
FORMAL PHONOLOGY
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Preface

This work is primarily addressed to phonologists interested in speech and

to speech engineers interested in phonology, two groups of people with

very different expectations about what constitutes a convincing, rigorous

presentation. The subject matter, the application of autosegmental theory

forMarkovmodeling, is technical, but not really esoteric – autosegmental

theory is at the core of contemporary phonology and Markov models are

the main tool of speech recognition. Therefore it is hoped that anyone

interested in at least one of these two fields will be able to follow the

presentation, and perhaps find something useful here.

As the title indicates, this is a rather formal work. There are formal

theorems stated throughout the text, and readers who do not have a good

background in calculus and linear algebra will have to take these on faith.

On the other hand, readers with a science or engineering background

will find the proofs (which are generally relegated to the Appendices at

the end of each chapter) reasonably simple, even enjoyable. The main

body of the text is basically self-contained. It should be easy to follow

for everyone familiar with the basics of set theory, logic, and automata

theory. All three topics are amply covered for example in Barbara Partee,

Alice ter Meulen, and Robert Wall’s Mathematical methods in linguis-

tics (Kluwer Academic, Dordrecht 1990). Except for the Appendices,

formalism has been kept to an absolute minimum, with arguments and

even theorems presented in an informal, discursive style. Concepts are

frequently introduced without a rigorous definition. In such cases their
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first significant occurrence is given in italics and when they receive a

formal definition they appear in boldface.

Phonologists are advised to read the main text sequentially, and per-

haps to ignore all the Appendices except for 2.5.3. In section 0.2 of the

Introduction a chapter by chapter summary of the results is provided to

aid the readers in devising a reading plan better suited to their interests.

No knowledge of Markov modeling is assumed, but readers completely

unfamiliar with the subject might want to consult L.R. Rabiner and B.H.

Juang’s “Introduction to Hidden Markov Models” in the January 1986

issue of IEEE ASSPMagazine, pp. 4-16, or the more extensive collection

of papers in chapter 6 of Alex Waibel and Kai-Fu Lee (eds) Readings in

speech recognition (Morgan Kaufmann, San Mateo CA 1990).

Speech engineers are advised to go from the Introduction directly

to the last chapter, and work their way backward to the extent they

wish to learn about the formal theory of autosegmental phonology that

provides the motivation for the structured Markov models presented in

chapter 5. There is an Index of Definitions, and many backward pointers

are provided in the text to make this reading plan feasible. No knowledge

of autosegmental phonology is assumed, but the reader interested in

the linguistic motivation and use of the ideas which are studied in the

thesis in a rather abstract fashion might want to consult John Goldsmith’s

Autosegmental and metrical phonology (Basil Blackwell, Oxford 1990).

Most of the material presented here is taken from the author’s 1991

Stanford dissertation with only stylistic changes. The most important

exceptions are sections 1.4.5, 2.5.4, and 5.3.6, which are intended to

bring the reader up to date by providing critical assessment of subsequent

work. Some parts of the material have been published or submitted for

publication elsewhere: in particular, section 4.4 is now available in a

self-contained version as “The generative power of feature geometry” in

the Annals of Mathematics and Artificial Intelligence 8 (1993) 37-46.



Introduction

0.1 The problem

The last twenty years have witnessed a profound split between the en-

gineering and the theoretical aspects of the study of human speech. In

speech engineering, and in particular in speech recognition, these years

brought the ascendancy of unstructured, statistical models over the struc-

tured, rule-based models. In the same period phonological theory came

to emphasize the abstract, structural properties of sound systems over the

directly observable properties of sounds, and created a highly algebraic

theory that almost entirely ignores the variability of actual speech. This

split is nowhere more clear than in the use of distinctive features: in

speech recognition virtually no model uses features, while in phonology

practically all research takes place in a feature-based framework. Is there

a way to make such a massively justified and widely used theoretical

device as features useful for speech engineers? Could phonology benefit

from such an undertaking? This is the subject matter of this book.

