaches have been developed
for quantifying the uncertainty associated with a multiple
sequence alignment. Many of these methods focus on the
notion of alignment reliability, i.e. the degree to which a
particular alignment (or regions thereof) can be trusted as
a prediction of the homology between the sequences.
One set of approaches involves computing scores or

summary statistics on a single alignment of interest,
using these as a measure of reliability of the alignment.
Some of these approaches equate reliability of a par-
ticular alignment column with a high score under the
model used to generate the alignment [67], the justi-
fication being that low-scoring columns are harder to
distinguish from random noise, and so are more likely to
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contain erroneous homology statements; others generate
the alignment using one scoring scheme, and measure
its ‘reasonableness’ based upon another set of criteria
[68,69], which may involve looking at the deviation of
summary statistics from their expected background distri-
bution under the null hypothesis of no homology [70,71].
One potential issue with some of these approaches is that
they introduce a bias towards highly conserved regions,
since they do not distinguish between evolutionary vari-
ability and statistical uncertainty, often using the term
alignment quality as a synonym for reliability.
An alternative approach, first mentioned by [49],

involves generating a set of plausible alignments, and
assessing the alignment uncertainty bymeasuring the sim-
ilarity between the alignments in this set. This type of
consistency- or congruence-based approach has a more
natural statistical interpretation, but requires a method of
generating alternative alignments, as well as a measure of
alignment similarity or distance; the interpretation of the
resulting measures of uncertainty may depend heavily on
these two factors.

Generating sets of alignments
A variety of heuristic methods have been developed in
order to generate sets of alignments for the purposes
of measuring uncertainty. Perhaps the simplest of these
is to align the same sequences with the residue order
reversed [72], although the efficacy of this technique
is questionable [73,74]. Another class of methods gen-
erates alternative alignments by perturbing parameters
such as the guide tree [75,76], gap opening and exten-
sion penalties [77,78], and substitution matrices [79,80],
and recomputing the optimal alignment with these alter-
native parameters. However, in all these cases the types
of perturbations applied to the parameters will affect
the resulting estimates of uncertainty in an unpredictable
fashion [70].
Another approach is to look at a set of suboptimal

alignments under a particular scoring scheme, given fixed
parameters [81-83], using these to search for regions of
consistency [84-86]. The variability among these subopti-
mal alignments can then be converted into a measure of
statistical uncertainty, using an approximation to the dis-
tribution of scores, for example using an extreme value
distribution [87].

A Bayesian approach
Within a Bayesian framework, the collection of plausible
alignments can be identified with the posterior distri-
bution of the alignment given the sequences and other
model parameters; this leads to a probabilistic interpre-
tation of alignment uncertainty, whereby the fraction of
alignments containing a particular homology statement is

a measure of the posterior probability of that homology
statement.
For the pairwise case, alignments can often be sampled

exactly from their posterior distribution under a partic-
ular evolutionary model using a dynamic programming
approach [88-90]. However, for multiple sequences such
approaches rapidly become computationally infeasible,
and other types of procedures must be used. A popular
option is to use Markov chain Monte Carlo (MCMC) in
order to sample from the posterior distribution of align-
ments [55-58,60,61,65,91-94]. The main advantage of the
MCMC approach is that it is guaranteed to sample align-
ments from the correct probability distribution, provided
that the simulation is run for long enough to ensure con-
vergence, although this may require significant amounts
of runtime.

Representing the distribution of sampled
alignments
Once a set of plausible alignments has been generated,
a common issue that arises is how to represent and/or
summarise this set in a useful fashion. In a Bayesian con-
text this entails representing the approximation to the
posterior distribution over alignments, given a collection
of samples. We shall present here a graph-based formu-
lation that allows for a compact representation of this
distribution, permitting algorithms to be designed for effi-
cient inference on exponentially large sets of alignments
derived from a collection of samples.

Mapping columns to dynamic programming tables
A multiple sequence alignment can be represented as a
path through a multidimensional matrix; an edge from
one cell of the matrix to an adjacent cell represents a par-
ticular set of homology statements, synonymous with a
column in the alignment. It is a straightforward extension
to consider a set of alignments as a set of paths in such a
matrix [95].
To formalise this intuition, we introduce a bijection

between the set of alignment columns and the set of edges
connecting cells in the multidimensional dynamic pro-
gramming matrix, based on the coding scheme described
in the supplementary section of Satija et al. [65]. More
specifically, a columnX containingN rows can bemapped
to an N-tuple C(X) = (c(X1), . . . , c(XN )), where c(Xi) is
defined as

c(Xi) =
{
2j − 1 if Xi = s(i)j
2j if Xi = gap, between s(i)j and s(i)j+1

(1)

where s(i)j is the jth character of the ith sequence, such
that C(X) corresponds to the coordinates of the mid-
point of an edge connecting two cells in the matrix.
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We will also introduce initial and terminal columns,
X(0) and X(T), which can be thought of as all-gap
columns preceding the first characters and following
the last characters of the sequences, respectively. These
will therefore be encoded as C(X(0)) = (0, . . . , 0) and
C(X(T)) = (2L1, . . . , 2Lm) where Li is the length of the ith
sequence.
It is then possible to map any global alignment, A, to

a path, C(A) = (X(0),C(A(1)), . . . ,C(A(L)),X(T)) through
the dynamic programming matrix (see Figure 1).

Intersections between alignments
The paths corresponding to a particular set of alignments
may intersect at one or more points in the matrix; as first

a)

b)

Figure 1 Correspondence between alignment columns and
edges connecting cells in a dynamic programmingmatrix,
illustrated for pairwise alignment. In order to permit a directed
acyclic graph representation of the space of possible alignments,
each column is given a code that distinguishes between gaps based
upon where they occur in the alignment. The coding for each
column for the two alignments shown in panel a) represents a
bijection to the midpoints of edges connecting cells in the dynamic
programming table in panel b). Cell boundaries are indicated by
thicker gridlines, and the finer gridlines indicate the column coding
corresponding to each position, as labelled on the top and right axes.
These codings are derived from the characters shown on the bottom
and left axes. The midpoint of each cell is labelled with a circle, and
each edge is annotated with a rectangle denoting the corresponding
column. Each path from X(0) to X(T) (shown as dashed columns at
(0, 0) and (2, 2), respectively) represents a valid alignment.

discussed by Bucka-Lassen et al. [95], subpaths can be
‘spliced’ at these points in order to generate new align-
ments. This approach was originally used to create an
augmented search space for locating an optimal align-
ment [95,96], and more recently has been used as part
of a progressive alignment algorithm that keeps track of
suboptimal alignments [97].
The types of intersections fall into two categories, as

illustrated in Figures 2 and 3. The first of these, which we
term an interchange, results when two or more sampled
alignments contain the same column, but with a differ-
ent predecessor and successor, as shown in Figure 2. The
second type of intersection is termed a crossover, whereby
two or more sampled alignments contain pairs of equiv-
alent columns, as shown in Figure 3. Each interchange
or crossover can result in a multiplication of the num-
ber of possible ways of recombining the sampled align-
ments, such that the total number of alignments is greatly
increased.
As a result of this, an initial set of alignments sampled

according to a particular model can be used to generate
a much larger set of alignments sampled according to the
same distribution, as we shall examine in further detail in
the subsequent section.

Equivalence classes of columns
In order to delineate the ways in which a set of columns
can be recombined to form new alignments, we intro-
duce the predecessor and successor functions, fP and fS
respectively. The functions fP and fS take the coordinates
of a column X as input, and return the coordinates of an
equivalence class of columns, corresponding to the mid-
point of the predecessor (respectively successor) cell in
the multidimensional matrix. Each column mapping to a
particular fP- or fS-equivalence class can follow the same
set of predecessor or successor columns, respectively (see
Figure 4).
Denoting the ith coordinate of the output by fP(X)i and

fS(X)i, the functions are defined such that

fP(X)i = c(Xi) − c(Xi)mod2 (2)

fS(X)i = c(Xi) + c(Xi)mod2 (3)

The original column coding is then uniquely recovered
by the backwards mapping

C(X) = (fP(X) + fS(X))/2 (4)

The equivalence class EP(X) is then defined as the set
of columns, {X′ | fP(X′) = fP(X)}, with ES(X) similarly
defined.
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a)

b)

c)

Figure 2 Interchanges between alignments can result in a
multiplication of the number of possible paths through the
DAG. a) Two alignments coded under the map C, as described in
Equation (1). b) The resulting alignment DAG contains an interchange
column, such that there are four paths through the DAG, arising from
only two alignments. c) Correspondence between alignment columns
and edges connecting cells in a dynamic programming matrix.

