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Abstract

In the theory of algebraic groups, parabolic subgroups form a cru-
cial building block in the structural studies. In the case of general
linear groups over a finite field Fq, given a sequence of positive in-
tegers n1, . . . , nk, where n = n1 + · · · + nk, a parabolic subgroup
of parameter (n1, . . . , nk) in GLn(Fq) is a conjugate of the subgroup
consisting of block lower triangular matrices where the ith block is of
size ni. Our main result is a quantum algorithm of time polynomial
in log q and n for solving the hidden subgroup problem in GLn(Fq),
when the hidden subgroup is promised to be a parabolic subgroup.
Our algorithm works with no prior knowledge of the parameter of
the hidden parabolic subgroup. Prior to this work, such an efficient
quantum algorithm was only known for minimal parabolic subgroups
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(Borel subgroups), for the case when q is not much smaller than n (G.
Ivanyos: Quantum Inf. Comput., Vol. 12, pp. 661-669).

1 Introduction

Background. The hidden subgroup problem (HSP for short) is defined as
follows. A function f on a group G is said to hide a subgroup H ≤ G, if f
satisfies the following: f(x) = f(y) if and only if x and y are in the same left
coset of H (that is, x−1y ∈ H). When such an f is given as a black box, the
HSP asks to determine the hidden subgroup H. Note that the problem when
the level sets of the hiding f are demanded to be right cosets of H – that is,
f(x) = f(y) if and only if yx−1 ∈ H – is equivalent: composing f with taking
inverses maps a hiding function via right cosets to a hiding function via left
cosets, and vice versa. When we explicitly want to refer to this variant of
the problem, we speak about HSP via right cosets.

The complexity of a hidden subgroup algorithm is measured in terms
of the number of bits representing the elements of the group G, which is
usually O(log |G|). On classical computers, the problem has exponential
query complexity even for abelian groups. In contrast, the quantum query
complexity of HSP for any group is polynomial [10], and the HSP for abelian
groups can be solved in polynomial time with a quantum computer [5, 21].
The latter algorithms are generalizations of Shor’s result on order finding
and computing discrete logarithms [24]. These algorithms can be further
generalized to compute the structure of finite commutative black-box groups
[7].

To go beyond the abelian groups is well-motivated by its connection with
the graph isomorphism problem. Despite considerable attention, the groups
for which the HSP is tractable remain close to being abelian. For example,
we know polynomial-time algorithms for the following cases: groups whose
derived subgroups are of constant derived length and constant exponent [11],
Heisenberg groups [2, 1] and more generally two-step nilpotent groups [19],
“almost Hamiltonian” groups [12], and groups with a large abelian subgroup
and reducible to the abelian case [16]. The limited success in going beyond
the abelian case indicates that the nonabelian HSP may be hard, and [23]
shows some evidence for this by providing a connection between the HSP in
dihedral groups and some supposedly difficult lattice problem.

Instead of considering various ambient groups, another direction is to pose
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restrictions on the possible hidden subgroups. This can result in efficient
algorithms, even over fairly nonabelian ambient groups. For example, if
the hidden subgroup is assumed to be normal, then HSP can be solved in
quantum polynomial time in groups for which there are efficient quantum
Fourier transforms [14, 15], and even in a large class of groups, including
solvable groups [18]. The methods of [22, 13] are able to find sufficiently
large non-normal hidden subgroups in certain semidirect products efficiently.

Some restricted subgroups of the general linear groups were also consid-
ered in this context. The result by Denney, Moore and Russell in [8] is an
efficient quantum algorithm that solves the HSP in the group of 2 by 2 invert-
ible matrices (and related groups) where the hidden subgroup is promised to
be a so-called Borel subgroup. In [17], Ivanyos considered finding Borel sub-
groups in general linear groups of higher degree, and presented an efficient
algorithm when the size of the underlying field is not much smaller than the
degree.

A well-known superclass of the family of Borel subgroups is the family of
parabolic subgroups, whose definition is given below. In this work, we follow
the line of research in [8, 17], and consider the problem of finding parabolic
subgroups in general linear groups. Our main result will be a polynomial-
time quantum algorithm for this case, without restrictions on field size.
Parabolic subgroups of the general linear group. Let q be a power
of a prime p. The field with q elements is denoted by Fq. The vector space
Fnq consists of column vectors of length n over Fq. GLn(Fq) stands for the
general linear group of degree n over Fq. The elements of GLn(Fq) are the
invertible n×n matrices with entries from Fq. We also use GL(V ) to denote
the group of linear automorphisms of the Fq-space V . With this notation,
we have GLn(Fq) ∼= GL(Fnq ) and throughout the paper we will identify these
two groups. As a matrix is represented by an array of n2 elements from Fq,
an algorithm is considered efficient if its complexity is polynomial in n and
log q.

