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Abstract
Three dimensional urban scene modelling became important issue in the last few years. Beside visual experience,
3D city modelling has gained a significant function in diverse analysing tasks, however the amount of data requires
a high level of automation of model generation. In this work, we introduce an automatic and robust algorithm
which produces detailed 3D virtual city models by analysing high resolution airborne LiDAR point clouds. Using
the idea of the surface normal based roof segmentation we have designed a procedure, which takes into account
the boundaries of each roof segment, so that the adjacent segments connect without gaps. We have developed an
algorithm to detect 3D edge lines of the rooftops. Since the applied triangulation methods operate on the whole
convex hull of the input points, hollow outer parts of the roof segments are filled in with false triangles. To solve
this problem, we have proposed a method using a Markov Random Field, in which we filter out the incorrect
triangles lying on the concave parts.

Categories and Subject Descriptors (according to ACM CCS): I.4.5 [Computer vision]: Reconstruction

1. Introduction

In the last decade, LiDAR (Light Detection and Ranging)
has been widely used in various remote sensing applica-
tion fields. LiDAR is an optical remote sensing technology
that can measure the distance of targets from the scanner
by illuminating the target with laser light and analysing the
backscattered light, therefore a such a laser scanner yields a
3D point cloud representing the objects around the scanner.

A specific type of these sensors can be mounted on air-
planes, and the provided scans are appropriate for creating
digital terrain models (DTM) and digital elevation models
(DEM). These models are efficient and detailed descriptions
of fields, valleys, mountains or other desert areas. These ir-
regular, rough and mountainous terrain types cannot be rep-
resented as a set of regular shapes.

On the other hand, in case of cities or other urban settle-
ments polygon reconstruction constitutes another alternative
solution for modelling. The main targets of the reconstruc-
tion are the buildings having regular geometrical shapes in-
troducing the possibility to approximate them with several
three-dimensional polygons. Worldwide projects (Google
maps 3D, Nokia maps) are devoted to this topic.

As input, we have used high resolution LiDAR records of
Budapest city center, which have been provided by Infoterra
Astrium GEO-Information Services Hungary.

In this paper we intend to present our approaches of aerial
point cloud processing, three-dimensional city reconstruc-
tion and urban scene modelling.

2. Previous Work

This research domain has considerably progressed during
the last decade. Many of computer vision researchers have
developed new techniques and algorithms in order to cre-
ate not only realistic but also simple1 city-models at the
same time. Regarding the latest publications, significant re-
sults have been encountered by Lafarge et al. [1, 2], Zhou et
al. [3–5], Huang et al. [6, 7] and Verma et al. [8]. Zhou’s ap-
proach consists in geometrical and topological corrections
of an initial mesh on the basis of local observations of the
buildings’ orientation. Whereas Lafarge and Huang defined
geometric 3D primitives to fit them to the different build-
ing types and rooftop shapes appearing in the point cloud.

1 in the means of reduced number of facets
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Lafarge et al. [1, 2] also handled non-planar primitives as
cylinders, spheres and cones.

Huang et al. [6, 7] created complete roof models (com-
posed by planar primitives) and attempted to fit them to the
cloud regions classified as buildings using different statis-
tical methods (in particular likelihood function maximiza-
tion). After a geometrical adjustment, the primitives were
“merged” into a plausible model.

Verma et al. [8] also used a statistical approach, by build-
ing a dual graph from the roof segments. However, this tech-
nique only worked for planar roof models.

3. A brief description of our proposed reconstruction
algorithm

The workflow includes four steps, from which the first three
steps are illustrated in Figure 1. First, the point cloud is clas-
sified using an unsupervised method based on the work of
Börcs and Horváth [9] and the method introduced by La-
farge et al. [1, 2] and Zhou [5], in which the algorithm dis-
tinguishes four different classes: ground, building, vegeta-
tion and clutter. Then the point cloud regions classified as
buildings are divided into several parts in order to reduce the
complexity of the further steps. Each part of the cloud will
contain a reduced number of points belonging to a single
complex rooftop.

Secondly, the proposed algorithm approximates each
rooftop by planar shaped faces. These planar roof segments
are extracted by a robust method detailed in Section 4. The
points of a roof component determine a plane, which is cal-
culated through minimizing the sum of squared distances of
the points from the plane.