Using the definitions above, a column X′ is a predeces-
sor of X if and only if fS(X′) = fP(X), since any path
connecting them must pass through the separating equiv-
alence class ES(X′) ≡ EP(X). We will use the notation
P(X) ≡ {X′ | fS(X′) = fP(X)} to denote the set of
predecessors of X.

The alignment column graph
We can then define the alignment column graph, D(�),
of a set of columns, �, as a graph whose nodes are the

a)

b)

c)

Figure 3 Crossovers between two alignments containing no
interchange columns. a) Two alignments coded under the map C,
as described in Equation (1). b) The resulting alignment DAG allows
for crossovers between these alignments, such that there are four
possible paths through the DAG, two of which include pairs of
columns that are not observed in the input alignments (dashed lines).
c) Correspondence between alignment columns and edges
connecting cells in a dynamic programming matrix.

columns in �, with a directed edge from column X to col-
umn X′ if and only if fS(X) = fP(X′), which we write as
X � X′. From the definitions in Equations (2) and (3), we
have fP(X) < fS(X) for all X, in the sense that fP(X)i ≤
fS(X)i for all i, with no column having fS(X) = fP(X)

unless it consists of all gaps. This ensures that the align-
ment column graph is acyclic, since it is never possible to
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Figure 4 Predecessor and successor functions, and equivalence
classes of columns. The predecessor and successor functions (fP and
fS respectively) map from columns (edges) to nodes (circles) in the
dynamic programming matrix. All columns mapping to a particular
node under fP share the same set of possible predecessor columns,
and are grouped together in an equivalence class, denoted by EP
(shown in red). An analogous definition holds for ES (blue).

return to the same equivalence class by following a set of
directed edges in the graph.
Each directed path through the column graph gen-

erates a valid alignment; a global alignment is a valid
alignment that begins at X(0) and ends at X(T), such
that the number of possible global alignments is equal
to the number of distinct paths in D(�) that lead
from X(0) to X(T). This is typically very large, grow-
ing rapidly with the number of intersection points
between the alignments used to generate the graph (see
Figure 5).
Implicit in the definition of the mapping in Equation (1)

is a distinction between gaps based on their position
in the alignment, such that the two situations shown
in Figure 1 represent distinct alignments, each yield-
ing two different pairs of columns. This assumption is
necessary in order to generate a sparse graph; treating
all gaps as equivalent is tantamount to replicating each
gap-containing column onto all parallels, such that the
graph in general becomes maximally dense, making effi-
cient algorithms difficult to implement (see Additional
file 1: Figure S2).

Probability distributions on alignment DAGs
Due to the high-dimensional nature of the alignment
space, in any particular set each alignment will typically
occur with a very low frequency; even the most likely
alignment may only be sampled once, if at all [93,98]. As
such, the relative probabilities of entire alignments are
difficult—if not impossible—to estimate directly by their
observed frequencies. However, a particular column may
occur inmany different alignments, allowing themarginal
probability of each column, averaged over all alignments,
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Figure 5 The number of paths through the alignment column
graph as a function of the number of alignments used to
generate the graph. Shown for a set of 10 sequences simulated
using DAWG (simulation procedure described in the main text). When
crossovers are allowed (corresponding to a mean-field approximation
for the conditional marginal for each column), the number of paths
increases super-exponentially, resulting in a much higher coverage of
the space of possible alignments, and hence more accurate
approximations to the posterior probability for each path (see Figure 8).

to be estimated much more efficiently [93,99]. As we shall
discuss, they also represent useful summary statistics of
the full distribution.

Alignment probabilities in terms of pair marginals
For general evolutionary models, the DAG can be used to
construct a factored approximation to the full distribution
over alignments; this factored distribution corresponds to
a graphical model with dependencies between neighbour-
ing columns defined by the edges in the DAG. Under this
factored approximation, the probability of an alignment
(corresponding to a path through the DAG) can be written
in the form

p(A) = p
(
A(1)) L∏

i=2
p

(
A(i) | A(i−1)) (5)

where

p
(
A(i) | A(i−1)) = p

(
A(i),A(i−1)) /p

(
A(i−1)) . (6)

For evolutionary models based on first-order hidden
Markov models (HMMs) (such as the one shown in
Additional file 1: Figure S4), the pair-marginal represen-
tation is exact, since the dependencies in the model are
equivalent to those in the DAG. For models with non-
local dependencies between columns, simply setting the
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pair marginals to be equal to the observed pair marginals
minimises the Kullback-Liebler divergence from the full
empirical distribution to the pair-marginal approximation
(see Additional file 1: Section S4).

Motivations for using factored approximations
There are three main reasons for making use of factored
approximations of this type:

i) The number of possible column pairs is many orders
of magnitude lower than the number of alignments,
such that pair marginals can be estimated much more
reliably from observed frequencies. These can then
be used to construct more accurate estimates of the
overall joint probability.

ii) Expression of the joint in terms of pair-marginals
allows for interchanges in the alignment DAG (cf.
Figure 2), allowing many alternative alignments to be
generated from an initial collection of samples.

iii) Factorisation of the probability into a product of local
terms allows for efficient algorithms to be
implemented on the DAG structure.

We discuss these factors in further detail below.

Mean-field approximation
As well as distributions involving pair terms, we will also
consider a mean-field type approximation, whereby the
conditional distribution of each column is given a specific
predecessor [cf. Equation (6)] is replaced by an average
over all predecessors:

p(X | P(X)) = p(X,P(X))/p(P(X)) (7)

= p(X)/
∑
X′
�X

p(X′) (8)

where p(X | P(X)) is the probability of column X given
that any one of its possible predecessors is in the align-
ment. The second line uses the identities p(X,P(X)) ≡
p(X) (since a column can only be present if one of its pre-
decessors is present), and p(P(X)) ≡ ∑

X′
�X p(X) (since

only one member of an equivalence class can be present
in any particular alignment).
An important corollary of the expression in Equation (8)

is that single-column marginals are sufficient to recon-
struct the mean-field approximation to the joint probabil-
ity; this has several important consequences, as we shall
discuss below.

Motivations for using the mean-field approximation
The mean-field approximation described above is exact
for fully independent sites models, for example pair
HMMs with non-affine models for indels. For more

general HMMs, there are three major advantages asso-
ciated with using this approximation rather than the
pair-marginal formulation:

i) Since the number of possible columns is substantially
less than the number of possible column pairs, it is
easier to obtain reliable estimates of single-column
marginals from a collection of alignment samples.
Hence, the mean-field approximation is likely to be
more accurate for lower sample sizes.

ii) The use of single-column marginals allows for
crossovers in the alignment DAG (cf. Figure 3),
whereas the pair-marginal expression will assign a
weight of zero to any pairs that are not observed,
hence only permitting interchanges of the form
shown in Figure 2. This allows for a higher effective
sample size for the alignments under the mean-field
approximation, with more alternative alignments
generated from the same collection of samples.

iii) Restricting to single-column marginals more efficient
algorithms to be constructed, involving one-step
rather than two-step recursions.

In the rest of this section, we examine these points in
further detail.

Estimating marginal probabilities
For a pairwise alignment, column marginals can be easily
represented using a matrix in which the (i, j) entry con-
tains the marginal probability p(s(1)i � s(2)j ), where s(1)i and
s(2)j are the ith and jth characters in two sequences s(1)

and s(2), and the symbol � denotes homology. When only
two sequences are under comparison, dynamic program-
ming recursions allow for the exact computation of these
marginal probabilities under certain types of evolutionary
models [55,100,101].
In the multiple sequence case, such exact computa-

tions are typically infeasible. However, if we are provided
with a set, A, of sampled alignments, an estimate of the
marginal probability of each column (after coding) can
be computed as the proportion of the alignments in A
that contain the column, weighted according to the align-
ment probability. This can be written using the following
indicator function notation

p̂C(X) = ∑
A∈A

p(A)1(C(X) ∈ C(A)) (9)

If we consider a multiset, A+, containing global align-
ments sampled one ormore times according to their prob-
ability, then the factor p(A) can be replaced by the relative
frequencies of the sampled alignments. The estimator for
the marginal probability p̂C(X) is then proportional to the
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fraction of sampled alignments containing a columnX′ for
which C(X′) = C(X):

p̂C(X) = nC(X,A+)/|A+| (10)

with nC(X,A+) denoting the number of occurrences of
C(X) across all the alignments contained in the multiset
A+. If enough alignments are sampled from the correct
distribution, the above estimator will converge to the true
value pC(X). Although conditional marginals can also be
computed from local alignments (see Additional file 1:
Section S1), in this work we will consider only global
alignments, in the interests of simplicity.
Since in most cases each sampled alignment will be

unique, due to the high dimensional nature of the state
space, in the rest of this manuscript we will refer only
to the set A rather than the multiset A+. However, for
cases where uncertainty is low, and the same alignment
may be sampled more than once, it is important to treat
each replica as an independent sample when computing
marginal probabilities.
Marginal probabilities can also be estimated for pairs

of columns using observed pair frequencies. However, the
space of possible pairs of columns can bemuch larger than
the space of columns; in the worst case this will be by a fac-
tor of O(2N ), where N is the number of sequences, since
this is the maximum size of an equivalence class. Hence,
a larger number of alignment samples will be needed to
obtain accurate estimates for pair marginals. As we shall
see, this means that pair-based reconstructions of joint
probabilities are typically less accurate unless a very large
number of samples is used.