We now present the definition of parabolic subgroups (see [25]). For a
positive integer k, and a sequence of positive integers n1, . . . , nk with n1 +
· · · + nk = n, the standard parabolic subgroup of GLn(Fq) with parameter
(n1, . . . , nk) is the subgroup consisting of the invertible lower block triangular
matrices of diagonal block sizes n1, . . . , nk. Any conjugate of the standard
parabolic subgroup is called a parabolic subgroup.

To see the geometric meaning of parabolic subgroups, we review the con-
cept of flags of vector spaces. Let 0 also denote the zero vector space. For
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Fnq and k ≥ 1, a flag F with the parameter (n1, . . . , nk) is a nested sequence
of subspaces of Fnq , that is Fnq = U0 > U1 > U2 > · · · > Uk−1 > Uk = 0, such
that for 0 ≤ i ≤ k− 1, dim(Ui) = ni+1 + · · ·+nk. k is called the length of F .
For g ∈ GLn(Fq), g stabilizes the flag F if for every i ∈ [k], g(Ui) = Ui. Then
all group elements in GLn(Fq) stabilizing F form a parabolic subgroup. On
the other hand, any parabolic subgroup corresponds to some flag F , namely
it consists of the elements in GLn(Fq) stabilizing F .

For example, the standard parablic subgroup B in GL5(Fq) with pa-

rameter (2, 2, 1) consists of invertible matrices of the form


∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

.

Let {e1, . . . , e5} be the standard basis of F5
q. The flag stabilized by B is

F5
q > 〈e3, e4, e5〉 > 〈e5〉 > 0.

A parabolic subgroup is maximal if there are no parabolic subgroups
properly containing it. It is minimal if it does not properly contain any
parabolic subgroup. A parabolic subgroup B in GLn(Fq) is maximal if and
only if it is the stabilizer of a flag of length 2, that is, it is the stabilizer of
some nontrivial subspace. On the other hand, B is minimal if it stabilizes
a flag of length n. Borel subgroups in GLn(Fq) are just minimal parabolic
subgroups. They are conjugates of the subgroup of invertible lower triangular
matrices.
Our results. The main result of this paper is a polynomial-time quantum
algorithm for finding parabolic subgroups in general linear groups.

Theorem 1. Any hidden parabolic subgroup in GLn(Fq) can be found in
quantum polynomial time (i.e., in time poly(log q, n)).

Note that this algorithm does not require one to know the parameter
of the hidden parabolic subgroup in advance. Neither does it pose any re-
striction on the underlying field size, while the algorithm in [17] for finding
Borel subgroups requires the field size to be large enough. The basic idea be-
hind the algorithm is that in certain cases the superposition of the elements
in a coset of the subgroup is close to a superposition of the elements of a
linear space of matrices. The latter perspective allows the use of standard
algorithms for abelian HSPs. Another crucial idea is to make use of the sub-
group of common stabilizers of all the vectors on a random hyperplane, and
examine its intersection with the hidden parabolic subgroup.

We state without proof the following result: consider certain subgroups of
Borel subgroups, namely the full unipotent subgroups. They are conjugates of
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the subgroup of lower triangular matrices with 1’s on the diagonal. Following
a variant of the idea for Theorem 1, there exists an algorithm for finding full
unipotent subgroups whose complexity is polynomial in n and the field size.
The structure of the paper. In Section 2 we collect certain preliminaries for
the paper. In particular, in Section 2.2 we adapt the standard algorithm for
abelian HSP to linear subspaces, which forms the basis of our algorithms. We
then present an efficient quantum algorithm for finding maximal parabolic
subgroups in Section 3. Section 4 describes a main technical tool, a gener-
alization of the result of [22, 8] for finding complements in affine groups. In
Section 5 we present the algorithm for finding parabolic subgroups, proving
Theorem 1.