Speech engineers and computational linguists crave after efficiency;

they do not believe there has been an advance in the state of the art

until they have seen a better implementation, a faster algorithm. Yet

it is often the case that no amount of engineering ingenuity can push

a given approach beyond some local optimum – what is needed is an

entirely new approach, a conceptual breakthrough. The field of speech
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recognition is precisely in this state: for the last ten or fifteen years each

advance in Markov modeling yielded increasingly diminishing returns,

and the goal of creating systems that perform large vocabulary, speaker

independent, continuous speech recognition with the same efficiency as

humans is nowhere in sight. Where can a conceptual breakthrough come

from? The present work grew out of the conviction of the author that

for speech engineering the best source of new conceptual machinery

is phonology. The approach taken here is to formalize autosegmental

phonology in order to create a theoretically sound conceptual framework

for speech recognition with Markov models.

Markov models offer an extremely powerful learning mechanism

which is especially well suited for data with inherent random variability,

but one that is in no way specific to the nature of speech data. Triphone

models cannot exploit the large scale language-specific regularities of the

speech signal, such as vowel harmony or root-and-pattern paradigms, and

they do not scale up to pentaphones and even larger domains where these

regularities would become accessible. Furthermore, standard Markov

models create a structural split between phonetics/phonology (captured

in the individual triphones) and morphology (captured in the lexical

network connecting the triphones) while linguistic theory tells us that

phonology and morphology are part of the same (stratal) organization

and operate in an interleaved fashion that permits no split. Present-day

phonology/morphology, though conceptually better equipped to deal with

these issues, unfortunately does not provide us with a large body of well-

defined and highly optimized algorithms that can be readily put to use in a

speech recognition system– in fact it hardly provides any algorithms at all.

In its present state, phonology is not ready for optimization, but it is ready

for formalization: the key ideas, developed in the phonological literature

in an informal fashion , can be expressed in a more rigorous manner so

that the results can serve as the conceptual basis for algorithmization.

Pullum 1989 characterizes the informal style used in contemporary phonology as

follows: “Even the best friends of the nonlinear phonology that has driven the relatively

formal pre-1977-style segmental phonology into the wilderness (...) will admit that it isn’t
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0.2 The results

The most important overall result of this study is the creation of a model-

theoretic framework that bridges the gap between the widely disparate

practices of phonologists and speech engineers. Using this framework,

the informally stated ideas of autosegmental phonology (AP) can be

explicated, and the resulting model structures can serve as a blueprint in

the design of speech recognition systems.

The syntactic devices used in expressing phonological generaliza-

tions are investigated in chapters 1 and 2, and the semantic interpretation

of phonological representations is developed in chapters 3 and 4. The

resulting model structures are then used as the basis of defining structured

Markov models (sMMs) in chapter 5.

In the rest of this section the specific results are listed chapter by

chapter and a brief discussion of their significance is provided. As can be

seen from this list, the model-theoretic approach considerably improves

the conceptual clarity of the often ill-understood technical devices used in

phonological practice, and the designmethod stemming from it provides a

completely new way of comparing and empirically testing a wide variety

of specific proposals found in the phonological literature.

Main results of chapter 1

A. The notion “well-formed autosegmental representation" is rigor-

ously defined (1.1-1.3, 1.5). Significance: forms the basis of all

that follows.

B. A linear encoding of autosegmental representations (AR-s) is de-

veloped. Significance: standard two-level software, originally

trying to meet the conditions (...) for formal theories. True, a very significant outpouring of

new ideas and new diagrammatic ways of attempting to express them has sprung up over

the past decade; but it is quite clear that at the moment no one can say even in rough outline

what a phonological representation comprises, using some exactly specified theoretical

language. (...) Drifting this way and that in a sea of competing proposals for intuitively

evaluated graphic representation does not constitute formal linguistic research, not even if

interesting hunches about phonology are being tossed around in the process.”
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developed for the linear case, can now be used for AR-s.