Reconstructing alignment probabilities frommarginals
Generally, with sampling-based procedures such as
MCMC, posterior probabilities are estimated via sampled
frequencies. However, in the case of a very high dimen-
sional parameter such as a multiple sequence alignment,
each point in the space may only be visited once, such that
it is not possible to estimate posterior probabilities based
on these frequencies.
As discussed above, the set of marginal probabilities

for each column (or pair of neighbouring columns) can
be used to reconstruct the posterior probability for any
particular alignment, via Equation (5). Although the likeli-
hood for each sampled alignment will often be known as a
by-product of the sampling procedure, the marginal pos-
terior probability of each alignment after integrating over
other unknown parameters (for example indel rates), will
typically not be known. Hence, the DAG-based approach
presented here represents a useful way to calculate pos-
terior probabilities in such cases. A similar approach has
been used recently to compute the posterior probabili-
ties of phylogenetic trees based on the probabilities of

each of the constituent clades, under the assumption of
conditional independence between clades [102].
As an illustration of this procedure, a set of pair-

wise alignments were sampled from the pair-HMM in
Additional file 1: Figure S4, combined with the Dayhoff
amino acid rate matrix [103], for two globin sequences
(sampled alignments illustrated in Additional file 1:
Figure S3). As shown in Figures 6 and 7, the DAG-based
estimates of the posterior probability converge towards
the true probability as the number of samples is increased,
reaching a good agreement after just 200 samples, as
measured by the mean-squared error of the logarithm:

MSE(p̂ || p) = 1
|A|

∑
A∈A

(log p̂(A) − log p(A))2 (11)

For lower numbers of samples, the estimates are more
accurate for themore probable alignments, since themore
extreme regions of the space are sampled with lower
probability, and hence converge more slowly.
Although both pair-marginal and mean-field estimates

converge in this case at a similar rate, closer analysis
shows that the mean squared error in the approximation
to the true posterior is considerably less for the mean-
field approximation. This suggests that the improvement
obtained by summing over a larger number of paths
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posterior, as a function of the number of alignment samples.
Shown for the pairwise globin example. Although the pair-HMM
involves neighbour-dependent terms (leading to an affine gap
penalty), the mean-field approximation leads to a better estimate of
the true posterior until around 1000-2000 samples are taken. This is
due to the presence of intersections between paths in the alignment
DAG, which allows for a higher effective sample size to be obtained
from the same number of alignments.
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Figure 7 As more alignment samples are taken, the DAG-based estimate of the log posterior probability for each alignment converges
towards the true value. The DAG-based probabilities already yield a good estimate when the number of alignments, N, is just 100. Shown on the
top row are the reconstructed probabilities derived using pair marginals, and on the bottom using the mean field approximation, with the line y = x
overlaid in red. Since each sampled alignment is generally observed only once, the posterior probability estimated directly from alignment frequency
would be 1/N in each case above. The DAG methodology therefore offers a clear advantage for the purposes of computing posterior alignment
probabilities. The mean-field approximation results in a lower mean-squared error (MSE), due to the higher effective sample size (see Figure 6).

(see Figure 5) outweighs the approximation introduced by
averaging over predecessor states, although eventually at
around 2000 samples the pair-marginal estimates begin
to dominate the mean-field approximation (see Figure 6),
since the true pair-HMM involves neighbour-dependent
terms. The precise location of this crossover point will
depend on the degree of neighbour dependency; for a
completely site-independent model (e.g. the pair-HMM
in Additional file 1: Figure S4 with δ = ε = σ ), the
single-column marginal estimate always dominates (see
Additional file 1: Figure S7).
This same pattern is observed in a more striking fashion

for a larger, 10-sequence alignment, as shown in Figure 8.
Moreover, since the space of possible alignments increases
very rapidly with the number of sequences, the benefit of
using the mean-field approach to boost the effective sam-
ple size is greater in the multiple-sequence case, resulting
in much faster convergence of the posterior estimates (see
Figure 8).

Approximate summation over all alignments
As well as computing the probability of individual paths
in the DAG, it is possible to sum over all alignments
contained within the DAG using a standard dynamic
programming algorithm (see Additional file 1: Section S5).
In the pairwise case, where it is possible to analyt-

ically compute the sum over all alignments (by filling
out the full dynamic programming table), it is possible
to examine how much of the posterior mass is con-
tained within the DAG resulting from a particular set of
samples.
While the probability mass contained within the indi-

vidual samples increases relatively slowly, and encapsu-
lates only a very small fraction of the total, the proportion
of the posterior mass encapsulated in the set of paths
through the alignment DAG increases muchmore rapidly;
the DAG contains in the order of 10-15% of the total
posterior mass over the entire set of possible alignments
with just 100 samples, increasing to around 80% after
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Figure 8 For a larger multiple sequence alignment, the mean-field approximation to the log posterior (bottom row) converges much
more quickly than the pair marginal estimate, despite the fact that the indel model used includes neighbour-dependent terms. This is due
to the fact that column marginals can be estimated more reliably than pair marginals, combined with the fact that allowing crossovers in the DAG
results in a higher effective sample size (see Figure 5). Results shown for the simulated dataset described later in the main text, using the TKF92 indel
model [17]. In this case the true posterior probability cannot be computed analytically, but the log likelihood (conditional on specific values of the
other unknown parameters) is known. Since the log likelihood is expected to be linearly related to the log posterior, convergence can be gauged
approximately by assessing the fit to a relationship of y = x + k (overlaid in red, with k, the approximate normalising constant, chosen to match the
distribution to which the mean-field approximation converges, here k = −9420).

including 2000 samples (see Figure 9 and Additional file 1:
Figure S1).
A similar dynamic programming algorithm can be

used to calculate the total number of paths (i.e. align-
ments) contained within the DAG. Examining the number
of paths in the DAG as a function of the number of
alignment samples shows a super-exponential relation-
ship when crossovers are allowed, whereas restricting to
observed column pairings increases close to exponen-
tially (see Figure 5). In the pairwise case, the theoretical
maximum can be computed analytically; for the pairwise
example discussed above, the total number of paths in the
DAG has an upper bound in the order of 10113.

Summarising the alignment distribution
Although the set of alignments encoded by the DAG con-
tains a great deal of additional information beyond that

contained in any one alignment, there may be situations
where a single alignment is desired as a summary of
the distribution. Due to the high-dimensional and con-
strained nature of the state space, standard summary
statistics such as the mean are not applicable in this case
[104].

Finding the MAP alignment
One of the simplest summaries of the distribution is the
maximum a posteriori (MAP) alignment. As mentioned
earlier, estimation of this quantity directly from sample
frequencies is typically very unreliable, since each align-
ment is typically only sampled once, such that each sample
has the same empirical posterior probability. However,
as discussed above, the DAG-based approach to estimat-
ing posterior probabilities can be used to obtain good
estimates of the probability for each possible alignment
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Figure 9 The proportion of the posterior mass contained in paths through the DAG increases rapidly with the number of samples. For the
pairwise example discussed in the text, the proportion reaches in the order of 10-15% of the total posterior mass with just 100 samples, increasing
to over 80% after including 2000 samples (left panel). In contrast, the proportion of posterior mass contained within the individual samples is very
small (right panel).

contained in the DAG. We can then use the fact that the
DAG-based log posterior is additive over the columns in
the alignment

log p(A) = log p
(
A(1)) +

L∑
i=2

log p
(
A(i) | A(i−1)) (12)

such that the path with the maximum posterior can be
found using standard dynamic programming algorithms
for DAGs (see Algorithm 1).

