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Abstract. In the medical domain, over the centuries several controlled vocabu-
laries have emerged with the goal of mapping semantically equivalent terms such
as fever, pyrexia, hyperthermia, and febrile on the same (numerical) value.
Translating unstructured natural language texts or verbatims produced by health-
care professionals to categories defined by a controlled vocabulary is a hard problem,
mostly solved by employing human coders trained both in medicine and in the de-
tails of the classification system. In this chapter we survey the automatic translation
or autocoding systems currently in use.

0 Introduction

The current widespread use of controlled medical vocabularies emerged in
response to the data exchange and standardization needs of modern medical
research and care. In this chapter we survey the methods used in translating
unstructured natural language texts or verbatims produced by healthcare
professionals to categories defined by a controlled vocabulary.

To this day, the primary method of translation is to use human coders,
trained both in medicine and in the details of the classification system. In
the past few decades, automated translation systems or autocoders of varying
efficiency and reliability have emerged. Our focus will be on system that are
hybrid not only in the contemporary sense of including both rule-based and
statistical inference techniques but also in the older sense of having both
human and automatic components.

In Section 1 we describe the historical origins and current status of con-
trolled vocabularies in the medical domain. In Section 2 we present the gen-
eral architecture of hybrid autocoding systems, and discuss their main com-
ponents.

1 Controlled medical vocabularies

Statistical methods pervade every aspect of medicine. The early detection of
epidemics, the research methods determining the efficacy of drugs and other
treatments, the diagnosis and treatment protocols used in actual patient care,
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and even postmortem analysis are all based on careful statistical analysis of
experimentally collected and naturally observed data points. But statistics
can be meaningfully applied only if the source data is already properly clas-
sified. The need for controlled medical vocabularies to classify disease into
general groups, and for detailed nomenclatures of signs, symptoms, diseases,
and procedures has been recognized early on.

The City of London devised the London Bills of Mortality as an early
warning system of the bubonic plague epidemics which periodically ravaged
Europe. Beginning in 1603, these public postings provided London citizens
with a detailed weekly mortality count, including cause of death and age of
those fallen. After receiving a commission from King William III to study
these records, John Graunt published his statistical analysis Natural and
Political Observations Made upon the Bills of Mortality in 1662. This work
is widely cited as the first known effort to classify human disease [23].

In the 18th century, as interest in natural history swept across Europe,
physicians applied classification methods from botany and zoology to clinical
medicine. They reasoned that diseases were entities like plants and animals
and could likewise be arranged into taxomonic families, classes, species and
genera on the basis of anatomical, clinical, and pathological criteria [28]. Fran-
cois B. de Sauvages, a professor of medicine at the University of Montpellier
in France, published Nosologia Methodica, the first such systemic classifica-
tion of disease in 1763. His system established 10 classes of disease, 44 orders,
315 genera, and approximately 2,400 separate entities. The scheme was enor-
mously detailed but blemished by many inconsistencies and duplications [29].
Criticizing such cumbersome, all encompassing taxonomies, William Cullen
of Edinburgh proposed a simpler arrangement in 1769. His Synopsis Nosolo-
giae Methodicae was a didactic and practical index containing only 4 classes,
9 orders, and 151 genera [13].

The need for an internationally accepted classification system for statisti-
cal purposes and for public health control was recognized at the First Interna-
tional Statistical Conference in Brussels in 1853. The organization developed
the International List of Causes of Death. This classification system, based
on the work of the British statistician William Farr, had a two level hierarchy.
The top level contained 5 general groups - epidemic diseases, constitutional
diseases, local diseases according to their anatomical localization, diseases of
the development, and diseases in direct consequence of a traumatism. At the
lower level, 139 diseases were categorized. This classification was revised by
the same organization in 1874, 1880, and 1886 [9].

In 1893, Dr. Jacques Bertillon, the chief statistician of Paris, resumed
the work with the publication of Nomenclatures de Maladies, which became
known as the Bertillon Classification of Causes of Death (WHO1) [54]. This
system had a three level hierarchy. The highest level contained 44 groups,
followed by a mid level containing 99 groups, and a lower level containing 161
disease entities. This system was adopted by many countries. The American
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Public Health Association recommended its use for vital record registries.
Upon Bertillon’s death in 1922, the Health Organization of the League of
Nations took responsibility for the system, publishing the fourth revision in
1929 [55], and the fifth revision in 1938 [56].

After WWII, the newly formed World Health Organization of the United
Nations accepted responsibility for the decennial revision published in 1946.
In 1948, at the sixth revision conference, the final document was published
as International Statistical Classification of Disease, Injuries, and Causes
of Death. This revision extended the scope of the classification to non-fatal
diseases and added causes of morbidity to the causes of mortality. Most de-
veloped nations agreed to use this system for classifying and reporting public
health statistics [9]. A 7th version containing minor revisions was published
in 1955 [57].

1.1 ICD

In 1969, WHO published the 8th edition, and revised the name to Manual of
the International Statistical Classification of Disease, Injuries, and Causes
of Death (ICD). This revision contained many modifications designed to help
statisticians index information from medical and hospital records [58]. In
the United States, groups of physicians and health records administrators
recognized that the 8th revision still did not meet their needs. As a result, the
US government published the ICD-A, or the Eighth Revision International
Classification of Diseases, Adapted for Use in the United States [11].