C. Asymptotic formulas are established for the number ofwell-formed,

as well as for fully associated AR-s, and an exact relationship be-

tween the two series of numbers is established (1.6). Significance:

solves known open problem of enumerating AR-s, gives exact

measure of the information content of AR-s, provides the basis for

D below.

D. The non-existence of optimal linear encodings is demonstrated

(1.4). Significance: Results in B are shown to be near-optimal,

hopes for totally eliminating autosegmentalization squashed.

Main results of chapter 2

A. The notion “well-formed autosegmental rule" is rigorously defined

(2.1-2.2). Significance: completes the syntactic reconstruction of

AP, paves the way for generative capacity result E below.

B. Phonological theories of rule ordering reconstructed in uniform

framework of finite state control (2.1). Significance: Protects

result E below against objections based on rule ordering.

C. Classes of autosegmental automata defined (2.3, 2.5). Significance:

theory of automata and formal languages can be extended to ARs.

D. Encoding ofmulti-tiered representations investigated, basicmethod

of synchronization presented (2.4). Significance: forms the basis

of the reconstruction of synchronization in chapter 4.

E. Kleene theorem for bistrings established, finite-state-ness of AP

demonstrated (2.5). Significance: extends classical result of John-

son (1970) to autosegmental phonology, forms basis of F,G below.

F. Variety of extant theories of reduplication explained in light of

generative capacity (2.5). Significance: explains the reasons for

the failure of the existing theories.
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G. Obligatory Contour Principle explained as the limiting (simplest)

case of a range of possibilities available in finite-state systems

(2.5). Significance: puts debate on OCP in new light.

Main results of chapter 3

A. Klatt’s deterministic model of duration reinterpreted as a prob-

abilistic model predicting upshifted lognormal duration density

(3.1). Significance: provides theoretical justification for C below.

B. Haskins Labs’ deterministic model of duration reinterpreted as a

probabilistic model predicting lognormal duration density (3.2).

Significance: provides theoretical justification for C below and

links the phasepoint/lag theory of synchronization presented in 4.2

to well-established phonetic theory.

C. Instead of the widely used normal model, a lognormal model of

duration is proposed (3.3). Statistical proof of superiority of lognor-

mal over normal obtained (3.3). Significance: lognormal provides

a new, theoretically justified way of explicitly controlling duration

density in semi-markov models.

D. The duration densities of themost important topologies of tied-state

Markov models are found to converge to Dirac-delta (3.4.1-3.4.2).

Significance: increased frame rate is shown to be disadvantageous

for models without input probabilities.

E. Models with initial probabilities are shown to be trainable to fit any

prescribed duration density distribution (3.4.3). Significance: re-

places the complex probabilities used by Cox with real numbers in

the [0,1] range, provides theoretical justification for input models.

F. Model structures containing random variables are introduced (3.5).

Significance: the use of random variables is the key technical

innovation needed for describing the meaning of ARs in a model-

theoretic framework.
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Main results of chapter 4

A. A general theory of features, based in natural classes, is developed

(4.1). Significance: provides unified treatment of SPE, Pān. ini, and

feature geometry, paves the way for E below.

B. The phasepoint/lag formalism of synchronization is introduced

(4.2). Significance: provides the semantics for association lines.

C. Interval systems and interval structures defined (4.3). Significance:

completes model-theoretic reconstruction of AP, forms the basis of

sMMs presented in chapter 5.

D. Role of non-convexity and non-monotonicity in phonological the-

ory investigated (4.3). Significance: underlying causes of nonmo-

notonicity exposed.

E. Weakly boolean structures (Ehrenfeucht) are used to justify fea-

ture geometry (4.4). Significance: puts feature geometry in new

light, makes relationship between contemporary and earlier theo-

ries clear.

Main results of chapter 5

A. Segmental interpretation is presented (5.1). Significance: provides

the theoretical underpinnings for standard Markov models.

B. Cascade construction of sMMs introduced (5.2). Significance:

captures the lack of synchrony among the features.