2 Preliminary

2.1 Notations and facts

Throughout the article, q is a prime power. For n ∈ N, [n] = {1, . . . , n}.
Mn(Fq) is the set of n × n matrices over Fq. For a finite group G, we will
be concerned with finding a subgroup H in G, when it is promised that H is
from a fixed family of subgroups H. We use HSP(G,H) to denote the HSP
problem with this promise, and rHSP(G,H) to denote the HSP via right
cosets of H ∈ H. Let V be a vector space. For a subspace U ≤ V and
G = GL(V ), let GU be the subgroup in G consisting of elements that act as
pointwise stabilizers on U . That is, GU = {X ∈ GL(V ) : ∀u ∈ U,Xu = u}.
Let G{U} be the subgroup in G consisting of elements that act as setwise
stabilizers on U . That is, G{U} = {X ∈ GL(V ) : XU = U}. Note that
{G{U} : 0 < U < V } is just the set of maximal parabolic subgroups.

Fact 1. For every prime power q, and for every positive integers n ≥ m, the
probability for a random n×m matrix M over Fq to have rank m is no less
than what we have in the case of q = 2, that is 1

2
· 3
4
· 7
8
· · · · ≈ 0.288788 > 1/4.

2.2 The quantum Fourier transform of linear spaces

In this part we briefly discuss slight generalizations of the Fourier transform
of linear spaces over Fq introduced in [17] and a version useful for certain
linear spaces of matrices. Let V ∼= Fmq be a linear space over the field Fq
and assume that we are given a nonsingular symmetric bilinear function
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φ : V ×V → Fq. By CV we denote the Hilbert space of dimension qm having
a designated orthonormal basis consisting of the vectors |v〉 indexed by the
elements v ∈ Fmq .

Let q = pr where p is a prime and let ω be the primitive pth root e
2πi
p

of unity. We define the quantum Fourier transform with respect to φ as the
linear transformation QFTφ of CV which maps

|v〉 to
1√
|V |

∑
u∈V

ωTr(φ(u,v))|u〉,

where v ∈ V and Tr is the trace map from Fq to Fp defined as Tr(x) =∑r−1
i=0 x

pi . It turns out that QFTφ is a unitary map and, if the vectors from
V are represented by arrays of elements from Fq that are coordinates in terms
of an orthonormal basis of V with respect to φ (that is, φ is the standard inner
product of Fmq ) then QFTφ is just the mth tensor power of the QFT defined
in [9] for Fq. (This is the linear transformation of CFq that maps |x〉 (x ∈ Fq)
to 1√

q

∑
y∈Fq ω

Tr(xy)|y〉.) Therefore, in this case, by Lemma 2.2 of [9], QFTφ
has a polynomial time approximate implementation on a quantum computer.
In the general case, where elements of V are represented by coordinates in
terms of a not necessarily orthonormal basis w.r.t. φ, the map QFTφ can
be efficiently implemented by composing the above transform with linear
transformations of CV corresponding to appropriate basis changes for V .

For a subset A ⊆ V we adopt the standard notation |A〉 for the uniform
superposition of the elements of A, that is |A〉 = 1√

|A|

∑
a∈A |a〉. Assume that

we receive the uniform superposition |v0 +W 〉 = 1√
|W |

∑
v∈W |v0 + v〉 over

the a coset v0 + W of the Fq-linear subspace W of V and for some v0 ∈ V .
Let W⊥ stand for the subspace of V consisting of the vectors u from Fmq
such that φ(u, v) = 0 for every v ∈ W . By results from [17], if we measure
the state after the Fourier transform, we obtain a uniformly random element
of W⊥. If instead of the uniform superposition over the coset v0 + W we
apply the QFT to the superposition |v0 +W ′〉 = 1√

|W ′|

∑
v∈W ′ |v0 + v〉 over

a subset v0 +W ′ for ∅ 6= W ′ ⊆ W , the resulting state is
∑

u∈V c
′
u|u〉, where

c′u = 〈u|QFTφ|v0 +W ′〉 =
ωTrφ(v0,u)√
|W ′||V |

∑
v∈W ′

ωTrφ(v,u).
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For u ∈ W⊥ we have

|c′u| =
|W ′|√
|W ′||V |

=

√
|W ′|√
|W |

· 1√
|W⊥|

, (1)

whence, after measurement the chance of obtaining a particular u ∈ W⊥ is
|W ′|
|W | times as much as if we had in the case of the uniform distribution over