The third step is described in Section 5, which consists in
generating a 3D skeleton model for each building block by
detecting the roof’s edge lines. After triangulating the end-
points of the edge lines we retain several, approximately pla-
nar shaped polygon meshes which will form together a 3D
building model.

The last step constitutes the main part of our contribu-
tion, in which we introduce a new method for concave tri-
angle mesh generation which solves the problem of concave
shaped roof segments.

4. Roof segmentation

In this section separate planar roof segments on the ba-
sis of their orientation. First of all, we estimate a local
surface normal at every point of the roof cloud using the
Point Cloud Library’s [10] implementation of Moving Least
Squares (MLS) algorithm (Figure 2 - left). Since we know
every point’s normal, we apply a clustering algorithm to de-
tect the representative directions in which the planar roof
components face (black vectors in Figure 2 - right). These

Figure 1: The first three steps of the proposed method: ini-
tial classification (left), roof segmentation and edge detec-
tion (middle), triangle mesh generated from endpoints of the
edge lines.

Figure 2: Illustration of our surface normal based cluster-
ing. First the normals are calculated using an MLS algorithm
(left), after that the normals are translated into the origin.
The second image illustrates the endpoints of the normal
vectors, from which dense regions are extracted and than
clustered.

few directions will represent separate clusters with differ-
ent labels. In the following, every point will be assigned an
appropriate label (i.e. color), depending the point’s normal.
As a result, the points of every roof segment having simi-
lar orientation will be given the same label. Afterwards, a
region-growing is applied on the cloud knowing the labels
that the roof points belong to. Since the segmentation pro-
duces a slightly noisy label mask, we adopt a further smooth-
ing step, which uses the K-nearest neighbors smoothing al-
gorithm. At the end we retain the final labeling, in which ev-
ery planar continuous roof component are distinguished by a
unique segment label, and then we will be ready to perform
the polygon approximation for every roof segment.

5. 3D edge detection and triangulation

3D edge lines are detected in two different ways. Let us call
inner edges those, which lie alongside the connection of two
neighboring faces of the roof (ridges). These lines are identi-
fied as the intersections of the respective neighboring planar
roof components.
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Figure 3: Outer edge detection’s assembly - projection
(z-image) - edge detection - elevation into the 3D space -
segment fitting.

Figure 4: Concave problem - points of a concave roof seg-
ment (left) - triangulation on the whole convex hull (middle)
- triangle mesh generated by our method (right)

On the other hand, we call outer edges the lines, which
constitute the outer boundaries of the rooftops (eaves). Since
in the airborne LiDAR point clouds, we usually have no re-
flection from the vertical walls, outer edges are calculated
through image processing techniques, as illustrated in Fig-
ure 3.

First the roof cloud is projected onto the xy horizontal
plane so that each pixel will get the respective 3D point’s
z elevation value, as its grayscale color value. Henceforth,
we call this projected image as z-image. After adopting an
edge detection algorithm on the z-image, we retain an edge
image in which high elevation differences are highlighted.
Using the z-image and the edge image we elevate the edge
points into 3D, and we fit 3D lines to the 3D edge points.
The generated 3D lines constitute the outer edge lines of the
rooftops.

The rooftops’ planar faces are generated by triangulating
the endpoints of the edge lines. Vertical outer walls are pro-
duced using the outer triangle sides of the previously gener-
ated triangle meshes.

6. Concave triangle mesh generation

Concave shaped roof segments appear frequently, however
several well established triangulation methods, such as the
used Delanuay triangulation2 provided by CGAL [12], gen-
erate triangle meshes on the whole convex hull of the given
points3. Consequently, as shown in Figure 4 (middle), im-

2 described in detail by Gallier et al. [11] in Section 8.3 Delaunay
Triangulations
3 “there is an intimate relationship between convex hulls and De-
launay triangulations”, pronounced by Gallier et at. [11] in Section
8.4 Delaunay Triangulations and Convex Hulls

portant architectural features of the building may be filled in
with false roof components. Therefore we designed a pro-
cedure in which triangles lying on the concave parts of the
Delaunay convex mesh will be erased preserving smooth
boundaries in the final concave mesh. The procedure is based
on a probabilistic graphical model.