C. The possibility of training feature detectors is demonstrated (5.2).

Significance: model need not rely on human expertise.

D. Recursive construction of sMMsaccording to a given feature geom-

etry explained (5.3). Significance: enables linguist to choose be-

tween competing geometries on the basis of speech recognition

performance.
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E. Evaluation criteria for sMMs are presented (5.4). Significance:

sMMs are a new class of Markov models, expected to be very

successful in speech recognition. They are theoretically justified

by AP, but unproven in practice.

0.3 The method

This work belongs in a broad scientific tradition, starting perhaps with

Euclid, and probably best exemplified in modern linguistics by the early

work of Chomsky, of using formal tools as a means of extending our

knowledge about an empirical domain. In the first four chapters, the

key ideas of autosegmental phonology are explicated , and in chapter 5

the resulting formal system is used for the construction of structured

Markov models in order to link the actual practice of phonologists to the

actual practice of speech engineers. No ink will be wasted on criticizing

the lack of mathematical rigor in phonology, or the lack of theoretical

orientation in speech engineering, as the author believes that more can be

gained from trying to integrate the positive contributions of both fields

than from trying to get people do things ‘properly’.

The task of explication consists in transforming a given more or less inexact concept

into an exact one or, rather, replacing the first by the second. We call the given concept

(or the term used for it) the explicandum, and the exact concept proposed to take the place

of the first (or the term proposed for it) the explicatum. The explicandum may belong to

everyday language or to a previous stage in the development of scientific language. The

explicatum must be given by explicit rules for its use, for example, by a definition which

incorporates it into a well-constructed system of scientific either logicomathematical or

empirical concepts. (...)

A problem of explication is characteristically different from ordinary scientific (logical or

empirical) problems, where both the datum and the solution are, under favorable conditions,

formulated in exact terms (for example. ‘What is the product of 3 and 5?’, ‘What happens

when an electric current goes through water?’). In a problem of explication the datum, viz.,

the explicandum, is not given in exact terms; if it were, no explication would be necessary.

Since the datum is inexact, the problem itself is not stated in exact terms; and yet we are

asked to give an exact solution. This is one of the puzzling peculiarities of explication.

It follows that, if a solution for a problem of explication is proposed, we cannot decide

in an exact way whether it is right or wrong. Strictly speaking, the question whether the

solution is right or wrong makes no good sense because there is no clear-cut answer. The

question should rather be whether the proposed solution is satisfactory, whether it is more

satisfactory than another one, and the like. (Carnap 1950)
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This emphasis on the positive contributions sets the present work

apart from earlier attempts at developing a formal system of phonology

and morphology. Categorial phonology (Wheeler 1981) and morphol-

ogy (Hoeksema 1985), finite-state phonology and morphology (Kaplan

and Kay ms, Koskenniemi 1983), or the more recent work on autoseg-

mental phonology at Edinburgh (Bird and Klein 1990, Scobbie 1991)

are certainly rigorous enough to satisfy even the most demanding taste.

However, these systems do not offer a formal reconstruction of main-

stream generative phonology, they offer formal alternatives. Because

they explicitly reject one or more of the fundamental assumptions under-

lying the sequential mode of rule application used in the vast majority of

generative phonological analyses, they do not make it possible to restate

the linguists’ work in a formal setting – in order to enjoy the benefits of

the formal rigor offered by these systems one must reanalyze the data.

The orientation of the present work is exactly the opposite: rather

than championing the merits of any particular assumption, the aim is

to create a meta-level formalism which is abstract enough to carry the

often contradictory versions of AP as special cases. The definitions

of well-formedness (section 1.3), rule ordering (section 2.1), rule types

(section 2.2), HMM topologies (section 3.2), and feature geometries

(section 4.1) are all made in this spirit. There are, to be sure, cases where

the author cannot hide his sympathies completely, but the aim is to keep

these to a minimum so that most autosegmental analyses can be faithfully

replicated. It follows from this strategy that devices unique to a particular

version of AP will not be analyzed in great detail; tools of the theory such

as a reduplicativeCVC template are not taken to be primitives but are built

from the primitives supplied by the abstract framework. The advantage

of this abstract outlook is that the work is not tied to any particular, and

thus soon to be outdated, version of phonological theory.