Algorithm 1MAP alignment (mean-field)
M = { } // Max. cumulative log posterior for each equivalence class
T = { } // Traceback hash
π = ( ) // List that will contain the MAP alignment
e // Vector indexing an equivalence class

functionmapPathTo(e)
ifM{e} undefined then

if e = 0 then
M{e} ← 0

else
M{e} ← −∞
for all X | fS(X) = e do

// Increment using mean-field approx. to conditional
m ← mapPathTo( fP(X) ) + log( p(X)/p(EP(X)) )
ifm > M{e} then

M{e} ← m
T{e} ← X

return M{e}
end function

function traceback( )
e ← fP(X(T))
while e 	= 0 do

prepend(T{e},π)
e ← fP(T{e})

return π
end function

functionmapAlignment( )

mapPathTo( fP(X(T)) )
return traceback( )
end function

Nevertheless, due to large size of the space of possible
alignments, there may be a large number of very similar
alignments with very similar posterior probability. Hence,
quantities such as the MAP can be poor summary statis-
tics of the distribution [58,93,94]. Instead, we will consider
alternative types of summary alignments that account for
the uncertainty contained within the DAG.

Loss function formulation
The problem of choosing a single summary alignment
can be approached within a decision theoretical frame-
work, whereby the choice of summary is designed to
minimise the expected value of a particular loss function,
also known as the posterior risk [104]. For a loss func-
tion defined in terms of alignment accuracy, minimising
the posterior risk is equivalent to selecting the maximum
expected accuracy alignment [98,105,106].
The loss of an alignment, A, with respect to a reference

alignment,A′, will be denoted by L(A ||A′), and represents
a penalty associated with choosing alignmentA, given that
the true alignment isA′. The posterior risk associated with
A can then be defined as

R(A) = E
[
L(A || A′)

]
(13)

=
∑
A′

p(A′)L(A || A′) (14)

where the sum over A′ includes all alignments. The
minimum-risk alignment is then Â = argminA R(A).
For loss functions defined as a sum over columns (equiv-

alent to the pointwise gain functions discussed by Hamada
et al. [106]), we have

L(A ||A′) = k
∑
X∈A
L(X ||A′) (15)
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where k is independent of A. In order to define the loss for
a particular column, we will consider the following four
categories of columns in the predicted alignment, A:

True positives (TP) = Columns correctly present
False positives (FP) = Columns incorrectly present
True negatives (TN) = Columns correctly absent
False negatives (FN) = Columns incorrectly absent

such that TP ∪ FP ∪TN ∪ FN = �, the set of all observed
columns.
Generally we will not be interested in the number of

negatives (i.e. columns not included in the alignment),
since this will depend on howmany alignment samples are
used to generate the DAG. We will therefore focus on loss
functions of the form

Lf (X ||A) = λFP(1 − 1(f (X) ∈ f (A)))

−ρTP1(f (X) ∈ f (A)) (16)
= λFP − (ρTP + λFP)1(f (X) ∈ f (A)) (17)

where f is a bijective function operating on columns,
with f (A) = (f (A(1), . . . , f (A(L))), and λFP and ρTP are
loss/reward functions associated with false positives and
true positives respectively.
As shown in Additional file 1: Section S2, the posterior

risk can then be written as

Rf (A) ∝
LA∑
j=1

[
g − pf (A(j))

]
(18)

where pf (X) = ∑
A p(A)1(f (X) ∈ f (A)) is the marginal

probability of column X being present according to the
mapping specified by f , and g = λFP/(ρTP + λFP) is
penalty term that penalises longer alignments by a factor
proportional to the penalty on false positives. In contrast
to an arbitrarily chosen gap penalty, the penalty, g, has
a direct interpretation in this case. It is also a straight-
forward extension to allow λFP and ρTP, and hence g, to
depend on the specific column, X, for example penalising
a false positive proportionally to the number of non-gap
characters contained in the column.

Loss functions corresponding to common accuracy
measures
The simplest choice in Equation (17) is to set f (X) = C(X)

as defined in Equation (1), such that pf (X) is equal to
the marginal probability as defined in Equation (9). The
loss function formulation can also be used to represent
commonly used measures of alignment accuracy. Perhaps
the simplest of these is the so-called column score; this
measures the proportion of correct columns, but with-
out differentiating between the positions of the gaps. This
can be defined more formally by first introducing an alter-
native column mapping, C+(X) = (c+(X1), . . . , c+(XN )),

which groups together all columns that contain the same
non-gap characters:

c+(Xi) =
{
2j − 1 if Xi = s(i)j
0 if Xi = gap

(19)

The column score for an alignment, A, with respect to a
reference, A′, can then be defined as −LC+(A || A′), with
λFP set to zero. Since we have

1(C(X) ∈ C(A)) ⇒ 1(C+(X) ∈ C+(A)) (20)

and hence pC+(X) ≥ pC(X) and p̂C+(X) ≥ p̂C(X),
the C+-risk, i.e. RC+ , represents an upper bound to the
C-risk, RC . As shown in Figure 10, the alignment min-
imising the C+-risk will not in general be the same as the
alignment minimising the C-risk, although there may be
considerable overlap.
As discussed in Additional file 1: Section S3, the above

approach can easily be extended to make use of a func-
tion, f , which splits a column up into a set of pairwise
homology statements. This allows various pairwise accu-
racy scores to be expressed in terms of similar types of loss
functions.

Modeller scores
One other class of loss function worth mentioning here
is the so-called modeller version of each of the afore-
mentioned scores, Lm

f (A ||A′), which involve normalis-
ing Lf (A ||A′) by the length of the predicted alignment,
A. For example, the modeller C-score, corresponding to
Lm
C (A ||A′), was considered by Collingridge and Kelly

[79]; as we shall see, the dependence on the length of the
predicted alignment precludes the use of exact optimisa-
tion algorithms for loss functions such as this.

Efficient algorithms
In general, minimising the expectation of any of the afore-
mentioned loss functions over the space of all possible
multiple alignments is a problem whose complexity grows
exponentially with the number of sequences [107]. For
the pairwise case, the minimum-risk/maximum expected
accuracy problem can be implemented efficiently using
standard dynamic programming algorithms [22,60,61,88,
94,98,108-110]; for multiple sequences approximate tech-
niques have generally been used, including simulated
annealing [20,111,111,112], and greedy [113] or progres-
sive alignment algorithms [105,114-116].
However, if the solution set is restricted to the (still

very large) space of alignments encoded in the DAG, any
risk function that is additive over columns [in the sense
of Equation (15)] can be minimised in time linear in the
number of columns in the DAG, by making use of effi-
cient maximum-weight path algorithms (see Algorithm 2;
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Figure 11). This type of approach was first mentioned by
Lunter et al. [93], and an implementation described by
Satija et al. [65], although these previous studies did not
examine the algorithm in terms of loss functions.

Algorithm 2Minimal risk alignment, argminA Rf (A)

M = { } // Max. negative cumulative risk for each equivalence class
T = { } // Traceback hash
π = ( ) // List that will contain the minimum risk alignment
e // Vector indexing an equivalence class
pf (X) //

∑
A∈D(�) p(A)p(f (X) ∈ f (A) )

g(X) // Penalty function, defined such that g(X(0)) = 1

functionminRiskPathTo(e)
ifM{e} undefined then

if e = 0 then
M{e} ← 0

else
M{e} ← −∞
for all X | fS(X) = e do

m ← minRiskPathTo( fP(X) ) + pf (X) − g(X)
ifm > M{e} then

M{e} ← m
T{e} ← X

return M{e}
end function

functionminRiskAlignment( )

minRiskPathTo( fP(X(T)) )
return traceback( )
end function

The same approach cannot be applied to minimise the
risk under modeller variants, however, since the contri-
bution of each column to the partial sum at each step
in the dynamic programming algorithm depends on the
unknown final alignment length. Collingridge and Kelly
recently presented an algorithm, entitledMergeAlign, that
proposed to optimise a score of this type, but as shown
in Additional file 1: Figure S5, it is possible to construct
counter-examples for which the algorithm does not com-
pute the optimal solution. As we shall illustrate, this lack of
optimality can result in significant losses when summaris-
ing a set of alignments. Moreover, the same objective,
i.e. penalising longer alignments, can be achieved through
the use of a non-zero g parameter as described above,
such that the use of modeller variant loss functions is
unnecessary.

