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Abstract. Linear Discriminant (LD) techniques are typically used in pattern recog-
nition tasks when there are many (n >> 104) datapoints in low-dimensional (d <
102) space. In this paper we argue on theoretical grounds that LD is in fact more
appropriate when training data is sparse, and the dimension of the space is ex-
tremely high. To support this conclusion we present experimental results on a med-
ical text classification problem of great practical importance, autocoding of adverse
event reports. We trained and tested LD-based systems for a variety of classifica-
tion schemes widely used in the clinical drug trial process (COSTART, WHOART,
HARTS, and MedDRA) and obtained significant reduction in the rate of misclas-
sification compared both to generic Bayesian machine-learning techniques and to
the current generation of domain-specific autocoders based on string matching.

1 Introduction

Linear Discriminant (LD) techniques, introduced by Fisher [8,9], have been
a standard technique in pattern classification [14] even before they received
their modern formulation in Rao [20]. Today, virtually all speech and char-
acter recognition systems employ some form of LD analysis, though it is
generally incorporated in the signal processing front-end and viewed simply
as a data reduction step. LD may be more effective than Karhunen-Loèwe
transform, the conclusion reached by [3], but overall it remains just one of the
many feature extraction steps, contributing to classification only indirectly.
Since the seventies, perhaps as a result of the strongly argued criticisms lev-
elled against perceptrons by Minsky and Papert [18], the direct use of linear
classification techniques has largely given way to more complex (e.g. polyno-
mial) classifiers [19].

In Section 2 we introduce a problem domain, autocoding, and give an
overview of the current generation of autocoders. The linear classification
methods we apply to this task are described in Section 3, where we also discuss
why the issues raised by Minsky and Papert are irrelevant for sparse data
in high dimension. Our results, showing that linear classification is markedly
superior, are presented in Section 4. In the concluding Section 5 we discuss
why the perceptron algorithm, the granddaddy of all learning algorithms
based on error minimization, performs so well.
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2 Autocoding

In the clinical trial process for new drugs, health professionals routinely
generate adverse event reports that describe side effects of the drug un-
der trial. Coding these reports or verbatims to an established set of code-
points as provided by various standardized classification schemes such as
WHOART, COSTART, HARTS, or MedDRA can be thought of as an in-
stance of the general information retrieval/text classification problem, or
more specifically, as an instance of the message routing (MR) problem [13]. In
supervised MR we are faced with the following problem: given some categories
C = {C1, C2, . . . , Ck} and some “truthed” documents F = {F1, F2, . . . , Fn}
with their true categories t(Fi) ⊂ C, for any new document Fn+1, find the
most likely value of t(Fn+1), i.e. the category or categories associated to
Fn+1. In a typical MR system files are first reduced to multisets or bags of
words or word stems in the preprocessing stage, so that the task becomes
classifying these bags of words, or stems, rather than the original files. Given
an arbitrary fixed ordering of words/stems, e.g. as created by a perfect hash
function, bags are in one to one correspondence with vectors of a large dimen-
sionality d (the number of words, usually several thousand to a few hundred
thousand) having only nonnegative integer coefficients called in these appli-
cations the counts. Looked at this way, MR is a classification problem in
Euclidean space, and dimension reduction, usually in the form of Singular
Value Decomposition (SVD) is a key aspect of successful classification [5,11].

Currently, pharmaceutical companies and clinical research organizations
largely rely on the expertise of human coders familiar with these coding
schemes [7], employing MR techniques only very conservatively, primarily to
assure that similar verbatims receive the same code. To check for similar-
ity, the current generation of autocoders perform some combination of the
following abstraction steps [12,10]

1. special character normalization
2. spell correction
3. acronym expansion
4. undoing abbreviations
5. capitalization
6. morphological analysis (stemming)
7. synonym-based data enrichment
8. word order normalization

in the hope that the result matches an already coded verbatim listed in
the synonym table shipped with the system. These autocoders are therefore
nearest neighbor classifiers, but the abstract string-similarity neighborhoods
around the verbatims in the synonym table are very small. Since unseen
strings will remain unclassified if they do not fall into any of these neighbor-
hoods, the current generation of autocoders often reject (leave unclassified)
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85% of the data. This is not to say that such techniques are useless (see [6]
for a detailed study of their impact on queries in the biomedical domain), but
they represent an extreme tradeoff between error and reject rates. In a ma-
chine intelligence context (and also for practical purposes) we are interested
in techniques that can generalize better to data not seen in training, even at
the cost of increased error. Our system contains only steps 1 (substituting
“@” by AT, “#” by NUMBER etc.), 5, and 6 (a variant of the Porter stemming
algorithm), since the other steps had insignificant impact on performance.