W⊥.
In this paper we consider subspaces and certain subsets of the linear space

Mn(Fq). If we take the inner product φ0(A,B) = tr(ABT ) the elementary
matrices form an orthonormal basis. It follows that QFTφ0 , being just the
n2th tensor power of the QFT of Fq, can be efficiently approximated. How-
ever, for the purposes of this paper it turns out to be more convenient using
the inner product φ(AB) = tr(AB). The map QFTφ is the composition of
QFTφ0 with taking transpose (the latter is just a permutation of the matrix
entries). The main advantage of considering QFTφ is that it is invariant in
the following sense: we always obtain the same QFTφ even if we write matri-
ces of linear transformations of the space V = Fnq in terms of various bases.
In particular, in our hidden subgroup algorithms we can think of our matri-
ces in terms of a basis a priori unknown to us in which the hidden subgroup
has a natural form, for example lower block triangular.

2.3 A common procedure for HSP algorithms

Suppose we want to find some hidden subgroup H in G = GLn(Fq). Let V =
Fnq . We present the standard procedure that produce a uniform superposition
over a coset of the hidden subgroup. This part will be common in (most of)
the hidden subgroup algorithms presented in this paper. First we show how to
produce the uniform superposition over GL(V ). The uniform superposition
1

qn2

∑
X∈Mn(Fq) |X〉 over Mn(Fq) can be produced using the QFT for Fn2

q .

Then, in an additional qubit we compute a Boolean variable according to
whether or not the determinant of X is zero. We measure this qubit, and
abort if it indicates that the matrix X has determinant zero. This procedure
gives the uniform superposition over GL(V ) with success probability more
than 1

4
.

Next we assume that we have the uniform superposition 1√
|GL(V )|

∑
X |X〉|0〉,

summing over X ∈ GL(V ). Recall that f is the function hiding the subgroup.
We appended a new quantum register, initialized to zero, for holding the
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value of f . We compute f(X) in this second register, measure and discard
it. The result is |AH〉 = 1√

|H|

∑
X∈H |AX〉 for some unknown A ∈ GL(V ).

A is actually uniformly random, but in this paper we will not make use of
this fact.

3 Maximal parabolic subgroups

In this section, we settle the HSP when the hidden subgroup is a maximal
parabolic subgroup, which will be used in the main algorithm in Section 5.
It also helps to illustrate the idea of the idea of approximating a subgroup
in the general linear group by a subspace in the linear space of matrices.

Recall that a parabolic subgroup H is maximal if it stabilizes some sub-
space 0 < U < Fnq . We mentioned in Section 2.1 that they are just setwise
stabilizers of subspaces. Determining H is equivalent to finding U . Set
V = Fnq .

Proposition 1. Let G = GLn(Fq), and H = {G{U} : 0 < U < V }.
HSP(G,H) can be solved in quantum polynomial time.

Proof. Let H be the hidden maximal parabolic subgroup, stabilizing some
(n− d)-dimensional subspace U ≤ Fn. Note that d is unknown to us. Before
describing the algorithm, we observe the following: checking correctness of a
guess for U , and hence forH, can be done by applying the oracle to generators
of the stabilizer of U , as there are no inclusions between maximal parabolic
subgroups.

Now we present the algorithm. First produce a coset superposition |AH〉
for unknown A ∈ GL(V ), as described in Section 2.3. Let W = {X ∈
Mn(Fq) : XU ≤ U}. In a basis whose last n− d elements are from U , W is

the subspace of the matrices of the form

(
B
C D

)
, where B and C are not

necessarily invertible, and the empty space in the upper right corner means a
d×(n−d) block of zeros. Noting that such a matrix is invertiable if and only

if B and C are both invertible, we have H ⊂ W and |AH|
|AW | = |H|

|W | >
1

4×4 . Also,

viewing in a basis in which W is block triangular, (AW )⊥A consists of the

matrices of the form

(
∗

)
, where ∗ stands for an arbitrary (n− d) times

d matrix. This implies that (AW )⊥ = {X ∈ Mn(Fq) : XV ≤ U and XU =
0}A−1.
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If d ≥ n/2, we apply QFT to the left coset superposition |AH〉 and
perform a measurement, for any element X in (AW )⊥, the measurement will
produce X with probability no less than 1

16|(AW )⊥| . It follows that XA will be

a particular matrix from (AW )⊥A with at least 1
16|(AW )⊥| . Then more than 1

4

of the (n− d)× d matrices have rank n− d. It follows that with probability
at least 1

64
, the matrix XA will be a matrix from (AW )⊥A whose image is

U . As XV = XAV , we can conclude that XV = U with probability more
than 1

64
.