Efficient data structures
In representing the alignment DAG, it is essential to
ensure that the space complexity of the data structure is
less than the total number of paths through the graph,
which increases very rapidly with the number of columns.
The obvious way to represent a graph is via a list of
neighbours for each node, which requiresO(d̄|�|) storage,
where |�| is the number of observed columns and d̄ is the
average node in-degree.

However, within the mean-field setting, we can use the
predecessor and successor equivalence classes to signif-
icantly increase the space efficiency, since each column
need only record its predecessor and successor equiva-
lence class. Given the definitions of the predecessor and
successor equivalence classes, we can see that each equiv-
alence class is of size at most 2N − 1, where N is the
number of sequences, since each row can take one of two
possible values (gap/character) in each equivalence class,
with the restriction that the column cannot be all gaps.
In general, the number of equivalence classes is therefore
somewhat less than the number of columns, with |�| =
d̄|E|, where 1 ≤ d̄ ≤ 2N − 1. Using an equivalence-class
representation of the DAG structure therefore results in
O(d̄|E|) = O(|�|) space requirements, saving a factor
of d̄.
Similar gains can be made in time complexity. Since any

column in a particular fP-equivalence class will have the
same set of possible predecessors, and similarly for suc-
cessors, the partial sums required in dynamic program-
ming algorithms can be stored per equivalence class rather
than per node, which results in algorithms of O(|�|) time
complexity rather than O(d̄|�|) (see Algorithms 1 and 2
for examples). In the limit of a large number of short
sequences with high uncertainty, this results in going
from approximately quadratic time, to time linear in the
number of columns.

Example application: summary alignments for
simulated and benchmark datasets
In order to illustrate the utility of the aforementioned
procedure, we first simulated sequence data using the
program DAWG [117], yielding sets of sequences for which
the true alignment is known. Details of the simulation are
provided in Additional file 1: Section S7. Data were simu-
lated under three parameter regimes, with indel rates set
to low, medium and high (see Additional file 1: Section S7
for further details); 50 datasets were generated for each
regime, yielding 150 datasets overall, each containing 10
sequences, with average sequence length equal to 905
nucleotides.
As a biologically relevant example, we also considered a

set of 78 alignments taken from the BAliBASE database,
comprising the full-length alignments from the Reference
1 set [118]. This set further comprises two subsets, con-
sisting of low sequence identity (Ref 1a, ID < 25%)
(short: 14, medium: 12, long: 12; average 6.8 sequences
per alignment; average sequence length 309), andmedium
sequence identity (Ref 1b, ID = 20 − 40%) (short: 14,
medium: 16, long: 10; average 9.0 sequences per align-
ment; average sequence length 351). The simulated and
BAliBASE datasets can be found in Additional file 2.
For each of these datasets, we ran the statistical align-

ment software StatAlign [56], which jointly samples
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Figure 10 The minimum-risk path under the C-based loss function (blue) may not be the same as that under the C+-based loss function
(red). Column frequencies are shown in blue below each column, and the pC+ marginals shown in red above (as frequencies from a total of 20
samples). In this case, there are two equivalent paths with the same C+-score.

alignments and trees under a stochastic model of substitu-
tion, insertion and deletion [93]. 1000 alignment samples
were generated from the posterior distribution, and a
Java-based implementation of Algorithm 2 was used to

compute a summary alignment minimising the risk under
the C- and C+-based loss functions.
It is also of interest to consider how the minimum-

risk summary approach scales to alignments containing
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Figure 11 A collection of alignment samples can be combined into a DAG structure, and a summary algorithm generated using efficient
algorithms. The graph can be visualised by vertically ordering columns based on the longest path length to the end of the DAG (as shown above).
Each path represents a valid combination of the columns in the input alignments, with valid recombinations shown as grey lines in the above
figure. Themaximum a posteriori or minimal-risk path can then be found efficiently using linear-time algorithms, yielding a single summary
alignment (shown in blue) that accounts for the uncertainty in the alignment set, and can be annotated with posterior probabilities for each
column (shown in orange).

larger numbers of sequences. As a test dataset contain-
ing larger alignments, we selected one of the largest
alignments from the OXBench suite [119], consisting
of 122 immunoglobulin sequences, with average length
113. To assess how the method scaled with the num-
ber of sequences after controlling for other factors (such
as amino acid content and sequence length), we sub-
sampled smaller datasets from this alignment, yielding
datasets with 15, 33, 60 and 122 sequences. These sub-
sets were sampled so as to maximise dissimilarity within
the subset, since the original alignment contained sev-
eral well-defined subgroups that would otherwise skew
the analysis. Since full posterior sampling of alignments
is only feasible for around 20-30 sequences, we made use
of an approximate method for sampling alignments for
these datasets [80], generating 2000 alignment samples for
each dataset (see Additional file 1: Section S7 for further
details).

Comparison to other methods
For comparison, we also generated summary align-
ments for each dataset using the MergeAlign method

of Collingridge and Kelly [79], and a consistency-based
approach whereby the alignment samples are used as a
library for input to the program T-Coffee [114], using
the -aln option [120]. We call the latter approach S-
Coffee, with the ‘S’ signifying that the T-Coffee method
is being used on a library derived from a set of sampled
alignments.
As shown in Table 1, our DAG-based implementation

is substantially faster than the other methods. Increasing
the indel rate results in higher alignment uncertainty and
longer alignments, resulting in an increase in runtime for
all methods, although the increase is small for the mini-
mum risk algorithm (henceforth referred to as MinRisk).
Minimising the risk under the C+-based loss function
incurs an additional overhead due to the time needed to
compute the weighted marginal probabilities, pC+(X), but
this takes less than half a second in all the examples we
considered here.

Accuracy metrics
To assess the performance of each approach, we make use
of several measures of alignment accuracy, including the
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Table 1 Average time (in seconds) taken to generate a
summary alignment from 1000 samples, for the three
simulated datasets

Indel rate

Low Medium High

MinRisk (C) 1.5 1.8 2.2

MinRisk (C+) 1.9 2.4 2.8

MergeAlign 12.0 17.6 22.9

S-Coffee 43.0 48.4 50.9

All tests performed on a single AMD Opteron 2.3GHz core.

AMA metric of Schwartz [112,121] (measuring the pro-
portion of correct pairwise homology statements), and the
column score (equivalent to the C+-score, measuring the
proportion of correct columns). In addition, we use the
measures shown in Table 2.
For the simulated data, accuracy is computed relative

to the known true alignments, and for the BAliBASE
datasets, relative to the benchmark alignment provided.
Since theminimalRC andRC+ alignmentsmaximise the

expectation of the C- and C+-score respectively, it would
be expected that these methods perform best under the
corresponding scores. The MergeAlign method seeks to
maximise the Modeller C score, although as mentioned
earlier, the algorithm cannot guarantee an optimal solu-
tion. As a pairwise progressive algorithm, the S-Coffee
method might be expected to perform best under a sum-
of-pairs score, such as the AMAmetric.
Given that the absolute value of the accuracy varies

substantially over the different datasets, we measure the
performance of each method by computing a rank score,
which indicates the rank of the accuracy of an alignment,
Â, relative to the 1000 samples used as an input (A)

rankα(Â ||A) = 1
|A|

∑
A∈A

1(α(Â) > α(A)) (21)

A rank of 1 therefore indicates an alignment that is more
accurate undermeasure α than each of the individual sam-
ples, whereas a rank of 0 indicates an accuracy lower than
any of the individual samples.

Table 2 Accuracymeasures used to assess the relative
performance of the different summarymethods

Name Notation Definition

C-score αC(Â)
∑

X∈Â 1(C(X) ∈ C(A))/|A|
Modeller C αm

C (Â)
∑

X∈Â 1(C(X) ∈ C(A))/|Â|
C+-score αC+ (Â)

∑
X∈Â 1(C+(X) ∈ C+(A))/|A|

Modeller C+ αm
C+ (Â)

∑
X∈Â 1(C+(X) ∈ C+(A))/|Â|

A denotes the true alignment and Â an estimated alignment, and |A| represents
the length of alignment A.