The two most salient properties that set autocoding apart from the bulk
of the work on IR and message routing are that (1) the messages tend to be
fairly short: in our samples, the average verbatim is less than 5 words and (2)
the verbatims by no means conform to the standards of English syntax. In
our work, a considerable portion, over 10%, of the verbatims is in German,
French, or some other language, and the source language is not known in
advance for the autocoder. Verbatims also tend to be heavily abbreviated,
both in their syntax (ALLERGY ARMS AND LEGS instead of SKIN ALLERGY ON
THE ARMS AND LEGS) and at the word level (POSS. INTERSTITIAL INFLAM.
instead of POSSIBLE INTERSTITIAL INFLAMMATION), have nonstandard word
order (ACNE FACIAL RECURRENT instead of RECURRENT FACIAL ACNE), and of
course contain a large number of medical terms not found in standard dic-
tionaries. These difficulties extend well beyond adverse event coding: similar
issues need to be faced in coding to disease, symptom, or procedure classifi-
cations such as DSM4, ICD10 or ICPC.

3 Methods

It has long been noted that word pairs and in general word n-grams are more
informative than word unigrams alone. However, on a space encompassing
n-grams the direct use of generalized matrix inversion techniques would have
prohibitive storage requirements: for a typical vocabulary of 20k words we
would need 400 megabytes for bigrams and 8 terabytes for trigrams. In addi-
tion to this storage problem, there is the more subtle but even more dangerous
data problem: corpora for reliably estimating 8 trillion datapoints are sim-
ply not available. One way out of this problem is replacing measured values
(frequency ratio estimates of probabilities) by computed values, using var-
ious backoff schemes [4]. This is a very active area of research, especially
in language modeling for speech and character recognition, where corpora
with 108 − 109 words are now routinely available. Adverse event data are
not available in these quantities: a typical clinical trial will generate only a
few thousand words. To escape the data problem, we only use actual counts,
“estimating” the probability of non-occurring n-grams by zero.

We solve the storage problem by a carefully designed sparse vector frame-
work, which employs symbolic techniques to such an extent that we found it
expedient to implement it in Java. While Java is currently not well suited to
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large-scale numerical work (see e.g. math.nist.gov/javanumerics), in the
sparse vector library we incur only a constant factor overhead, so that moving
from unigrams (words) to n-grams scales linearly with n. This is particularly
important, since the dimension d of our sparse vectors is

∑n
i=0 V

i ∼ V n,
so as n moves from 3 to 20, d moves from 1013 to 1086. In this paper we
will ignore the implementation details and simply assume that verbatims are
characterized by count vectors that contain all i-gram counts for each verba-
tim for 1 ≤ i ≤ n, and codepoints are characterized by weight vectors wj that
store the relevance WR,j of the i-gram R to the jth class. For each class, we
can also employ a 0th element w0,j = −bj called the bias. We use standard
linear machines where the result of the classification is defined as the j for
which the scalar product (wj , c) with the count vector c is maximal (after
subtracting the biases).

Since Minsky and Papert [18] the central objection to linear classifiers has
been the observation that in normal d-dimensional space the sets of points
corresponding to different classes tend not to be linearly separable. Indeed,
data sets obtained by measuring physical parameters of objects, such as the
Fisher iris data, are almost always “cloudy”, partly because of measurement
errors, and partly because of the inherent variability of the real-world pro-
cess that created the objects. Also, such data tend to have low dimension,
since measuring different dimensions typically requires separate instrumen-
tation. In our case, however, d is 1013 or even higher, and only artificially
constructed, as opposed to actually observed, data sets will manifest non-
separable behavior. To see what is involved here, consider two classes C and
D with count vectors ci and dj . For these classes to be nonseparable, the
convex hulls of the ci and dj need to intersect, meaning that we find two
convex linear combinations

∑
γici =

∑
δjdj . Taking the coordinates at an

arbitrary n-gram R, the counts need to show the same equality, meaning that
for each R some C counts need to bracket some D counts or conversely, some
D counts need to bracket some C counts. There are many Rs where this rou-
tinely happens, in particular, counts for stopword unigrams are not expected
to be separable. But overall nonseparability would require all counts to be
nonseparable, which is contrary to experience. What we find in practice is
that each class has its characteristic words and n-grams, most of which do
not even appear in competing classes. The overall effect is that each class
is concentrated in a low-dimensional (d = 101 − 103) subspace, and these
subspaces are largely disjoint.