Figure 5: 3D trian-
gle mesh and its cor-
responding undirected
triangulation graph

According to Gansner, Hu
and Kobourov [13] a tri-
angle mesh is defined by
the included triangles (S) and
the neighborhood connections
(N ) between them, hence it
can be modeled as an undi-
rected graph (Figure 5) where
each triangle is considered
as a separate vertex (s ∈ S),
and each neighborhood con-
nection as an undirected link
({s,r} ∈ N ) between two ver-
tices (s,r ∈ S) corresponding
to the neighboring triangles. Furthermore, some of the tri-
angles in the mesh need to be deleted because they are lying
on the concave parts of the roof segment. As a consequence,
we have to assign a random variable (Ωs) to each vertex that
marks the fact whether the corresponding triangle needs to
be eliminated or not. After classification, we call a given tri-
angle as relevant triangle, if it should be kept in the final
mesh. These Ωs variables are defined on the set of vertices
(S), therefore they form a Ω = (Ωs)s∈S random field with
respect toN .

6.1. Markov property

In our case planar graph models can also be used, since the
considered meshes are open4 (i.e. they have at least three tri-
angles having neighbors fewer then three), and do not con-
tain any wholes. Planar graphs5 can be drawn on the plane,
so that their edges intersect only at their endpoints. It is
convenient to use them, since they satisfy the below con-
straints6:

• we have an upper limit for the number of edges: e≤ 3v−
6, where e is the number of edges and v is the number of
vertices.

• the maximum number of vertices of a fully connected
(complete7) sub-graph is 4.

With reference to Gansner, Hu and Kobourov [13] (Lemma
1. on pg. 5.) we cannot draw on the plane four triangles

4 they are open 2-manifolds (Smith et al. [14] on pg. 14.)
5 see definition given by Balakrishnan et al. [15] (Definition 8.2.1
on pg. 175.)
6 see theorems and their consequences formulated by Balakrishnan
et al. [15] in Section 8.3 Euler Formula and Its Consequences
7 see definition given by Balakrishnan et al. [15] (Definition 1.2.11)
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which are all connected to each other, therefore the maxi-
mum number of vertices of a complete sub-graph is three.
Accordingly, the vertices of the graph are usually connected
with a reduced number of other vertices especially in their
close proximity (Markov property). Furthermore, we pre-
sume that every triangle’s label is conditionally independent
of any other non-adjacent node’s label, given the labels of all
neighboring triangles. With regard to Stan Z. Li et al. [16],
Ω is said to be a Markov Random Field (MRF) on S wrt.N .

6.2. Prior and data model

MRFs are able to simultaneously embed a data model, re-
flecting the knowledge on the observation; and prior con-
straints, such as spatial smoothness of the solution. As for
the prior model, we used the following energy function:

Es = ∑
{s,r}∈N

V (ωs,ωr)

where V implements a smoothing constraints, using the
Kronecker delta: V (ωs,ωr) = δ(ωs = ωr). In case of a par-
ticular s ∈ S triangle, our data model uses the following de-
scriptors:

ns : number of points projected into s

As : area of s

ϕs,ϑs : two arbitrary angles of s

Using these measures we will generate a single xs fitness
value for each triangle s, so that xs will be approximately
proportional with the likelihood of the fact that s consti-
tutes a relevant element in the concave triangulation, hence
it should not be deleted from the final mesh. As for the first
feature, we calculate the density of the projected points in
each triangle ( ns

As
), and we divide the calculated value by a

K = max
si∈S

nsi

Asi

normalization coefficient, so that we obtain a density feature
in the interval [0,1]. Let us introduce the following notation
for this descriptor (ρ stands for density):

ρs =
1
K ·

ns

As
∈ [0,1] (1)

Next, we use our observation that bays (i.e. internal re-
gions of the mesh which should be likely eliminated) contain
mainly acute-angled triangles, while micro concavities on
the boundaries of the open mesh consist of long and thin ob-
tuse triangles. As a consequence, we introduced a so-called
angle cost that measures how much a given triangle is ob-
tuse. Let us define angle cost as the product of each angle’s
cosine values in the triangle.