In 1977, WHO published the ninth revision of ICD, which was immedi-
ately adapted in the United States for clinical use as ICD9-CM. Most insur-
ance companies still use this revision as a method for controlling billing and
payment, although Version 10 was published in 1992 [59].

ICD9-CM is a hierarchical system containing 4 levels. In the 9th revision,
there are 17 chapters at the highest level. A fixed range of 3 digit 2nd level
codes is assigned to each of the 17 high level groups. Within each 2nd level
range, a fixed range of codes is assigned to a midlevel grouping. The individual
3 digit code defines a concept at the mid (3rd) level, and two more digits are
added to the code to classify the concept more exactly (4th or lowest level).

Since ICD assigns a 5-digit numeric code to each entry at the lowest level,
the hierarchical organization serves as an important mnemonic aid to the hu-
man coder. It would be next to impossible to remember that 162.3 is the code
for malignant neoplasm of the upper lobe, bronchus or lung, but let
us trace the levels of this code through the ICD9-CM system. At the first
level we find

1. Infectious and parasitic diseases (001-139)
2. Neoplasms (140-239)
3. Endocrine, nutritional and metabolic diseases, and immunity disorders

(240-279)



4 Kornai and Stone

4. Diseases of the blood and blood-forming organs (280-289)
5. Mental disorders (290-319)
6. Diseases of the nervous system and sense organs (320-389)
7. Diseases of the circulatory system (390-459)
8. Diseases of the respiratory system (460-519)
9. Diseases of the digestive system (520-579)

10. Diseases of the genitourinary system (580-629)
11. Complications of pregnancy, childbirth, and the puerperium (630-676)
12. Diseases of the skin and subcutaneous tissue (680-709)
13. Diseases of the musculoskeletal system and connective tissue (710-739)
14. Congenital anomalies (740-759)
15. Certain conditions originating in the perinatal period (760-779)
16. Symptoms, signs, and ill-defined conditions (780-799)
17. Injury and poisoning (800-999)

Obviously, the coder will select neoplasms, providing the range 140-239, for
which we now inspect the 2nd level:

• malignant neoplasm of lip, oral cavity, and pharynx (140-149)
• malignant neoplasm of digestive organs and peritoneum (150-159)
• malignant neoplasm of respiratory and intrathoracic organs (160-165)
• malignant neoplasm of bone, connective tissue, skin, and breast (170-176)
• malignant neoplasm of genitourinary organs (179-189)
• malignant neoplasm of other and unspecified sites (190-199)
• benign neoplasms (210-229)
• carcinoma in situ (230-234)
• neoplasms of uncertain behavior (235-238)
• neoplasms of unspecified nature (239)

Thus from the 2nd level malignant neoplasm of respiratory and intra-
thoracic organs can be easily selected, providing the range 160-165. In this
range, we inspect the 3rd level:

161 Malignant neoplasm of larynx
162 Malignant neoplasm of trachea, bronchus, and lung
163 Malignant neoplasm of pleura
164 Malignant neoplasm of thymus, heart, and mediastinum
165 Malignant neoplasm of other sites within the respiratory system and in-

trathoracic organs

Thus the coder can easily find malignant neoplasm of trachea, bronchus,
and lung, providing the code 162. Going into the lowest (4th) level we find

162.0 Trachea
162.2 Main bronchus
162.3 Upper lobe, bronchus or lung
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162.4 Middle lobe, bronchus or lung
162.5 Lower lobe, bronchus or lung
162.8 Other parts of bronchus or lung
162.9 Bronchus and lung, unspecified

and this provides the final (in this case, four-digit) code 162.3. In 2.3 we will
see how this method of successive approximation remains applicable when
we move from human to machine coding.

The 5 digit ICD9-CM codes are highly indexical in the sense that the
numerical code can be analyzed to determine the position of a term in the
hierarchy. While providing a terse mechanism for communicating information,
indexical codes introduce many problems. If a disease entity is changed to a
new position in the hierarchy, it must be assigned a different code. Also, it
may be necessary to reuse obsolete codes to maintain the numeric hierarchy.

Reliance on a base ten numerical code results in limited flexibility and
the need for “other”, “not otherwise specified” (NOS), and “not elsewhere
classified” (NEC) terms. Furthermore, the upper bound on the number of
available codes limits the size of the vocabulary. Another problem is that
the lack of multiple axes (independent classification dimensions) results in
duplicate terms [12]. This was addressed in subsequent classification systems,
in particular SNOMED, to which we turn now.

1.2 SNOMED

In the 1960s another organizational effort, arising from the need for greater
specificity, and with the express goal of overcoming the limitations of ICD,
was sponsored by the College of American Pathologists. This resulted in the
publication of the Systemized Nomenclature of Pathology (SNOP) in 1965.
SNOP was the first system to use the concept of multiple axes. The axes rep-
resent non-intersecting concepts which a medical condition could be classified
under, such as anatomical site, environment, history, or etiology [10].