Since the the reader will not encounter sMMs until the last chapter,

in a sense the bulk of this formal work is preparatory in nature. Given the

rather wide-spread sentiment in speech engineering that linguistic models
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do not work and that it is altogether better to replace human intuitions

about speech by automatically extracted knowledge (see e.g. Makhoul

and Schwartz 1986), the question will no doubt be asked: why bother

with all this theory? From the perspective of the speech engineer, the

complexity of our preparations, and indeed the complexity of present-day

phonological theory, can only be justified if it gives rise to more success-

ful applications. But from the perspective of the phonologist the first

four chapters are not preparatory at all; formalizing phonological theory

is a worthwhile undertaking that can advance our conceptual understand-

ing of language quite independently of its utility for speech recognition,

speech synthesis, voice compression, speaker identification, or any other

practical task confronting the speech engineer. The rest of this section

discusses the logical structure of this undertaking, which is largely inde-

pendent of the organization imposed by the specific results summarized

in section 0.2 above. Readers more interested in the results than in broad

metatheoretical considerations can skip this discussion without great loss.

What does phonological theory do? How does it do it? Why does it

do it that particular way? These are the questions a detailed formalization

should seek to answer. As for the first of these questions, most practicing

phonologists view their theory as an instrument that will, much like the

physician’s X-ray machine, make accessible a well-defined part of the

internal structure in humans that enables them to pursue a certain kind

of activity, namely communication by means of conventional sounds or

handsigns. And as an ordinary X-ray machine will bring into sharp relief

the bones, and tell us little about the muscles, nerves, and other soft

tissue equally important for the task of locomotion, phonological theory

is focussed on a single component of communication, namely the mental

representations associated with the sound/handsign aspect of the message

communicated. Thus the first chapter is devoted to an explication of the

mental representations assumed in contemporary phonological theory.

The second question, how phonology makes mental representations

of the sound (or handsign) aspect of language accessible, is perhaps best
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understood from the perspective of writing and transcription systems.

The move from mora-based or syllable-based to alphabetic writing sys-

tems introduces an abstract kind of unit that cannot be pronounced in

isolation, namely (oral) stop consonants. The move from alphabetic

to feature-based transcription (intimately linked with the early history

of phonetics/phonology, see e.g. Jespersen’s 1889 critique history of

phonetics/phonology, see e.g. Jespersen’s 1889 critique of Sweet 1880)

results in completely abstract, unpronounceable units which embody the

mental unity of articulatory and acoustic specifications (Jakobson, Fant

and Halle 1952, Halle 1983). These units, and larger structures composed

from them, can be made accessible via the study of the grammatical rules

and constraints that are stated in their terms. Thus the second chapter

is devoted to an explication of the rule and constraint systems used in

contemporary phonological theory.

The third question, why phonology concentrates on the grammatical

manifestation of mental units at the expense of their physical manifes-

tations, has only a partial answer: the physical phenomena associated

with speech are extremely complex, and their experimental investigation

poses serious problems. As long as phonological derivations cannot be

directly verified (because the nerve impulse patterns corresponding to the

activation of mental units in the production and perception of spoken or

signed language cannot be followed through the central nervous system),

phonologists will have to rely on indirect evidence of some sort. But the

difficulties in obtaining experimental evidence can only partially explain

why contemporary phonology relies almost exclusively on grammatical

evidence and why, in the rare cases when physical evidence is admitted,

the articulatory domain is so strongly preferred.