3.1 Shared components

The algorithm has two modes of operation: training and classification. In
training mode, the input consists of verbatims and associated truth values,
typically extracted from a database in a preparatory step, and the output is
a file of weight vectors. In classification mode, the weight vectors produced
during training are read in as input, and for each input verbatim a list of
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truth values and confidences is output. Most of the code, including the nor-
malization steps described above, are shared between the trainer and the
classifier. Major steps in training are as follows.

3.2 Preprocessing

We employ shallow parsing techniques [1] to identify chunks separated by
hyphens, parentheses, and other punctuation. A novel aspect of this step is
the ranking of the chunks according to their hypothesized hierarchical im-
portance. Chunks shorter than four words that span the whole verbatim are
considered definitive in the sense that they contain all the information nec-
essary for classification and receive rank 0, partial chunks have rank 1 and
higher. As Table 1 shows, the number of less valuable (higher ranked) chunks
emerging from our shallow parser falls of rapidly with rank. The quality of
the information contained in lower-ranking chunks is also rapidly decreasing.

WHOART WHOART COSTART COSTART
tokens types tokens types

trainset 64765 64515 50301 8038
testset 7195 7195 5589 1718
rank 0 62636 62366 50264 7946
rank 1 10759 8630 1796 556
rank 2 649 524 92 38
rank 3 22 22 2 2
rank 4 2 2 0 0

Table 1. Distribution of chunk ranks

In one set of experiments, we obtained 93.1% correct classification using rank
0 chunks, but only 55.9% using rank 1 chunks (COSTART), and 72.6% using
rank 0 vs. 39.5% using rank 1 (WHOART). It is therefore tempting to dis-
card every chunk with rank ≥ 1. However, classifiers combining rank 0 and
higher rank information with the proper weighting scheme in fact reduce the
error rate by about 20%. This is less than the 40-56% reduction one may
expect based on rank 1 alone, but of course these are not fully independent
information sources, since the chunks at different ranks are highly correlated.
Differential use of the chunks, using lower weights for higher ranks, is impor-
tant not only in extracting the information, but also in protecting the weights
based on rank 0 from contamination by higher rank material.

3.3 Initialization

We initialize the weight vectors based on the definitive rank 0 and rank 1
n-grams. This is, in essence, an “example-based learning” technique [2]. It is
particularly important in our case because this step ensures that examples
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occurring only once get used in classification, and therefore our perceptron
subsumes, as a special case, the traditional synonym table-driven methods.

Based on the seeds accumulated thus far, we perform statistical n-gram
analysis, and add every i-gram that is valuable in the sense that it appears as
part of a more than one definitive n-gram. The importance of this step is to
enable generalization: without it, a verbatim that is missing from the training
set can be found only if it has a sufficiently short and high-ranked substring
in the training set. With the addition of valuable n-grams success rates on
unseen verbatims go from 42.8% to 72.6% (COSTART). The weight of the
valuable i-grams, together with the original definitive n-grams, is clipped at
2, so as not to attribute undue importance to frequent examples.

The main novelty of our n-gram frequency analysis is that the sparse
vector library enables us to implement it for n as high as we wish. Because the
average verbatim is slightly less than five words long, we found no advantage
in using n > 4, but in other message routing applications, such as the analysis
of discharge reports, the ability to increase n is likely to provide additional
benefit.

Our procedure is for each category to take the list of n-grams that appear
k > 1 times, and assign a weight of k/F to each, where F is the count of the
most frequent such n-grams. The example-based, valuable, and frequent lists
are all filtered for stopwords. Flat initialization (without filtering stopwords
and words that appear only once, and omitting the steps described above)
would be a considerably simpler procedure, but it leads to noticeably worse
iteration results: for example, in the VISION bodysystem (WHOART, 1461
training examples for 51 categories) Widrow-Hoff iteration yields 62.5% cor-
rect classification from flat initialization, and 67.5% from the more complex
initialization described above.