The system was primarily intended for the coding of surgical and au-
topsy diagnoses. The same organization published a successor, the System-
ized Nomenclature of Medicine (SNOMED) in 1969, the same year that WHO
published ICD9 Version 9. Over the last three decades SNOMED has been
adapted by many organizations as a controlled terminology for the indexing of
the entire medical record. The international SNOMED version 3.4 (October
1996) contains more than 150,000 terms distributed in 11 axes as follows:

1. Anatomy
2. Morphology
3. Function
4. Disease/Diagnosis
5. Procedures
6. Occupations
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7. Etiology - Living organisms
8. Etiology - Chemicals
9. Etiology - Physical agents, forces, activities

10. Etiology - Social context
11. Etiology - Other links

Each axis has an arbitrary number of hierarchically organized terms be-
neath it. Like ICD, SNOMED assigns an indexical numeric code to each
term. The first digit expresses a general entity, while each succeeding digit
specifies a more detailed location in the hierarchy. Every concept is built up
from a term from one or more axes: for example, acute rheumatic fever
is identified with term code D3-17112, where D indicates the code is for the
Disease Axis, 3 indicates a disorder of the cardiovascular system and 17113
indicates acute rheumatic fever. The code can be associated with codes along
other axes. For example, along the topographic axis - T-15000, indicates car-
diac disorder, and along the morphology axis - M-41000, indicates that the
morphology is acute inflammation.

Since SNOMED contains some overlap of terms in different axes, it is
possible to form two different versions for the same concept. For example,
acute appendicitis has a single code, but there are also terms and codes
for acute, acute inflammation, appendix, and in. Thus, the concept could
be expressed either as appendicitis, acute, as acute inflammation, in,
appendix, or as acute, inflammation NOS, in, appendix. This makes it
difficult to compare similar concepts that have been indexed in different ways,
or to search for a term that exists in different forms within a medical record.

While SNOMED permits single terms to be combined to create complex
terms, rules for the combination of terms have not been developed. Conse-
quently such compositions, such as nevus of left esophagus may not be
medically valid [12]. Since SNOMED also uses indexical numeric codes, the
same problems occur as with ICD when a term is relocated in a hierarchy.

The introduction of SNOP sparked intense debate between the proponents
of statistical classification systems and those of more complex multiaxial med-
ical nomenclatures. The former held that the primary uses of these systems
was for international comparisons of disease and for cost reimbursement. For
these purposes, only broad statistics on general groups and classifications of
disease were needed. The proponents of multiaxial nomenclature maintained
that single-axis systems were designed for general statistics and would become
too complicated for a detailed nomenclature. Also, when several diagnostic
codes are of interest, it is much harder to formulate complex boolean queries
in a single axis than in a multiaxis code. Finally, the resolution offered by mul-
tiaxis codes could always be mechanically collapsed into a general-purpose
single axis code, while the reverse operation is not feasible [9].

At the very time that these debates intensified, events occurred which
abruptly shifted interest to statistical classification. The drug thaliomide
caused thousands of severe birth defects in Europe and Canada, where it
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had been recently approved, and in the United States, where it had been
administered experimentally. As a result, sweeping regulations for pharma-
ceutical product development and adverse effect reporting were introduced
[19]. The new regulations spawned a need for broader medical vocabularies
for statistical classification of drug reactions and adverse events. Both WHO
and the US Food and Drug Administration sponsored efforts to develop clas-
sifications systems specifically for this purpose.

1.3 COSTART and WHOART

The FDA published the Dictionary of Adverse Reaction Terms (DART) in
1967. DART was a hierarchical dictionary with the body-system category at
the highest level. The FDA used DART for approximately 2 years, replacing it
in 1969 with the Coding Symbols for a Thesaurus of Adverse Reaction Terms
(COSTART). This new dictionary emphasized the specific adverse reactions
over the system or organ affected, and allowed more than one search category
to improve retrieval capabilities [45].

COSTART has a hierarchical arrangement of terms. At the top, there
are 12 body-system categories. These are followed by subcategories and ul-
timately by coding symbols and preferred terms (a word or phrase of choice
used to represent an adverse reaction). Instead of numbers, COSTART uses
English language word symbols to record preferred terms. For example, the
symbol ABDO PAIN codes abdominal pain. Coding symbols are also used
for search categories (body-system classes) and their subcategories.

The same year, 1969, saw the publication of the WHO Adverse Reaction
Terminology (WHOART) by the World Health Organization. WHOART is
also hierarchical, with 30 system-organ classes followed in the hierarchy by
high-level terms and preferred terms. WHOART assigns a numeric code to all
system-organ classes, high-level terms, and preferred terms. Since WHOART
was published in four languages (English, French, German, and Spanish),
the use of non-language specific codes was an important feature which dis-
tinguished it from COSTART [45].

For the next quarter century, adverse event coding was dominated by
WHOART (required by the European Union) and COSTART (mandated by
the FDA). The FDA translated all adverse reactions reported to the agency
into COSTART terminology [51]. To report to the World Health Organiza-
tion, the FDA converted the COSTART codes into WHOART codes, using
a fixed translation table [45]. In combination with an adverse reaction termi-
nology, most organizations processing regulatory data also used a morbidity
terminology - primarily ICD-9 in Europe and ICD9-CM in the United States.
The Japanese developed their own versions of these international terminolo-
gies, Japanese Adverse Reaction Terminology (JART) and MEDIS [39,47].

Over the years, organizations expressed dissatisfaction with these estab-
lished terminologies. Deficiencies included a lack of specificity at lowest level
of terms, limited data retrieval options (e.g., too few levels in the hierarchy,
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or capacity to retrieve data via one axis only) and ineffective handling of
syndromes. Reassignment of codes in new versions forced existing data to
be reevaluated. Use of one terminology for adverse reactions, and other for
morbidity complicated data retrieval and analysis [39].