The first major exposition of standard generative phonology, Chom-

sky and Halle 1968, devotes a full chapter to listing “the individual fea-

tures that together represent the phonetic capabilities of man” but grounds

the features only on articulatory correlates, mentioning “the acoustical

and perceptual correlates of a feature only occasionally, not because we
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regard these aspects as either less interesting or less important, but rather

because such discussions would make this section, which is itself a di-

gression from the main theme of our book, much too long” (p 299). The

most influential textbook of standard generative phonology, Kenstowicz

and Kisseberth 1979, defines acoustic phonetics (p 7) but discusses only

articulatory theory under the heading “linguistic phonetics” (pp 7-23).

Expositions of the modern generative theory of features, such as Sagey

1986, again discuss articulatory, but not acoustic, evidence. Chapters 3

and 4 of this book are based on the view that the historical reasons for

giving preference to grammatical over articulatory over acoustic data are

no longer valid.

While it was certainly true a hundred years or even a few decades ago

that careful observation of speech production yielded more reliable data

than the “trained ear”, and that elicitation or introspection yielded even

more reliable, quantized data about grammaticality judgments, neither of

these points remains valid today. The recording and precise tracking of

the position of the articulators during speech production is a major under-

taking requiring specialized equipment of the sort described in Fujimura,

Kiritani and Ishida 1973, while the recording and analysis of digitized

speech can be performed on equipment no more complex than a personal

computer. Furthermore, the inherently continuous and variable nature

of speech data is brought under control by quantization and other mod-

ern statistical techniques, while the inherently quantized and invariable

nature of grammaticality judgments becomes less and less pronounced

as attention is shifted from the ideal speaker-hearer of the ideally ho-

mogeneous speech community to actual speakers in actual communities.

Therefore, rather than excluding acoustic evidence from the domain of

phonology, we should endeavor to create a “phonetic interpretation” that

will map discrete phonological representations to physical events that

unfold in real time.

The existing theories of phonetic interpretation, such as Keating

1988, Bird and Klein 1990, have two main shortcomings. First, they link
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phonological features to articulatory specifications and thus presume a

thorough understanding of the relationship between the positions of the

articulators and the acoustic signal. Second, they only describe the timing

of (the beginning and end of) each gesture relative to (the beginning and

end of) other gestures, but give no information about the absolute value

of the time lags or the duration of the gestures. The theory developed in

this book overcomes both of these shortcomings: it is applicable to all

kinds of dynamically changing parameter vectors (be they articulatory,

e.g. derived from X-ray microbeam records, or acoustic, e.g. derived

by the kinds of digital signal processing techniques discussed in Rabiner

and Schaefer 1979) and it is real time.

As a result of the work undertaken in the first four chapters, au-

tosegmental phonology, and its phonetic interpretation, become a formal,

readily algorithmizable theory of speech. However, it still suffers from

a problem not much appreciated by linguists but taken very seriously by

speech engineers: it is totally dependent on human expertise. In addition

to the underlying representations and the rules, the grammarian will also

have to specify the parameters of the interpretation. Since the number of

such parameters is quite large, an automatic method of extracting them is

clearly desirable. Chapter 5 is devoted to a new class of hidden Markov

models which make it possible to perform parameter extraction (training)

of phonologically motivated models using existing technology.
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Chapter 1

Autosegmental

representations

The aim of this chapter is to describe in a rigorous manner the basic data

structures of phonological theory, called autosegmental representations.

Section 1.1 discusses the atomic elements of the representations, distinc-

tive features, and sections 1.2 and 1.3 introduce the tiers and association

lines that are used to collect the atoms into more complex representations.

These sections provide a series of definitions to replace the phonologist’s

intuitive judgment of whether a tentative autosegmental representation is

well-formed or not by an algorithmic procedure that can be used to check

well-formedness mechanically.

In addition to providing the conceptual basis for implementation, the

formal treatment opens the way to investigating autosegmental represen-

tations in an abstract manner. The first results of such an investigation

are presented in section 1.4, where it is shown that autosegmental repre-

sentations can be represented as linear strings in a near-optimal manner.