Results: simulated data
As shown in Table 3, the MinRisk method generally yields
summary alignments that are more accurate than the
majority of the samples, resulting in a rank score close
to 1. As expected, minimising the risk under the C-based
loss function results in the highest accuracy under metric
αC , and similarly minimising the risk under RC+ results in
the highest scores under measure αC+ . Interestingly, the
MinRisk C+ method also results in the highest accuracy
under the AMA sum-of-pairs metric. In all cases setting
g = 0 results in the best performance, since these accuracy
metrics do not penalise false positives, although setting
g = 0.5 does not result in a large loss of performance.
In contrast, on these datasets MergeAlign typically

yields a summary alignment whose accuracy is close to
the median, with a rank score close to 0.5, although per-
formance is more reasonable under the αC measure. The
progressive heuristic S-Coffee algorithm performs con-
sistently badly in all cases, yielding summary alignments
that are typically worse than the majority of the samples
used to build the library, suggesting a conflict between the
information contained in the samples, and the heuristics
used to construct the alignment.
When the modeller variants of the scores are consid-

ered (Table 4), the general patterns stay much the same,
although there is now a benefit observed in increasing
the g parameter, since the modeller scores penalise longer
alignments. For alignments with more gaps (higher indel
rate), the value of g yielding the highest accuracy under
the modeller scores tends to decrease (see Figure 12). This
reflects the fact that for cases where the true alignment
contains many gaps we may wish to be more lenient with
the inclusion of additional columns, allowing the align-
ment to increase in length. Overall, setting g = 0.5 yields
the best average performance under themodeller variants,
corresponding to a loss function that equally penalises
false positives and false negatives.
As might be expected, the performance of MergeAlign

improves when the accuracy is measured using the
modeller scores. However, better performance can still
be obtained under the modeller variants by using the
MinRiskmethod and a non-zero g parameter (see Table 4).
As discussed earlier, the g parameter accomplishes the key
aim of the modeller score (i.e. to penalise longer align-
ments) while maintaining computational tractability, and
a meaningful statistical interpretation.
Given the heterogeneity of the different datasets, it

is also useful to visualise the results for the individ-
ual datasets. As shown in Figure 13 and Additional
file 1: Figure S8, the results are consistent across all
datasets, with the MinRisk method yielding alignments
that are significantly better than the majority of sam-
ples, especially as the indel rate is increased. Conversely,
the MergeAlign method consistently yields summary
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Table 3 Average rank scores for the different methods on simulated datasets, using the accuracymetrics described in the
main text and in Table 2

Low indel rate Medium indel rate High indel rate

αC αC+ AMA αC αC+ AMA αC αC+ AMA

MinRisk (C), g = 0 0.91 0.89 0.90 0.96 0.92 0.93 0.89 0.88 0.88

MinRisk (C), g = 0.5 0.89 0.73 0.84 0.93 0.50 0.78 0.84 0.09 0.40

MinRisk (C), g = 1 0.88 0.63 0.80 0.90 0.30 0.65 0.79 0.03 0.28

MinRisk (C+), g = 0 0.86 0.98 0.96 0.87 1.00 1.00 0.76 1.00 1.00

MinRisk (C+), g = 0.5 0.89 0.92 0.92 0.93 0.94 0.94 0.86 0.94 0.94

MinRisk (C+), g = 1 0.89 0.84 0.88 0.91 0.74 0.85 0.83 0.34 0.55

MergeAlign 0.65 0.40 0.48 0.80 0.46 0.58 0.73 0.36 0.45

S-Coffee 0.08 0.02 0.10 0.15 0.01 0.10 0.29 0.00 0.04

Highest values for each column shown in bold.

alignments that are close to the median accuracy of the
sampled alignments, and the S-Coffee method performs
consistently worse than the majority of samples.

Results: BAliBASE
For the BAliBASE datasets, the MinRisk method also
consistently yields summaries that are better than the
majority of samples, and outperforms the other meth-
ods examined here in all cases (see Tables 5 and 6).
Nevertheless, although still ranking behind most of the
MinRisk combinations, MergeAlign performs somewhat
better on the BAliBASE datasets than on the simulated
data, with ranks scores consistently much higher than
the median. This suggests that these particular BAliBASE
alignments contain fewer of the types of features (for
example large numbers of indels) that are likely to lead
to suboptimal solutions under the MergeAlign algorithm.
Similarly, the S-Coffee method, although still often worse
than the median accuracy of the samples, performs better
than on the simulated data, suggesting that the heuristics
employed by T-Coffee are tailored more towards align-
ing these types of datasets. These heuristics may to some

extent be overriding the information input via the library,
whichmay explain the poor performance on the simulated
datasets.
We can see also that in general the optimal value of g

for the MinRisk method is higher for the Ref 1b dataset
reflecting the fact that these sequences are less diverged,
and hence likely to contain fewer indels. However, as with
the simulated data, a value of g = 0.5 gives results that
are close to optimal in all scenarios with the BAliBASE
datasets.

Results: approximate sampling on larger OXBench
alignments
Using the OXBench datasets, we can examine how the
above conclusions scale to alignments with larger num-
bers of sequences. As discussed by Bucka-Lassen et al.
[95], the number of intersections between sampled
alignments may be expected to decrease as the number
of sequences is increased, due to the increased size of
the state space. Similarly, since the number of possi-
ble columns increases exponentially with the number
of sequences, it might be expected that the marginal

Table 4 Average rank scores for the different methods on simulated datasets, measured using themodeller scores

Low indel rate Medium indel rate High indel rate

αm
C αm

C+ αm
C αm

C+ αm
C αm

C+

MinRisk (C), g = 0 0.92 0.91 0.96 0.95 0.89 0.92

MinRisk (C), g = 0.5 0.93 0.88 0.97 0.80 0.90 0.35

MinRisk (C), g = 1 0.95 0.85 0.96 0.65 0.87 0.23

MinRisk (C+), g = 0 0.69 0.88 0.62 0.96 0.56 1.00

MinRisk (C+), g = 0.5 0.90 0.94 0.95 0.97 0.88 0.96

MinRisk (C+), g = 1 0.93 0.92 0.95 0.91 0.88 0.74

MergeAlign 0.74 0.57 0.85 0.67 0.78 0.63

S-Coffee 0.15 0.05 0.22 0.03 0.37 0.00

Highest values for each column shown in bold.
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Figure 12 Accuracy as a function of the g parameter. Accuracy on the simulated datasets under the αC+ (left) and αm
C+ (right) measures as a

function of the g parameter for low (◦), medium (�) and high (+) indel rates.
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Table 5 Average rank scores for the different methods on
BAliBASE datasets, using the accuracymetrics described in
themain text and in Table 2

Ref 1a (< 25%) Ref 1b (20 − 40%)

αC αC+ AMA αC αC+ AMA

MinRisk (C), g = 0 0.94 0.77 0.88 0.88 0.85 0.82

MinRisk (C), g = 0.5 0.90 0.41 0.66 0.92 0.81 0.90

MinRisk (C), g = 1 0.88 0.41 0.63 0.94 0.83 0.93

MinRisk (C+), g = 0 0.67 0.92 0.77 0.71 0.87 0.66

MinRisk (C+), g = 0.5 0.86 0.86 0.88 0.85 0.91 0.89

MinRisk (C+), g = 1 0.88 0.64 0.78 0.90 0.88 0.93

MergeAlign 0.91 0.59 0.74 0.80 0.75 0.84

S-Coffee 0.45 0.14 0.26 0.52 0.32 0.52

Highest values for each column shown in bold.

probabilities of each column would decrease as the
number of sequences is increased, thereby making the
minimum-risk alignment less reliable.
However, in the examples considered here, this effect

does not appear to be significant, since the alignment
uncertainty also decreases as more sequences are added
to the alignment, and this appears to more than compen-
sate for the increase in the size of the potential state space
(see Table 7). This is also highlighted by the fact that the
average number of columns per equivalence class—amea-
sure of the uncertainty surrounding the minimum-risk
alignment—does not increase as the number of sequences
is increased.
As shown in Figure 14, although the marginal proba-

bilities derived by the approximate sampling procedure
may be less accurate than those from alignments obtained
using StatAlign, the minimum-risk alignment for these
alignments is still always better than the majority of sam-
ples, with a rank score often above 0.8 (see Table 7).
Since the alignments are of length around 150, and the

DAGs contain in the region of 30,000 unique columns,

Table 6 Average rank scores for the different methods on
BAliBASE datasets, measured using themodeller scores

Ref 1a (< 25%) Ref 1b (20 − 40%)

αm
C αm

C+ αm
C αm

C+

MinRisk (C), g = 0 0.93 0.74 0.82 0.78

MinRisk (C), g = 0.5 0.95 0.70 0.96 0.96

MinRisk (C), g = 1 0.92 0.68 0.97 0.97

MinRisk (C+), g = 0 0.40 0.50 0.34 0.33

MinRisk (C+), g = 0.5 0.86 0.88 0.83 0.85

MinRisk (C+), g = 1 0.90 0.86 0.93 0.96

MergeAlign 0.93 0.74 0.85 0.86

S-Coffee 0.59 0.46 0.76 0.75

Highest values for each column shown in bold.