To address these deficiencies, some organizations modified the existing
terminologies for company or regional use, or developed entirely new sys-
tems. Some of these, in particular the Hoechst Adverse Reaction Terminology
System (HARTS), spread well beyond the parent company (Hoechst, now
Aventis). This created additional problems. The use of different terminolo-
gies in separate geographic regions impaired international communication
and necessitated the cumbersome conversion of data from one terminology
to another. These problems most acutely hindered multinational pharmaceu-
tical companies whose subsidiaries used multiple terminologies to fulfill the
varying data submission requirements of various national regulatory agencies.
As pharmaceutical companies merged and became global, it became increas-
ingly difficult to manage the information required for product development
and regulation.

1.4 MedDRA

In 1994, the International Conference on Harmonization (ICH) introduced
multi-disciplinary regulatory communication initiatives to compliment their
ongoing safety, quality, and efficacy harmonization efforts. This included the
M1 initiative which sought to standardize international medical terminology
in all phases of the regulatory process. The initiative resulted in the develop-
ment of the Medical Dictionary for Regulatory Activities (MedDRA), based
on the UK Medicines Control Agency’s (MCA) medical terminology. Version
2, the first implementable version, was published in 1997. Since then, new
releases have appeared regularly and MedDRA has rapidly been adopted an
internationally accepted medical terminology for regulatory purposes. The
FDA already recommends (though does not yet require) MedDRA, and the
European Union will require MedDRA coding for submissions and safety re-
porting after January 2003 [39]. MedDRA is a multiple axial system that
uses non-indexed codes, and includes a five level hierarchy of of terms.

Table 1. MedDRA terms in the 4.0 version

Level Name # terms
SOC System Organ class 26
HLGT High Level Group Term 334
HLT High Level Term 670
PT Preferred Term 15000
LLT Low Level Term 55000
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The SOC level is roughly analogous to the highest levels of COSTART and
WHOART. The HLGT and HLT levels group related terms beneath them
by anatomy, pathology, etiology or function. The PT level contains distinct
descriptors medical concepts including symptoms, signs, diseases, procedures
and social characteristics. The LLT level contains terms which are synonyms
or lexical variants of the PT to which they are linked. Since LLTs accom-
modate culturally unique terms, each LLT may not have a translation in all
languages. An LLT can be linked to only one PT.

Let us trace the term malignant neoplasm of the upper lobe through
the five levels of the MedDRA system. At the SOC level the term may be clas-
sified either on the the etiological axis provided by Neoplasms benign and
malignant, or the or the the anatomical axis provided by Respiratory,
thoracic and mediastinal disorders. Selecting the former leads to the
HLGT Respiratory and mediastinal neoplasms malignant and unspec-
ified, the HLT Respiratory tract and pleural neoplasms malignant
cell type unspecified NEC, the PT Lung cancer stage unspecified
and finally the LLT malignant neoplasm of upper lobe.

If we select the anatomical axis, we begin with the SOC Respiratory,
thoracic and mediastinal disorders, the HLGT Respiratory tract
neoplasms, the HLT Lower respiratory tract neoplasms and the PT
Lung cancer stage unspecified. Here we see that the PT was included
under two HLT terms. While a PT can have more than one associated HLT
(and HLGT, and SOC) there is at most one path down through the hierar-
chy (SOC-HLGT-HLT-PT) to any PT, so that counting errors are avoided
when querying on the SOC, HLGT, and HLT levels. MedDRA also assigns a
primary SOC (and therefore a primary path PT-HLT-HLGT-SOC) for con-
sistency in standard reporting, based on most common usage.

1.5 Other terminologies and systems

While MedDRA looms large in the regulatory landscape, and can be said
to subsume several of the earlier systems, including COSTART, WHOART,
and HARTS, our survey would not be complete without describing at least
the most widely used systems that currently fall outside its scope.

DSM Perhaps the largest medical field with its own well-developed termi-
nology is psychiatry. The American Psychiatric association first published its
Diagnostic and Statistical Manual of Mental Disorders (DSM) in 1952. The
most recent edition, DSM-IV was published in 1994, with minor modifica-
tions in 2000. This system, which has been adopted by many countries, has
five axes:

1. Clinical Disorders
2. Personality Disorders and Mental Retardation
3. General Medical Conditions
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4. Psychosocial and Environmental Problems
5. Global Assessment of Functioning Scale

Beneath the axes, diagnostic labels and their corresponding codes are
grouped. Codes contain 3-5 digits. The leading 3-4 digits specify a specific
entity, with the 5th digit providing additional specificity such as subtype
or severity. To provide compatibility for reimbursement and other interested
third parties, each DSM-IV code is associated with a ICD code equivalent
[15].

ICPC In 1972, the World Conference of Family Doctors initiated a project
to develop a comprehensive system to classify the primary health care and
patient-doctor interactions. A succession of efforts led to the publication of
the International Classification of Primary Care (ICPC) in 1978. The second
edition was published in 1998, primarily to coordinate the codes with the the
10th version of ICD [61]. Several European countries including the Nether-
lands, Denmark, and Norway have produced national ICPC implementations
[26].