αs =
(

cos(ϕs)cos(ϑs)cos(π−ϕs−ϑs)+1
)
· 1

1.125

xs

Figure 6: dependency
graph, in which the
filled dots stand for
the xs observed feature
layer

The angle cost gives its max-
imum value, if the triangle
is equilateral (ϕ = ϑ = π/3).
Otherwise, the more a triangle
is acute, the more its angle cost
tents to 0.

Finally, a joint fitness value,
i.e. a pseudo probability is de-
fined as the product of ρ and
(1−α), which indicates us,
whether a given triangle is a
relevant element of the mesh.
These xs = ρs · (1−αs) values
will form our observed feature
layer (Figure 6).

However, during our experiments we perceived that ex-
cluding triangles just by their low xs values using a given
hard threshold can cause several false positive/negative tri-
angles. In other words, the designed feature (xs) is not
enough in itself to decide whether a triangle belongs to the
concave parts of the mesh or not. To overcome this limita-
tion, we started to compare each triangle’s class label with
labels in its neighborhood, hence we took the advantage of
the prior model. Just for illustration (Figure 7), let us color
relevant triangles white and triangles able to be skipped gray.
This color can also be interpreted as a label marking that
the corresponding triangle is relevant or removable. If two
or three neighboring triangles are gray the actual triangle is
likely to be gray too, especially when the nearby triangles
have larger area then the actual one.

For the ds(ωs) = d(xs | ωs) data cost we have chosen the
following functions:

d(xs | Ωs = relevant) = f (1− xs)

d(xs | Ωs = removable) = f (xs) ∀ s ∈ S

where f (x) is the sigmoid function, operating as a soft
threshold:

f (x) =
1

1+ e−n(x−x0)
· (b−a)+a, f : [0,1]−→ [a,b]

with gradient n = 20, shift x0 = 0.5, offset and scale (a,b) =
(0.2,2). Thereafter the data model of the MRF has the fol-
lowing form:

p(xs | ωs) = e−d(xs | ωs)

Note that the above quantities define pseudo probabilities,
since they are unnormalized.

Using our defined prior and data model, we can de-
termine the posterior likelihood P(ω |x) of every possible
global labeling over the triangle-graph, and we have no
other tasks but choosing the most probable global labeling
that will point out the desired (relevant) triangles. To con-
clude, we have optimized the following energy function us-
ing graph cuts based optimization technique developed by
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Figure 7: Removing triangles that do not belong to the con-
cave hull. The first two columns demonstrate a hard thresh-
old of the xs feature, without the MRF smoothing constraint:
we can observe several false triangles in the resulting meshes
(2nd column). The 3rd column shows the optimal label mask
where maximum probability is met. In the first column it can
also be observed through coloring how the points are associ-
ated to the corresponding triangles.

Olga Veksler, using the libraries provided by Yuri Boykov
and Vladimir Kolmogorov [17–20]:

ωopt = argmin
ω∈Γ

(
∑
s∈S

d(xs | ωs)+λ ∑
{s,r}∈Ns

δ(ωs,ωr)

)

The results are illustrated in Figure 7, which shows
smooth features at the roof segments’ boundaries in the same
way false triangles are eliminated.

7. Results

As Figure 8 illustrate, the algorithm can be applied for a
wide range of building types even though it solely estimates
the geometry of objects by several planar elements (poly-
gons). We have reconstructed city sites featuring urban civil
apartment houses (Figures 1 and 8 - city site), buildings with
complex architectural roof models (Figure 8 - Market Hall
and BUTE K-building), large concave blocks of flat (Figure
4). The algorithm was tested on different point clouds con-
taining together about three million points, covering an area
of 102,000 m2. The aggregate number of the generated tri-
angles is about 200,000 without triangles of the outer walls.
See Table 1 for the details.

8. Future plans and conclusion

Our work’s primary objective was to design an automatic
and robust method to process aerial LiDAR data and produce

Figure 8: Our polygon reconstruction results (left), and the
reference aerial photos (right) of various landmarks of Bu-
dapest. Civil apartment houses - Budapest’s site between
Mária St., Nap St., Futó St. and Baross St. (top), Vásárc-
sarnok Market, Vámház körút (middle), Budapest Univer-
sity of Technology and Economics (BUTE) - central build-
ing (bottom)

three-dimensional geometric models from them. The ob-
tained three-dimensional models will be compared with opti-
cal images taken from the space in different times, analysing
the possibilities of adaptive texturing and change detection.
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