3.4 Iteration

In machine learning systems the iterative step is usually performed via gen-
eralized inverse computation. Here the lack of concern for nonseparability
enables us to implement this step more directly. We experimented with a
variety of settings and update formulas, ranging from classic Widrow-Hoff
perceptron to Winnow, but we report results only on Widrow-Hoff, since the
choice between different update formulas had an order of magnitude less im-
pact than the size effects discussed in Section 4. Iteration cuts error rates by
a quarter (COSTART) to a third (WHOART). In the course of experiment-
ing with a variety of stopping criteria, we generally found that within the
first k iterations (usually between 5 and 20) the one that was best on the
training set was either the best one on the test set as well, or that the differ-
ence between the two was insignificant. Typically, very little improvement is
seen after the first 3-7 iterations, suggesting that the system memorizes quite
effectively what little training data is has.
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An important negative finding concerning both initialization and iteration
was that using non-zero biases (constant terms) does not improve the classi-
fication rate. Since in general a system with a larger number of parameters
is expected to provide better results, the fact that bias-free linear machines
offer as good classification as those using biases is strong evidence in favor of
the geometrical picture offered at the beginning of this Section, namely that
the different classes are comfortably segregated in different subspaces of the
overall space.

4 Results

As in any classification task, the results of autocoding are heavily impacted
by size effects: the less training data are available, and the more detailed the
classification scheme, the higher the misclassification rate. For synonym-table
based systems the results of autocoding also depend very heavily on the size
of the synonym table and on the amount of repetition in the data, which can
vary extensively: for example our raw COSTART data has over 56k verbatim
tokens, but less than 10k different types, while our raw WHOART data has
only 250 repeated tokens for over 72k types. The normal procedure is for
each data set to randomly select 90% for training and 10% for testing: this
would results in a test set that has over 65% overlap with the training set
for COSTART but less than .5% overlap for WHOART. Thus, a table-driven
system, which simply memorizes the training data, would have over 65%
success on the raw COSTART data but less than 1% on WHOART.

To remove the effect of repetition, we uniqed both training and test data,
and omitted from the test set every verbatim that was present in the training
set. This procedure of course decreases the absolute numbers we report, but
the results provide a pure measure of generalization ability. To control for
the widely different number of categories across different coding systems, we
first grouped together codepoints belonging to the same bodysystem, which
reduces the number of COSTART classification categories to 12, and that of
WHOART categories to 32.

coding total # of test set % correct %correct % correct
system verbatims classes size linear AV Discovery Bayesian
WHOART 7794 32 865 84.9 58.5 66.3
COSTART 8038 12 1718 95.7 61.2 80.7

Table 2. System comparison with few categories

At this level of granularity, the linear classifier already cuts down by half
(WHOART) to three quarters (COSTART) the error rates obtained with
AltaVista Discovery and with a high quality state of the art commercial
Bayesian classifier. As we increased the number of categories, the performance
difference became even more marked, and we had increasing difficulties pro-
viding enough real memory for these systems (especially the Bayesian) to
complete training.
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Because the bodysystem-level classifier performs quite well, we can use
it as a master, whose output is used to select one of 12 bodysystem-specific
slave classifiers which route the verbatim to its detail category. A direct clas-
sifier, routing from the root node to one of 730 leaves without the use of
intermediary nodes, routes 85.9% of the test data correctly. The cascade has
a combined classification rate of 85.8% at a reject rate of 1.3%. Since this is
not a significant loss in accuracy, we use the cascade scheme extensively in the
MedDRA classification task, where the number of codepoints is so large that
the considerably lower memory requirements and improved speed of the cas-
cade method become relevant. We experimented on several data sets coded
according to different systems. The main parameters of these sets are sum-
marized in Table 3 below. Train and test sets are uniqed, non-overlapping.

coding total # of test set %
system verbatims classes size correct
WHOART 7794 470 865 71.1
COSTART 8038 722 1718 83.2
HARTS 45465 1257 4546 76.6
MedDRA 156307 3818 13240 73.9

Table 3. Classification results

These numbers are about 20% better than those produced by state of the
art machine learning systems without domain-specific knowledge, and on
COSTART our classification rate is quite comparable to that reported in
[15], a system which relies on an extensive effort of using the knowledge of
doctors to handcraft a detailed synonym table (we found no results reported
on WHOART, HARTS, or MedDRA so far). The 16% error rate we obtained
by generic machine learning techniques is within striking distance of the 12%
initial error rates of medically trained human coders who are well versed in
the classification scheme. Our own efforts to hand-classify the data show that
laymen without such training have error rates of 20% or higher, so the per-
ceptron can already be argued to have acquired half of the domain-specific
knowledge required for adverse event coding.