The ICPC system groups codes under a matrix of 17 chapters and 7
components. The chapters are:

A General and Unspecified
B Blood, Blood Forming Organs and Immune Mechanism
D Digestive
F Eye
H Ear
K Circulatory
L Musculoskeletal
N Neurological
P Psychological
R Respiratory
S Skin
T Endocrine, metabolic, and nutritional
U Urinary
W Pregnancy, child-bearing, family planning
X Female genital and breast
Y Male genital
Z Social problems

These are roughly analogous to the highest level in WHOART, COSTART,
MedDRA, etc. The components, which offer a different organizational prin-
ciple, are as follows:

1. Symptoms and Complaints
2. Diagnostic Screening and Preventative Measures
3. Medication and Treatment procedures
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4. Test results
5. Administration
6. Referrals and other reasons for encounter
7. Diagnoses and Disease

Components 2-6 are referred to as process components. Codes are grouped
under a Chapter and a Component. Codes consist of three characters and
have a title of limited length. Each code is mapped to one or more cor-
responding ICD-10 codes. A patient-physician interaction is assigned a se-
ries of codes, for example A03 - Fever, A30 - Full examination, A31 -
Temperature Measurement, A63 - Plan for follow-up visit.

Read Originally created by Dr James Read to generate computer based mor-
bidity records, the Read Classification Codes (RCC) were adopted by British
National Health Service in 1994, and were expanded to to cover all fields of
primary health care with the publication of Version 3.

This version includes a 5 level hierarchy and allows classification of terms
along multiple axes. The non-indexical 5 character codes are cross-referenced
to ICD10 codes. In Version 3.1, the current version, a set of qualifier terms
such as anatomical site was added. Qualifier terms can be combined with ex-
isting terms to form composites which exist outside of the hierarchy. Terms
and qualifiers are grouped into templates that describe the range of medi-
cally valid combinations. Many medical organizations, primarily in the United
Kingdom, use the RCC for classification of medical records in clinical infor-
mation systems [41].

UMLS The proliferation of controlled vocabularies has long worried informa-
tion retrieval specialists, who would like to cross-reference information coded
according to different schemes. The National Library of Medicine is develop-
ing the Unified Medical Language System (UMLS) with the specific goal of
addressing these issues [52]. However, the UMLS Metathesaurus is nowhere
near completion.

Given the diverse constituencies of the various schemes, it is highly un-
likely that a comprehensive uniform scheme will be adopted within a decade
or two. This simple fact has major impact on the design of hybrid translation
systems: since any such system needs to “have legs” (require no or little exter-
nal effort to move it from one scheme to another), it makes little engineering
sense for them to contain detail knowledge about the internal organization
principles of any particular coding scheme, and even less sense to tie the be-
havior of the system to the semantics of such schemes. In other words, the
fact that we are considering a narrow domain, medicine, does in no way imply
that we can, or even should try to, utilize deeply domain-specific knowledge.
To the contrary, in order to keep the system re-targetable for different con-
trolled vocabularies, we should rely on as generic machine translation and
machine learning techniques as we can. For this reason, in the following we
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put the emphasis on generally applicable techniques as opposed to systems
that are tied very closely to any particular target vocabulary.

2 Hybrid Autocoding Systems

The ability to master natural language communication played a central role in
the original Turing test [50], and for well over a decade Machine Translation
(MT) was believed to be right around the corner. In spite of some very clear
early warnings like [2], it was not until the appearance of the ALPAC report
[21], that the actual difficulty of the problem became widely appreciated. But
once fully automated high quality MT was recognized to be the extremely
hard problem it is, attention turned to restricted/reformulated versions. As a
first step, “high quality” was replaced by “with some effort understandable”
and “fully automated” was replaced by “suitable for human post-processing”.
Thus the data flow followed the scheme outlined in Fig. 1:

Figure 1. Machine-assisted translation (coding) workflow

source text
Machine Translation

raw MT output
Human Postprocessing

target text

Another important change was the move from unrestricted to domain-specific
text. In fact, for many domains where the syntax is highly conventional and
the content varies little, e.g. in weather reports [7], the labor-intensive post-
processing step could be kept to a minimum. In general, interactive trans-
lator’s workbench systems, where the results of the postprocessing step are
continually fed back to the MT component, were found more effective than
single-pass postprocessing.

It was soon realized that the success of such systems derives largely from
the conventionalized, repetitive aspect of the task, and that conventionaliza-
tion is best accomplished by controlling the source language. This is a very
active research area to this day, but one that we can’t do full justice to within
the bounds of this chapter, and we refer the reader to the survey [60] and the
proceedings of the biannual CLAW conferences published by the Language
Technologies Institute at Carnegie Mellon University.

From the perspective of MT, the main distinguishing feature of the medi-
cal domain is the size of the vocabulary. The METEO system [7] of translat-
ing weather reports could be successful precisely because it knows less than
103 words, and it is possible to handcraft lexical entries reflecting the usage
possibilities of each and every one of these. But even the tightly controlled
vocabularies surveyed in the previous Section contain 104 − 106 words and
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phrases, and our ability to handcraft meaningful lexical entries for each of
them is limited.

Over the years, many researchers have noted that a great deal of the
(controlled) vocabulary is compositional in the sense that the meaning of the
whole expression can be recursively inferred from the meaning of its parts. To
take advantage of this fact, one of course needs to define the meaning of the
expressions in some knowledge representation scheme. A significant effort in
this direction is GALEN, now OpenGALEN, which builds a whole conceptual
model of the medical domain, with knowledge representation primitives such
as ACTS ON, IS PART OF, etc.