For the case d < n/2 we consider the HSP via right cosets of H, and
let act matrices on row vectors from the right. Via the same procedure as
above, it will reveal the dual subspace stabilized by H, which determines H
uniquely as well.

Finally, though d is not known to us, depending on whether d ≥ n/2, one
of these two procedures with produce U correctly with high probability. So
we perform the two procedures alternatively, and use the checking procedure
to determine which produces the correct result. This concludes the algorithm.

4 A tool: finding complements in small sta-

bilizers
In this section, we introduce and settle a new instance of the hidden subgroup
problem. This will be an important technical tool for the main algorithm.

Consider the hidden subgroup problem in the following setting. The am-
bient group G ≤ GLn(Fq) consists of the invertible matrices of the form(
b
v I

)
, where b ∈ Fq, v is a column vector from Fn−1q and I is the (n −

1) × (n − 1) identity matrix. The family of hidden subgroups H consists
of all conjugates of H0, where H0 is the subgroup of diagonal matrices in

G: H0 =

{(
b
I

)
: b ∈ F∗q

}
. Note that any conjugate of H0 is Hv ={(

b
(b− 1)v I

)
: b ∈ F∗q

}
, for some v ∈ Fn−1q . We will consider the HSP

via right cosets in this setting.
The group G has an abelian normal subgroup N consisting of the matri-

ces of the form

(
1
v I

)
isomorphic to Fn−1q , and the subgroups Hv are the
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semidirect complements of N . For n = 2, G is the affine group AGL1(Fq).
The HSP in AGL1(Fq) is solved in quantum polynomial time in [22] over
prime fields and in [8] in the general case using the non-commutative Fourier
transform of the group AGL1(Fq). The algorithm served as the main techni-
cal ingredient in [8] for finding Borel subgroups in GL(F2

q). A generalization
for certain similar semidirect product groups is given in [2]. To our knowl-
edge, the first occurrence of the idea of comparing with a coset state in a
related abelian group is in [2]. Here, due to the “nice” representation of the
group elements, we can apply the same idea in a simpler way, while in [2] it
was needed to be combined with a discrete logarithm algorithm which is not
necessary here.

Proposition 2. Let G and H be as above, and suppose q = Ω(n/ log n).
Then rHSP(G,H) can be solved in quantum polynomial time.

Proof. Assume that the hidden subgroup is H = Hv for some v ∈ Fn−1q .
As right cosets of H are being considered, we have superpositions over right
cosets HA for some unknown A ∈ G. The actual information of each matrix
X from G is contained in X − I, a matrix from the n-dimensional space L
of matrices whose last n− 1 columns are zero. We will work in L. Set

W̃ ′ = {X−I : X ∈ H} =

{(
b
bv

)
: −1 6= b ∈ Fq

}
and W =

{(
b
bv

)
: b ∈ Fq

}
.

Then W is a one-dimensional subspace of L. It turns out that W = WA for
every matrix A ∈ G (that is why it is convenient to consider the HSP via
right cosets). It follows that {(Y + I)A − I : Y ∈ W} = {Y A + (A − I) :
Y ∈ W} = W +A− I, whence the set {XA− I : X ∈ H} = W ′ +A− I for

W ′ = W̃ ′A.
Therefore, after an application of the QFT of L to the state |HA− I〉 =

|W ′ + A− I〉 and a measurement, we obtain every specific element of W⊥

with probability at least q−1
q

1
|W⊥| . More generally, if we do the procedure for a

product of n−1 superpositions over right cosets of H we obtain each specific
(n − 1)-tuple of vectors from W⊥ with probability at least ( q−1

q
)n−1 1

|W⊥|n−1 .

Since the probability that n− 1 random elements from a space of dimension
n−1 over Fq span the space is at least 1

4
, therefore, the probability of getting

a basis of W⊥ is Ω(( q−1
q

)n−1). Using this basis, we obtain a guess for W and
H as H is the set of invertible matrices from W + I. A correct guess will be
obtained expectedly with O(( q

q−1)n−1) repetitions. This is polynomial if q is

Ω(n/ log n).
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Finally we note that for constant q, or more generally for constant char-
acteristic, [11] can be used to obtain a polynomial time algorithm. On the
other hand, it is intriguing to study the case of “intermediate” values of q.