Table 7 Results on OXBench datasets

Number of sequences 15 33 60 122

Benchmark alignment length 144 150 152 157

Mean eq. class size 15.2 11.8 12.4 11.1

Average marginal 0.19 0.21 0.25 0.23

MinRisk rank, g = 0 0.67 0.85 0.84 0.92

MinRisk rank, g = 0.5 0.85 0.95 0.69 0.74

# columns in DAG 20288 26782 26221 30305

Time to read alignments (s) 0.5 0.8 1.2 2.1

Total runtime (s) 0.9 1.3 1.9 3.0

Timings were carried out using a single AMD Opteron 2.3GHz core.

2000 samples is approximately 10 observations per col-
umn.While this appears to be sufficient for estimating the
minimum-risk alignment, more samples will be needed
in order to accurately estimate the probabilities of the
less likely alignments, since these tend to converge more
slowly (cf. Figures 7 and 8).
Overall the rank scores are of comparable magnitude

to those observed with the BAliBASE datasets. Moreover,
the performance does not appear to degrade as the num-
ber of sequences is increased, although the optimal value
of g does switch from 0.5 to 0 as the number of sequences
is increased to 60 and 122. This is likely due to the fact
that the benchmark alignment increases in length as the
number of sequences is increased, and a lower value of g
favours longer alignments.
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Figure 14 Accuracy as a function of the g parameter. Distribution
of alignment accuracy scores for the OXBench datasets. Minimum-risk
summary alignments shown in red, for g = 0 and g = 0.5. The
summary alignments are generally more accurate than the majority
of samples, and this remains the case as the number of sequences is
increased.
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Computational considerations
While the runtime does increase with the number of
sequences, a breakdown of the contributions to these tim-
ings shows that the majority of the time is spent reading
in the alignments, which scales linearly with the num-
ber of alignments multiplied by the number of sequences
(cf. Additional file 1: Figure S9). As discussed earlier, the
minimum-risk algorithm scales linearly with the num-
ber of columns in the DAG, but this step contributes a
very small proportion of the total runtime in the exam-
ples shown in Table 7. On our test systems the overall
time taken to process and summarise 2000 alignments is
only 3 seconds for the 122-sequence dataset (see Table 7),
and around 10 seconds for 10,000 alignments (data not
shown). For a 20-sequence dataset, analysing 500,000
alignments takes 150 seconds (see Additional file 1:
Figure S9). Memory usage is also generally low, requir-
ing less than 2Gb in all the cases we have tested, even for
500,000 alignments.
In all cases we have examined, the time taken to actually

generate the alignment samples is significantly larger than
the time required to analyse the samples. As such, large
gains in efficiency can be obtained by generating one set of
alignment samples and carrying out multiple downstream
analyses on this same set, compared to carrying out a full
joint sampling analysis.

Effect of alignment accuracy on tree estimation
As discussed in the introduction, a number of studies
have highlighted how biases in alignments may lead to
misleading conclusions in the context of downstream tree
inference. As such, anymethodology that has the potential
to improve alignment accuracy, particularly in the pres-
ence of high uncertainty, has the potential to improve
subsequent phylogenetic inference. Here we will provide a
brief example to reiterate this point.
For each of the simulated datasets discussed earlier,

we performed tree inference using the program DNAML
from version 3.69 of the PHYLIP package [122], using
alignments generated by four commonly used programs,
as well as the summary alignments generated using the
minimum-risk procedure presented here. DNAML was
run with the default settings in each case, and the distance
to the known true tree was computed using the Robinson-
Foulds distance, equal to the number of bipartitions that
differ from the true tree, with maximum value of 2(n− 3),
where n is the number of leaves in the tree [123].
As shown in Table 8 and Figure 15, the alignment accu-

racy under these different methods correlates strongly
with the accuracy of the resulting trees, with the most
accurate alignment methods giving rise to the fewest tree
errors. In all cases, the C+ version of the minimum-risk
algorithm, applied to alignments generated by StatAlign,
yields the highest tree accuracy. This example illustrates

Table 8 Results for tree inference on alignments
generated using different methods, on the simulated
datasets, as shown in Figure 15

Low Medium High

AMA RF AMA RF AMA RF

MinRisk (C+), g = 0 0.84 0.12 0.67 0.12 0.59 0.44

MinRisk (C), g = 0 0.83 0.20 0.64 0.28 0.53 0.44

MAFFT 0.81 0.16 0.60 0.44 0.50 0.64

MUSCLE 0.80 0.36 0.61 0.48 0.49 0.48

T-Coffee 0.67 1.00 0.52 0.92 0.42 1.24

CLUSTALW2 0.62 1.04 0.44 1.32 0.35 1.36

Shown are alignment accuracy scores (according to the AMAmetric), and
Robinson-Foulds tree distances (RF) for the DNAML tree, averaged over all
datasets in each group (low, medium and high indel rates). Higher alignment
accuracy is strongly predictive of tree accuracy, with the most accurate
alignments generating the trees with the fewest errors (shown in bold). The
MinRisk results were computed using samples generated by StatAlign.

the types improvements that can be obtained by using
more robust methods to generate alignments before car-
rying out tree inference.

Predictive power of columnmarginals
As well as providing a way to approximate full alignment
probabilities, posterior column marginal probabilities can
also be good predictors of the presence or absence of a
column in the true alignment [22]. In all cases examined
here, the column marginals are excellent predictors of the
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Figure 15 Alignment accuracy is strongly correlated with the
number of errors in trees estimated by DNAML. Tree accuracy was
measured using the Robinson-Foulds distance [123]. Results are
shown for low (◦), medium (�) and high (+) indel rates, for the
different methods presented in Table 8. In each case, the MinRisk
results are highlighted in red (MinRisk C), and blue (MinRisk C+), and
tend to give the most accurate alignments and trees.
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presence or absence of the column in the true alignment,
with an AUC close to 1, especially for the BAliBASE
datasets (see Table 9). The C+-weighted marginals (the
marginal probability of a column after grouping with all
other columns containing the same characters, regardless
of position in the alignment) are less accurate in predicting
the presence/absence of a column under the C+ defini-
tion, whichmay be due to the fact that the estimates of pC+
make stronger assumptions about the exchangeability of
columns, averaging over a larger set of possible predeces-
sors. In all cases, predictive power is higher for alignments
containing fewer indels, although the predictive power of
the marginals will depend largely on the suitability of the
evolutionary model for analysing the dataset.
Comparison to results generated by the widely-used

programGUIDANCE [76] indicate that columnmarginals
are typically a more reliable predictor of column pres-
ence/absence. However, it is important to note that the
predictive power of these column marginals is dependent
on the quality of the alignments used to construct the
DAG.

Propagating alignment uncertainty into
downstream inference
So far we have examined how the DAG facilitates the effi-
cient generation of accurate summary alignments, which
can then be used for subsequent analyses. However, for
many types of analyses it may be advantageous to jointly
sample alignments and other parameters of interest, such
as trees [56,57], or sequence annotations [65], in order
to account for the interdependence of these different
quantities. Since joint sampling approaches are typically
computationally intensive, it is also desirable to explore
alternative ways in which alignment uncertainty can be
incorporated into downstream inference in cases where
joint analysis is not feasible [29,124].

Sequential approach
One way of accomplishing this is to carry out the
downstream analyses separately on each of the sam-
pled alignments, averaging or summarising the results as

Table 9 Accuracy of marginal probabilities in predicting
column presence/absence, as measured by the area under
a ROC curve (AUC), including a comparison to results
generated using the programGUIDANCE [76] (indicated
by the pG row in the table)

Simulated data BAliBASE

Low Medium High Ref 1a Ref 1b

pC → 1(C(X) ∈ C(A)) 0.93 0.92 0.90 0.99 0.99

pG → 1(C(X) ∈ C(A)) 0.80 0.78 0.82 0.92 0.93

pC+ → 1(C+(X) ∈ C+(A)) 0.84 0.78 0.75 0.79 0.89

appropriate. This type of sequential approach has been
used to assess the sensitivity of phylogenetic inference to
the starting alignment [26,29,33], as well as examining the
effect of alignment uncertainty on estimates of positive
selection [36] and RNA secondary structure prediction
[125].
However, as discussed earlier, a set of alignment sam-

ples will typically contain only a small portion of the total
probability mass, even for pairwise alignments with rel-
atively low uncertainty (cf. Additional file 1: Figure S3).
Hence, the uncertainty quantified in the individual sam-
ples will be a significant underestimate of the true align-
ment uncertainty.
Moreover, since the relative frequencies of whole align-

ments are a very poor estimator of posterior probabili-
ties, simply carrying out an independent analysis on each
sampled alignment and then averaging is likely to yield
unreliable results. Reweighting procedures such as those
discussed by Blackburne andWhelan [36] are only feasible
when the posterior probability of each alignment can be
computed exactly, which is not the case for many models
of interest.