Since it is clearly the long-term goal of medical informatics to use such
representations as the basis of inference, we include a discussion of the prob-
lems and main techniques here, but we caution the reader that the represen-
tation of medical knowledge is still in its infancy, with narrow, non-scalable
prototypes dominating the field, while the use of autocoders is part of the
mainstream production environment for pharmaceutical research and regu-
latory activities.

We distinguish three interrelated problems in the translation process, and
discuss them in turn:

1. Segmentation, the problem of finding (the beginning and endpoints of)
the words and phrases that are subject to translation

2. Analysis, the problem of identifying and recursively substituting smaller
patterns that compositionally make up the larger patterns and

3. Substitution, the problem of providing the appropriate translation.

While separating the tasks at the conceptual level is clearly necessary, it
should be emphasized that a working system need not contain separate mod-
ules for each, nor is it necessary to impose an execution order in which solv-
ing one of these problems precedes solving the other. In fact, lack of a rigid
pipelined architecture, and the ability to delay decisions, is a key strength of
the most important hybrid methods.

2.1 Segmentation

Finding the relevant words and phrases is a problem long familiar from ma-
chine translation. It is particularly acute in languages such as Chinese or
Japanese where no whitespace separates the symbols, and in languages such
as German where long compound words are common. Current segmentation
and entity extraction techniques have their historical roots in string matching
techniques – for a survey, see [46]. The key idea, built into Unix in the form of
grep [49] is to describe string patterns in terms of regular expressions, and to
speed up regular expression searches by means of compiling them into finite
automata.

To check for an entity, the current generation of autocoders perform some
combination of the following abstraction steps [22,18,40]
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1. special character normalization – replacing # by number, @ by at, etc
2. spell correction – replacing pian by pain
3. acronym expansion – replacing ECG by electrocardiogram
4. undoing abbreviations – replacing liv by liver
5. capitalization – lowercase chars replaced by their uppercase counterpart
6. morphological analysis (stemming) – fingers replaced by finger
7. synonym-based data enrichment – replacing ache by pain
8. word deletion – omitting words low in information content

Notice that all these steps correspond to generalized sequential mappings that
map input strings on output strings in an essentially memoryless fashion.
The idea of “memoryless” computation may be somewhat counterintuitive
for steps such as acronym expansion or data enrichment, but in fact dic-
tionary entries can be thought of as containing two strings, an input and
an output, and looking up a string in the dictionary is an operation that
requires no writable memory. Such operations can be performed by a partic-
ularly simple kind of computing machinery, finite state transducers or FSTs.
The techniques for compiling word lists into FSTs are well understood, and
have been widely used in tokenization tasks since the introduction of lex
[35].

In the eighties, the whole technology of string matching received a new
impetus from the work of Koskenniemi [33], who showed how simple FSTs op-
erating in parallel can be used to express complex relations between strings.
Since both parallel and sequential combinations of FSTs can be compiled into
single (albeit often much larger) FSTs, the road was open to express regular-
ities by the kind of rules used by lexicographers and grammarians, compile
the rules into FSTs, and combine the FSTs into a single, highly efficient pro-
gram that will check for all the regularities at the same time. Crucially, the
computational efficiency of the resulting FST is the same whether it is used
in synthesis (generation from input to output) or analysis (recognition of in-
put from output) mode. For more detailed discussion of these techniques see
[42,31]. In autocoding, and perhaps in all of machine translation, probabilis-
tic FSTs are the single most important hybrid technique, since they enable
the compilation of expert-written and machine-generated rules in a unified
framework.

In spite of their mathematical similarity, not all the above steps are equally
practical. Since special character normalization is the key to successfully
matching certain entities, and the cost of implementing this step is negli-
gible, it is best included in any system, but on the whole will affect only a
small fraction, well below .1%, of the verbatims to be translated. Spell cor-
rection, on the other hand, affects a larger fraction, often as much as 1-2%,
but general-purpose spellcheckers perform poorly in the medical domain, and
implementing a domain-specific spellchecker is a major undertaking. Mor-
phological analysis (stemming) yields a small but consistent improvement of
4-5% in autocoding, which is not nearly as good as that found in [34] for the
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most comparable situation in Information Retrieval (IR), short queries and
short documents. The use of data enrichment is highly controversial, because
the errors it can introduce, being semantically valid, are hard to spot. On
the whole, we feel that this step should be performed indirectly, on the out-
put knowledge representation, rather than directly, on the input dictionary
words. Omitting stopwords that have low information content is very effec-
tive, but care must be taken in selecting the stopword list. For a summary of
the effectiveness of these steps for IR see [14].

There is one widely used technique, word order normalization, which does
not easily lend itself to reformulation in terms of FSTs. The idea, closely re-
lated to the “bag of words” model long familiar from information retrieval,
is to simply list the words in some fixed (typically, alphabetical) order. By
this method, many equivalent expressions such as enlarged left kidney,
left kidney, enlarged, or kidney, left enlarged, can be mapped on
a single normalized order, in this case enlarged, kidney, left. As a prac-
tical matter, word order normalization creates almost as many problems as
it solves, since mechanical application of the procedure will map medically
distinct conditions such as pain without swelling and swelling without
pain on the same form pain, swelling, without.