This linear encoding will play a crucial role both in the discussion of hi-

erarchical structure in section 1.5 and in the description of rules, which

is the subject matter of chapter 2.
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The formal definitions presented in the first two chapters can be

thought of as a proposal concerning the rules and representations per-

mitted by Universal Grammar. The emphasis is on presenting current

phonological practice in a formal setting, and little effort has been made

to incorporate substantive universals. The inventory of rules and rep-

resentations developed here is sufficiently rich to serve as a basis for

the discussion of the complex (and sometimes contradictory) models

employed in contemporary phonology/morphology, but in spite of this

richness, it will provide a surprisingly strict upper bound on the complex-

ity of Universal Phonology.

1.1 Subsegmental structure

A key point, common to SPE (Chomsky and Halle 1968) and autoseg-

mental phonology (Goldsmith 1990), is that segments can be further

decomposed into atomic units called distinctive features or just features.

These features can be thought of as classificatory devices that group the

phonemes into classes. Under this instrumentalist view features are ab-

stract properties of phonemes much the same way as [square-free] or

[odd] are abstract properties of integers, and their raison d’être is to be

found in the usefulness of the classification they induce rather than in

direct articulatory and/or acoustic correlates, be these absolute (as for

[voiced]) or relative (as for [strident]). From this perspective, a feature

will refer to some global property of segments and it makes little or no

sense to attribute temporal extent to it.

Nevertheless, it is often possible and indeed desirable to think of fea-

tures such as [labial] as constituent parts of segments. Under this realist

view, features are concrete parts of the phonemes in much the same way

as prime factors are the constituent parts of natural numbers. In the artic-

ulatory domain, the realist view implies that the gesture corresponding to

For our purposes, the distinctiveness of the atomic units is of secondary importance.

Therefore, I will simply use the term feature and talk of distinctive features only where the

idea of distinctiveness is especially relevant.
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a phoneme is basically the sum of the articulatory gestures corresponding

to its constituent features (Halle 1983), and in the acoustic domain it im-

plies that there exist cues corresponding to any feature such as [labial] that

will be invariant across phonemes such as or that share the feature

in question (Stevens and Blumstein 1981). From this perspective, the

temporal organization of features within and across segments becomes a

relevant issue, and linear (SPE) and non-linear (autosegmental) phonol-

ogy differ primarily in the way features are located in time. In the linear

theory, all features are coterminous with the segment they characterize,

while in the non-linear theory they can be restricted to various stretches of

the segments. The synchronization mechanisms that create and maintain

these restrictions are the subject of chapter 4 – here it will be sufficient

to give a simple but typical example.

In tone languages such as Mende (Leben 1978), where short vowels

can carry contour tones, linear phonology assumed dynamic tone features

such as [falling tone]. Autosegmental phonology uses only static features

such as [high tone] and [low tone], (standardly abbreviated H and L) and

represents the falling tone by

(1)

V

H L

Here V stands for the vowel bearing the falling tone, and H and L are

features on a tonal tierwhich are associated to the vowel which is located

on a different tier. Informally speaking, the vowel has the property H

followed by the property L, i.e. it starts out as bearing high tone but

(gradually) turns into bearing low tone. As a first step towards making

this idea more rigorous, the notions of tier and association will be defined

next in sections 1.2 and 1.3, respectively.



6 Formal Phonology

1.2 Tiers

In autosegmental phonology, representations are displayed as three-

dimensional structures which have a characteristic left-to-right axis cor-

responding, conceptually, to the flow of time. Roughly speaking, features

on a line parallel to this axis constitute a tier, while features on a plane

perpendicular to the axis are arranged in a tree structure called the geom-

etry of the features. Here we will select a single ‘plane’ defined by two

adjacent tiers, and defer the discussion of ‘geometry’ until section 1.5.

If the features and association lines of autosegmental phonology are

conceptualized as (labeled) vertices and (undirected, unlabeled) edges,

two-tiered representations will correspond to partially labeled bipartite

graphs where each partition (tier) is endowed with a linear ordering

and the edges satisfy the so-called No Crossing Constraint (Goldsmith

1976) or NCC for short: if and are edges, and holds,

then must also hold.