DAG-based approach
In order to address these issues, we can make use of
the alignment DAG, making use of intersections between
alignments to increase the effective sample size.
Due to the acyclic structure of the graph, it is possible

to adapt many standard algorithms, such as forward-
backward algorithms for HMMs, to operate on the DAG
structure rather than an individual alignment. This allows
for downstream inference to be averaged over a very large
number of alignments, weighted according to a more reli-
able estimate of the posterior probability for each align-
ment, rather than analysing only a small collection of
individual samples.
As a specific example, we can consider the case of tree

inference under an independent-sites model. On a single
alignment the posterior probability of a tree, ϒ , can be
written as a product of contributions from each column:

p(ϒ | A,�) ∝ p(ϒ)
LA∏
i=1

p
(
A(i) | ϒ ,�

)
(22)

where � represents the parameters of the evolution-
ary model, and the proportionality involves the quantity∫
p(A,ϒ)dϒ . It is a straightforward extension then to

compute the posterior averaged over all alignments in the
DAG, using a dynamic programming approach similar to
the algorithms discussed earlier. We first introduce the
following partial sum for a column X:

z(X | ϒ ,�) ∝ p(X | ϒ ,�)
∑
X′
�X

z(X′ | ϒ ,�)p(X | X′)

(23)
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such that the marginal posterior for the tree, ϒ , summing
over all alignments in a DAGD(A), can be written as

p(ϒ | D(A),�) ∝ p(ϒ)
∑

A∈D(A)

p(A)p(ϒ | A,�) (24)

∝ p(ϒ) z
(
X(T)
A | ϒ ,�

)
(25)

Example application: marginal probabilities for topologies
As an illustration of the utility of this approach, we
consider here a 4-sequence example, for which there
are three possible unrooted topologies relating the
sequences. The specific example we consider consists of
three human globin sequences, α-haemoglobin (HbA),
myoglobin (Mb), and cytoglobin (Cygb), as well as a
plant leghaemoglobin (LegHb) (datasets can be found in
Additional file 2). Previous studies have shown significant
uncertainty as to the phylogenetic relationship between
these different types of globins [62], hence this repre-
sents a good test case to analyse the effect of alignment
uncertainty on topology inference. Here we restrict our
analysis to four sequences for the purposes of simplifying
the example.
For these sequences, a set of alignment samples, A,

and tree samples, T , was generated using StatAlign (see
Additional file 1: Section S7 for further details), and the
marginal likelihood for each tree in the set was then com-
puted as a sum over all the alignments by evaluating the
quantity z(X(T)

A | ϒ ,�) for all ϒ ∈ T . The parameters, �,
were set using the Dayhoff substitution matrix [103], with
gaps treated as missing data. Assuming a uniform prior,
the marginal posterior probability for each topology, τ ,
was then computed by averaging the marginal likelihoods
for all trees in T conforming to the particular topology:

p(τ | D(A),�) = 1
|T |

∑
ϒ∈T

1(ϒ ∼ τ) p(ϒ | D(A),�) (26)

where 1(ϒ ∼ τ) indicates that tree ϒ conforms to topol-
ogy τ . These marginal posteriors can then be compared to
the topology posterior computed on each alignment indi-
vidually, replacingD(A) with A in Equation (26) above.
Although the true tree is not known in this case, the

trees sampled by StatAlign place the majority of the poste-
rior mass on the left-most topology shown in the top panel
of Figure 16, placing a posterior probability of 0.12 on the
centre tree, and 0.09 for the right-most topology.
The bottom panel of Figure 16 shows posterior probabil-

ities computed using Equation (26), indicating significant
variability depending on which alignment is used. While
some alignments result in a posterior probability of more
than 0.9 for the most favourable topology, others result in
a probability of less than 0.2 for this topology. Simply tak-
ing the mean posterior over all the individual alignments
in this case results in a posterior probability of only 0.56

for the most favourable topology. However, combining all
the alignment samples into the DAG leads to a posterior
probability of 0.94. This illustrates the fact that combin-
ing the alignments into a DAG may result in additional
information being extracted from the same set of align-
ments, due to the increased effective sample size arising
from intersections in the DAG.
Since the same DAG is used to compute the likelihood

for all trees in the set T , the majority of the runtime for
this procedure is not spent reading in the alignments from
disk (as it was for theminimum-risk summary procedure).
As such, the runtime scales linearly with the number of
columns in the DAG, as expected (see Additional file 1:
Figure S10).

Conclusions
The approaches illustrated here provide a general frame-
work for dealing with alignment uncertainty in a sta-
tistically meaningful fashion. Encoding a set of sampled
alignments in a DAG structure allows for more accu-
rate estimation of posterior probabilities based on column
or pair marginals. Due to interchanges and crossovers
in the DAG, the number of alignments encoded in the
graph is typically many orders of magnitude greater than
the number of samples used to generate the DAG, such
that the effective sample size is greatly increased by this
representation.
Since the graph is acyclic, efficient algorithms can be

developed for summation over this very large number
of alignments, each weighted according to its probabil-
ity. As a specific example, we have considered algorithms
for generating summary alignments that minimise the
expected value of various types of loss functions, observ-
ing that this type of algorithm is generally very successful
at minimising the loss on a set of test cases.
This approach provides a way to conduct many types

of sequence analysis on the very large set of alignments
encoded in the DAG structure, allowing for alignment
uncertainty to be propagated into downstream inference
in cases where computationally expensive joint sampling
procedures are infeasible. In addition to the tree infer-
ence example illustrated here, we are currently working
on adapting several other common algorithms to the
alignment DAG structure.

Combining the output of other alignment programs
The approaches detailed here are in theory applicable to
a set of alignments generated by any type of method,
although the quality of the probability estimates generated
by the DAG will depend on the quality of the underly-
ing model used to generate the alignments. Although this
type of method can be used to combine the output of sev-
eral different alignment programs, in a similar fashion to
the M-Coffee procedure [120], such an approach does not
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Figure 16 Posterior probabilities for three possible topologies, computed on individual alignment samples (bottom left), as well as
marginalising over the alignments within the DAG (bottom right). Top panel: The three unrooted topologies for the four globin sequences
discussed in the main text, ordered according to the posterior probability according to StatAlign (left to right, descending in probability). The
leghaemoglobin sequence is taken from L.luteus, and all others from H.sapiens. Bottom panel: Posterior probabilities computed on individual
alignment samples (left), and by marginalising over all alignments contained within the DAG (right). Bars in the lower panel are colour-coded
according to the shading of the tree topologies in the top panel, and ordered according to the probability of the first topology. Also shown is the
mean of the probability vectors computed on the individual alignment samples (right).

have a probabilistic interpretation, andwill depend heavily
on the choice of programs used to generate the input.
We have observed that this type of procedure usually

yields summary alignments that are similar in accuracy
to the program that typically generates the most accu-
rate alignments (data not shown); however, since the most
accurate alignment method is usually known from the
outset, based on benchmarking results, there is not much
to be gained by employing such a procedure. Moreover,
the reliability of such an approach as a heuristic will
depend strongly on the degree of similarity between the
different alignment programs, hence we would recom-
mend against using alignment DAGs as a way of combin-
ing the output of non-probabilistic alignment programs.

Alignment DAGs as generators of alignment samples
One other obvious application of the alignment DAG is as
a way of generating additional alignment samples, which
can be sampled by using a DAG-based version of the tradi-
tional stochastic traceback algorithm (cf. Additional file 1:
Section S6).
One potential use for these alignment samples could

be as a source of proposals within an MCMC align-
ment sampler, allowing for a new state to be efficiently
generated, along with a known proposal probability for

use in a Metropolis-Hastings accept/reject step. Although
this type of approach does not allow for the exploration of
previously unobserved columns, it could be useful as way
to improvemixing, particularly once the key regions of the
space have already been explored.

Software availability
Java software implementing the minimum-risk align-
ment summary algorithm and computation of marginal
topology probabilities is available for download at
http://statalign.github.io/WeaveAlign. A platform-
independent jar archive containing version 1.2.1 of
WeaveAlign is included in Additional file 2, along with
datasets and example results.
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