Early entity extraction systems were entirely rule-based, with rules such
as (paraphrase) “the word or phrase following normal or abnormal refers to
a test result or body function”. Such rules suffered from all the problems of
classic expert systems: they were

• expensive – could only be generated by experts well versed both in the
subject domain and in the intricacies of rule writing

• brittle – minor changes in the data often require radical revisions of the
rule system

• fragmentary – relevant data may not be found even in large samples, and
• monolithic – changes cannot be effected in a modular fashion, every rule

can interact with every other rule, to produce unexpected changes in
overall behavior

With the introduction of statistical machine translation techniques [6], entity
extraction became less of an art and more of a practicable technique. While
such techniques address the cost, brittleness, and monolithicity issues, the
problem of fragmentary data remains, and it has been the general experience
that humans are far more capable of extracting the relevant patterns from
fragmentary data than the currently known statistical techniques.

Therefore, the best systems still have a strong handcrafted/human super-
vised component, and the expertise of human coders still very much needs to
be tapped into both at the stage of preparing the dictionaries and synonym
tables and at the stage of assuring the quality of the machine output. How this
“hybridization” itself can be performed automatically or semi-automatically
will be discussed in 2.3.
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2.2 Analysis

To a large extent, the task of finding the entities to be translated is inter-
vowen with the parsing of the text: very often, it is not the first word or stem
of the entity itself that provides the necessary clue, but rather the preced-
ing word, and the same is true about detecting the end of an entity. That
said, obtaining a full parse is seldom a necessary prerequisite to locating the
phrases to be translated, and indeed the complexity of the full grammatical
task is formidable, even in the medical domain, which itself is rather restricted
compared to general-purpose English. Here we list some of the most salient
properties that set adverse event coding apart from the bulk of the work on
machine translation.

Table 2. Medical vs. general-purpose translation

characteristic adverse event coding general MT
length short (on average < 6 words) long (multi-paragraph)
syntax nonstandard standard

acne facial recurrent recurrent facial acne
language mixed monolingual

over 10% German, French, etc. English
style telegraphic allergy arms normal skin allergy on

and legs the arms and legs
vocabulary specialized general-purpose

105 words and phrases added to 105 words in gen. vocabulary

Most of these differences extend well beyond adverse event coding: similar
issues need to be faced in coding to the disease, symptom, and procedure
classifications surveyed in Section 1, and in some cases, such as coding to drug
names, specialized vocabulary may grow into the millions. To some extent,
the above characteristics are correlated: the longer the text grows, e.g. in
discharge reports, the more it sheds from its nonstandard properties and the
more it becomes like general-purpose English. This would be an advantage if
we had at our disposal high-quality parsers for general-purpose English just
the way we have high-quality spellcheckers. Unfortunately, such parsers are
beyond the state of the art, and we only see the downside of moving closer to
ordinary English: more mistakes and ambiguities, a wider range of syntactic
constructions, and an overall loosening of the implicit language control that
is imposed by the rigid constraints of the genre.

Because of these factors, the analysis of medical text tends to follow,
rather than lead, the state of the art in analyzing general-purpose texts.
There the most important technique to have emerged in the past decade is
shallow parsing or chunking [1], which abandons the goal of providing a full
analysis, and views the extraction of grammatical categories such as Noun
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Phrase or Verb Phrase as an extension of the entity extraction task, rely-
ing on the same general finite-state techniques we discussed in 2.1 above.
An important consequence of this trend is that the output of parsing (syn-
tactic analysis) is no longer sufficiently detailed to provide input for knowl-
edge representation (semantic analysis), and the words and phrases extracted
from the text are substituted in more loosely defined semantic patterns [37].
This becomes particularly noticeable when we encounter medically mean-
ingless expressions such as removal of a renal cyst from the thyroid
[43]: while in principle a sophisticated knowledge representation scheme as
found in OpenGALEN may be able to handle these correctly, exercising this
capability over a wide range of constructions presupposes a level of parsing
accuracy that is currently not available.

A relatively easy step is sentence- and clause-level parsing, i.e. to identify
chunks separated by hyphens, parentheses, and other punctuation. For au-
tocoding, as in the WebCoder system [32], this has the advantage that the
chunks can be ranked according to their hypothesized hierarchical impor-
tance. Chunks shorter than four words that constitute the whole verbatim
are considered definitive in the sense that they contain all the information
necessary for substitution and receive rank 0, partial chunks have rank 1 and
higher. As Table 3 shows, the number of less valuable (higher ranked) chunks
emerging from a shallow parser falls of rapidly with rank. The quality of the
information contained in lower-ranking chunks is also rapidly decreasing [32].

Table 3. Distribution of chunk ranks

WHOART WHOART COSTART COSTART
tokens types tokens types

trainset 64765 64515 50301 8038
testset 7195 7195 5589 1718
rank 0 62636 62366 50264 7946
rank 1 10759 8630 1796 556
rank 2 649 524 92 38
rank 3 22 22 2 2
rank 4 2 2 0 0

2.3 Substitution

Originally, the computational effort of autocoders was dominated by database
lookup. These were little more than translation memory (TM) systems (for
an overview, see [53]) that simply stored previously encountered entities with
their proper encoding, as assigned by the human coder. The effectiveness
of TM is almost entirely a function of the size of the translation memory
or synonym table as it is called in autocoders. Since the tables are carefully
constructed and debugged by human coders familiar with the coding schemes
surveyed in Section 1 [17], their error rates are very low, but they miss a
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great deal. Today, in translating to a controlled medical vocabulary, the key
problem lies not so much with providing the actual translation (which can
be accomplished by standard hashing/database lookup methods), but with
filling the synonym table with minimum human effort. Our interest is not so
much with memorization as with Machine Learning (ML) techniques that can
generalize better to data not seen in training, even at the cost of increased
error.