5 The main algorithm

5.1 The structure of the algorithm
In this subsection, we describe the structure of an algorithm for finding
parabolic subgroups in general linear groups, proving Theorem 1. Let G =
GLn(Fq), V = Fnq , and the hidden parabolic subgroup H be the stabilizer of
the flag V > U1 > U2 > · · · > Uk−1 > 0. Note that the parameter of the flag,
including k, is unknown to us. The algorithm will output the hidden flag,
from which a generating set of the parabolic subgroup can be constructed
easily.

Let T = Uk−1 denote the smallest subspace in the flag. The algorithm
relies on the following subroutines crucially. These two subroutines are de-
scribed in Section 5.2 and Section 5.3, respectively.

Proposition 3. Let G, H and T be as above. There exists a quantum
polynomial-time algorithm, that given access to an oracle hiding H in G,
produces three subspaces W1, W2 and W3, s.t. one of Wi is a nonzero sub-
space contained in T with high probability.

Proposition 4. Let G, H and T be as above. There exists a classical
polynomial-time algorithm, that given access to an oracle hiding H in G,
and some 0 < W ≤ V , determines whether W ≤ T , and in the case of
W ≤ T , whether W = T .

Given these two subroutines, the algorithm proceeds as follows. It starts
with checking whether k = 1, that is whether H = G. This can be done
easily: produce a set of generators of G, and check whether the oracle returns
the same on all of them. If k = 1, return the trivial flag V > 0.

Otherwise, it repeatedly calls the subroutine in Proposition 3 until that
subroutine produces subspaces W1, W2 and W3, such that for some i ∈ [3],
we have 0 < Wi ≤ T . This can be verified by Proposition 4. Let W be this
subspace. The second subroutine then also tells whether W = T .

After getting 0 < W ≤ T , the algorithm fixes a subspace W ′ to be any
direct complement of W in V , and makes a recursive call to the HSP with
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a new ambient group G′, and a new hidden subgroup H ′, as follows. G′ is
{X ∈ GL(V ) : XW ′ ≤ W ′ and (X − I)W = 0}, which is isomorphic to
GL(W ′) ∼= GL(V/W ). H ′ is the stabilizer of the flag W ′ > W ′ ∩ U1 > · · · >
W ′∩Uk−1 ≥ 0. Note that the oracle restricted to G′ realizes a hiding function
for H ′.

The recursive call then returns a flag in W ′ as W ′ > U ′1 > U ′2 > · · · >
Uk′ > 0. Let Ui = 〈U ′i ∪ W 〉, i ∈ [k′]. If W = T , then the algorithm
outputs the flag V > U1 > U2 > · · · > Uk′ > W > 0. If W < T , return
V > U1 > U2 > · · · > Uk′ > 0.

It is clear that at most n recursive calls will be made, and the algorithm
runs in polynomial time given that the two subroutines run in polynomial
time too. We now prove Proposition 3 and 4 in the next two subsections.

5.2 Guessing a part of the flag

In this subsection we prove Proposition 3. Recall that G = GLn(Fq), the
hidden subgroup H stabilizing of the flag V > U1 > . . . > Uk−1 > 0, and
T = Uk−1. The algorithm of [8] for finding hidden Borel subgroups in 2 by
2 matrix groups was based on computing the intersection with the stabilizer
of a nonzero vector. Here we follow an extension of the idea to arbitrary
dimension n. We consider the common stabilizer of n−1 linearly independent
vectors.

Pick a random subspace U ′ ≤ V of dimension n − 1. Recall that GU ′

denotes the group of pointwise stabilizers of U ′. We also consider the group
consisting of the unipotent elements of GU ′ , N = {X ∈ GL(V ) : (X− I)V ≤
U ′ and X ∈ GU ′}. Note that N is an abelian normal subgroup of GU ′ of
size qn−1. Here we illustrate the form of GU ′ and N when U ′ is put in an
appropriate basis: 

1 ∗
1 ∗

1 ∗
1 ∗
∗

 ,


1 ∗

1 ∗
1 ∗

1 ∗
1

 .