For practical purposes, the system needs to go beyond providing a hard
classification decision and indicate the level of confidence it has. In linear
classifiers, the most natural confidence measure would be the size of the
scalar product: the larger this number, the more confidence we should have
that our classification is correct. We found that by considering not only the
top value, but a linear combination of the top two values, we obtain a better
measure of overall confidence. By using this linear combination, we are in
effect penalizing decisions where the second best choice comes very close to
the first – adding subsequent terms for third, fourth, etc. gave no significant
improvement over this simple idea.

Using the confidence as a rejection threshold, we can tune our system
from rejecting nothing, the default mode, to rejecting as much as 80% of the



Linear Discriminant Text Classification 9

data. While this may seem extreme, such high rejection rates are actually
quite normal for synonym table-driven MedDRA autocoders. As Figure 1
shows, at 80% reject our error rate is 2.7%, one tenth of our error rate at 0
reject.
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Fig. 1. Error rate as a function of rejection rate

5 Conclusions

The overall conclusion emerging from our experiments is that the remarkable
power of simple perceptrons in this problem domain comes from a good match
between the linear model and the actual structure of the data. When the
dimension of the feature space is low and there are many datapoints, as in
speech or character recognition, hyperplanes are simply incapable of modeling
the actual complexity of the decision boundaries. In autocoding the dimension
of the feature space is extremely high, and different classes are contained in
largely disjoint subspaces, so that linear machines, with no bias, can already
define decision boundaries which are as intricate as required. In effect, our
perceptrons are nearest-neighbor classifiers, and the neighborhoods are well
separated by coordinate indexes.

The details of the training, one-step vs. cascade, flat vs. complex initial-
ization, Widrow-Hoff vs. Winnow, have only secondary effects. In the pre-
processing stage, the use of standard string-normalization steps such as spell
correction or undoing the abbreviations hardly had any impact. Whether
deeper parsing would improve performance remains to be seen, but the non-
standard syntax and style, not to speak of the multilingual nature, of adverse
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event reports create considerable difficulties for attacking the problem from
this direction.

The main linguistic technique we found useful was morphological analysis
(stemming), which yielded a small but consistent improvement of 4-5%. This
improvement is not nearly as good as that found in [16] for the case of short
queries and short documents, but is consistent with our observation that
stemming and other string-normalization steps are weak in the sense that
they leave most of the unseen data unclassified.

For TREC, [21] argued that “learning algorithms based on error minimiza-
tion and numerical optimization are computationally intensive and prone to
overfitting in a high dimensional feature space”. For autocoding, both the
computational feasibility of linear classification and its theoretical justifica-
tion depend on the sparseness assumption. Given that the weight vectors
have dimension as high as 1086, if all the zero components were replaced
by nonzero backoff numbers, computing a single scalar product could take
longer than the lifetime of the universe. Linear separation can be guaranteed
because any class will have distinctive n-grams, an assumption that would no
longer hold if a large number of counts (or backoff values) would be nonzero.
As for overfitting, the experimental results presented in Tables 2 and 3, with
no overlap between test and train data, demonstrate quite clearly that this
is not a valid concern here. While we have not run any experiments to specif-
ically demonstrate this, we hypothesize that the overfitting observed in [21]
is due to the fact that SVD actually makes the space less sparse than it is
required for good linear separation.

The most salient property of autocoding data is that a single class (topic)
rarely has more than a few hundred terms (n-grams) altogether, which ob-
viates the need for feature selection, a crucial step in conceptually closely
related TREC-based work [21,17]. However, the performance-limiting factor
in MR is rarely the large classes with plenty of training data: the bulk of the
error comes from those classes for which very little training was available.
In this respect, conclusions drawn from large sparse datasets are even more
relevant than conclusions based on a few well-represented categories.
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