Here we define two figures of merit standardly used in computational
linguistics: by the precision of the system we mean the percentage of correct
output relative to the total output, and by recall we mean the percentage
of correct output relative to total input. How input and output is defined
depends on the nature of the task, such as entity extraction, information
retrieval, classification, or machine translation, but the intent is always the
same: the precision measure is defined to be sensitive to false positives, while
the recall measure is defined to be sensitive to false negatives. In practical
applications, it is almost always possible to trade off precision for recall and
conversely. TM systems are at one extreme of this tradeoff: precision is very
high, but recall can be as low as 15%, and 40% is considered very good [5].

Rather than thinking of substitution as a mechanical database lookup
step, it will be expedient to recast the whole problem as an instance of the
general IR/text classification problem, or more specifically, as an instance
of the message routing (MR) problem [24]. In supervised MR we are faced
with the following problem: given some categories C = {C1, C2, . . . , Ck} and
some “truthed” documents F = {F1, F2, . . . , Fn} with their true categories
t(Fi) ⊂ C, for any new document Fn+1, find the most likely value of t(Fn+1),
i.e. the category or categories associated to Fn+1. In a typical MR system
files are first reduced to multisets or bags of words or word stems in the
preprocessing stage, so that the task becomes classifying these bags of words,
or stems, rather than the original files. Some systems, such as [32], go beyond
words and employ word pairs and in general word n-grams, since these are
more informative than word unigrams alone.

Given an arbitrary fixed ordering of words/stems, e.g. as created by a
perfect hash function, bags are in one to one correspondence with vectors of
a large dimensionality d (the number of words, usually several thousand to a
few hundred thousand) having only nonnegative integer coefficients called in
these applications the counts. Looked at this way, autocoding (and in general,
supervised MR) is a classification problem in Euclidean space. Before turning
to a discussion of the main machine learning approaches, however, we list the
main aspects of the MR problem that set it apart from other important tasks
such as Optical Character Recognition.

(1) The number of classes is large, often 104 − 105

(2) The number of potential features (word n-grams) is astronomical
(3) Human judgments are available
(4) The data is repetitious
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All machine learning algorithms solving supervised problems have two
phases of operation: training and classification. In training, a mathematical
model of the classes is created based on pairs consisting of verbatims and
their translations. In classification, the model is applied to new data, and
hypothesized translations (and confidences) are output. With some simplifi-
cation, we can distinguish two broad types of training methods: those that
create a separate model for each class, and those where knowledge about the
individual classes is distributed over the whole system.

All handcrafted classifiers, based on (combinations of) keywords and rules,
fall in the first type, where we also find automatically generated models such
as Naive Bayes [38] and linear machines [25,36]. The second type includes
many variants of Artificial Neural Nets (ANNs) [44] and k-nearest neighbor
classifiers (kNN). The string normalization techniques discussed in 2.1 are
for the most part very conservative, assuring only that near-identical strings
receive the same translation. We can therefore think of Translation Mem-
ory systems as nearest neighbor classifiers, but the abstract string-similarity
neighborhoods around the input strings listed in the synonym table are very
small.

Within the bounds of this survey we can’t do full justice to all these tech-
niques: for an overview of the main machine learning methods see [16], and for
the state of the art in text classification see the annual SIGIR and TREC pro-
ceedings. But we emphasize here that much of what we know about Message
Routing comes from relatively small collections of data, such as the original
Reuters corpus, which has less than 30k documents and only 90 categories
with both training and test examples. Almost all this knowledge needs to be
critically reevaluated for autocoding. Because of (1), techniques that are not
linear or at least near-linear in the number of classes are essentially useless
even when they are provably superior on small data sets: this includes much
of standard multivariate statistics, such as factor analysis [4] and regression
methods [3].

One well-understood technique for dealing with this problem is divide and
conquer: we can leverage the hierarchical structure of the classes by first clas-
sifying to the highest level, and building independent lower-level classifiers
for each node. In [32] we built a bodysystem-level master, with bodysystem-
specific slaves, at the cost of increasing reject rates by 1.3%. and error rates
by 0.1%. It has been argued that in some cases no loss (or even accuracy
gains) could be seen [30], but these results may depend on experiments be-
ing performed in a more noisy environment than provided by medical texts.
Because of (3), we have much better training data than is customary in infor-
mation retrieval: essentially, all previously coded material, and all preexisting
synonym tables, are at our disposal. Also, these are very high quality both in
terms of extremely low error rates (often coded twice by different coders and
reconciled by a third coder if needed) and high consistency (mature coding
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practices). Laveraging this training material properly is the key to the success
of hybrid systems [27]

Because of (2), feature selection can matter a great deal. A widely used
technique is Singular Value Decomposition (SVD) [8,20], which provides good
dimension reduction, but the nonlinear computational cost is almost impossi-
ble to absorb for very large problems [48]. Since the same drug is likely to have
the same adverse effect on different people, we also benefit from (4) – with
the proper statistical techniques both (3) and (4) can be highly leveraged to
mitigate the effects of (1) and (2).

3 Conclusions

Automatic translation to controlled medical vocabularies is not a solved prob-
lem. Because of the characteristics of the medical domain, many techniques
that work well for less demanding data sets are not practical for autocoding,
and properly leveraging the knowledge of human coders remains the key to
developing and deploying successful systems.
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