GU ′ N

We will describe three procedures, whose success on producing some 0 <
W ≤ T depend on d := dim(T ) and the field size q. Each of these procedures
only works for a certain range of d and q, but together they cover all possible
cases. Thus, the algorithm needs to run each of these procedures, and return
the three results from them. The general idea behind these procedures is
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to examine the intersection of the random hyperplane U ′ with T . As d =

dim(T ), the probability that U ′ contains T is qn−d−1
qn−1 ∼

1
qd

.

Assume first that U ′ does not contain T . We claim that in this case∑
X∈H∩GU′

(X − I)V = T (2)

and
∑

X∈H∩N

(X − I)V = U ′ ∩ T. (3)

To see this, pick vn ∈ T \ U ′, and let v1, . . . , vn−1 be a basis for U ′ such that
for every 0 < j < k, the system vn−dim(Uj)+1, . . . , vn−dim(Uj+1) is a basis for Uj.
In the basis v1, . . . , vn, the matrices of the elements of N are the matrices
with ones in the diagonal, arbitrary elements in the last column except the
lowest one, and zero elsewhere. Among these the matrices of the elements of
intersection with H are those whose first n− d entries in the last column are
also zero: 

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,


1

1
1

1 ∗
∗

 ,


1

1
1

1 ∗
1

 .

H H ∩GU ′ H ∩N

Based on the above analysis, the three procedures are as follows.
• If d > 1, then H ∩N is nontrivial. As N is abelian, we can efficiently

compute H ∩ N by the abelian hidden subgroup algorithm. Thus by
Equation 3, we can use it to compute W1 as a guess for a nontrivial
subspace of T .
• If d = 1 and q ≥ n, we can compute H∩GU ′ in GU ′ by the algorithm in

Proposition 2, and use it to compute W2 as a guess for T by Equation 2.
• If d = 1 and q < n, with probability at least 1

q
− 1

q2
= Ω(1

q
) = Ω( 1

n
), we

have that U ′ ≥ T but U ′ does not contain Uk−2. Then we have∑
X∈H∩N

(X − I)V = U ′ ∩ Uk−2. (4)

To see this, pick vn ∈ Uk−1 \ {0}, vn−1 ∈ Uk−2 \U ′, and v1, . . . , vn−2 s.t.
v1, . . . , vn−2, vn is a basis for U ′ and for every 0 < j < k, the system
vn−dim(Uj)+1, . . . , vn−dim(Uj+1) is a basis for Uj. In this basis the matrices
for the elements of N ∩H are those whose entries are zero except the
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ones in the diagonal and except the other lowest dimUk−2 entries in
the next to last column:

∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,


1 ∗

1 ∗
1 ∗

1
∗ 1

 ,


1

1
1 ∗

1
∗ 1

 .

H N H ∩N

Again, we can find H ∩N by the abelian hidden subgroup algorithm
and use Equation 4 to compute V ′ = U ′ ∩ Uk−2. If dimV ′ = 1 then
return W3 = V ′ as the guess for T . Otherwise we take a direct comple-
ment V ′′ of V ′ and restrict the HSP to the subgroup of the tranforma-
tions X such that (X−I)V ′′ = 0 and XV ′ ≤ V ′ (which is isomorphic to
GL(V ′)) and apply the method in Proposition 1 to compute a subspace
W3 as the guess for T .

5.3 Checking and recursion
In this subsection we prove Proposition 4. Recall that the goal is to determine
whether some subspace 0 < W ≤ V is contained in T = Uk−1, the last
member of the flag V > U1 > · · · > Uk−1 > 0 stabilized by the hidden
parabolic subgroup H. If W ≤ V , we’d like to know whether W = T . This
can be achieved with the help of the following lemma, whose proof is omitted
here.

Lemma 2. Let H be the stabilizer in GL(V ) of the flag V > U1 > U2 >
. . . > Uk−1 > 0, and let 0 < W < V . Let W ′ be any direct complement of W
in V . Then Uk−1 ≥ W if and only if H ≥ {X ∈ GL(V ) : (X − I)V ≤ W}.
Furthermore, if Uk−1 ≥ W then Uk−1 = W if and only if

H ∩ {X ∈ GL(V ) : (X − I)V ≤ W ′ and (X − I)W ′ = 0} = {I}.

It is clear that this allows us to determine whether Uk−1 ≥ W : form a
generating set of {X ∈ GL(V ) : (X − I)V ≤ W}, and query the oracle to
see whether all element in the generating set evaluate the same. Similarly if
Uk−1 ≥ W , we can test whether Uk−1 = W .
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