Such graphs can be trivially embedded in the (euclidean) plane by

positioning the vertices in one partition (tier) on lattice points of the line

, and the vertices in the other tier on lattice points on the line .

The orderings correspond to the natural left-to-right ordering of these

lines, and the edges can be depicted as straight line segments between

the vertices. These line segments will never cross at an internal point –

hence the name No Crossing Constraint.

In order to describe the concept of a tier more fully, we have to

provide some further detail about the node labels. Informally, a tier

is a place where we can store strings of node labels (over some finite

alphabet called the tier alphabet T) or sequences of such strings (called

themelodies belonging to the words of a given phrase) in such a manner

that adjacent elements within one melody can be accessed one after the

other and adjacent melodies can also be accessed one after the other.

There are no a priori limits on the length or the number of melodies, so

we will use the oldest (and simplest) abstract model of infinite storage,

Turing machine tapes, as our mathematical model of tiers.
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Turing machine tapes are composed of elementary cells each of

which initially contains a distinguished blank symbol that we will denote

by G. This symbol can be replaced by some other symbol, which in turn

can be replaced by G or yet another symbol and so on. At any given time,

a cell holds exactly one of a finite set of symbols and, unless some writing

procedure is performed, will hold this symbol forever. To make a tape,

the cells are doubly linked in a two-way infinite list – for convenience,

we will index the cells by integers.

Definition 1. A tier is an ordered pair (Z,H) where Z is the set of integers

equipped with the standard identity and ordering relations ‘=’ and ‘ ’

and H is the name of the tier.

The definition puts no restriction on the syntax of tier names, but I

will usually use the letters H,I,J,... rather than contentful expressions like

segmental, tonal, backness, timing, voicing etc. Clearly, two tiers bearing

identical names can only be distinguished by inspecting their contents.

Let us define a tier containing a string starting at position by

a mapping that maps on , on ,..., on and everything

else on G. Abstracting away from the starting position, we get

Definition 2. A tier H containing a melody over the alphabet

is defined as the class of mappings that take into for

and to G if is outside this range. Unless noted otherwise, this class will

be denoted by the uppercase version of the name of the string and will be

represented by the mapping .

In order to create a single string out of the melodies occupying different

portions of the same tier, it will be expedient to adjoin the symbol G to

every tier alphabet – the enlarged tier alphabet will be denoted by T . By

defining the relation of (technical) equivalence on strings over T as the

minimal equivalence in which G and GG are equivalent, we can capture

the idea that the melodies of adjacent morphemes are adjacent while

retaining the distinction between tautomorphemic and heteromorphemic
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tones. Given two melodies such as HL and HLH, HLGHLH will be

technically equivalent to HLGGHLH, HLGGGHLH, and so on, meaning

these are heteromorphemic melodies. However, it will not be equivalent

to the tautomorphemic HLHLH, because G is not the empty string but an

actual symbol in the (enlarged) alphabet.

In terms of Turing machine tapes, these definitions mean that we

can think of a tier containing some melodies in the same way that we

think about a tape on which the strings are separated from one another

by some blanks. Technical equivalence was introduced above to assure

that the number of blanks between adjacent melodies is immaterial . In

phonological practice strings are often separated by explicit boundary

markers, and in some cases the number of such boundary symbols, for

example, # vs. ##, is important. For our purposes, such boundary symbols

are contentful elements to be added to the tier alphabet independent of G

– we will return to this matter in 1.5 below.

1.3 Association

Let us start with a tier H containing the melody h = and a tier S

containing the melody s = . It does not matter whether the two

tier alphabets are disjoint – we might suppose without loss of generality

that the only symbol in their intersection is G. An association line is

defined simply as a pair , this will be depicted by a line connecting

in the string s to in the string h. As mentioned earlier, these pairs

are unordered – in other words, we do not allow directed association

lines. Moreover, neither nor can be G – in other words, we do

not allow ‘dangling’ association lines . An association relation will be

The approach taken here should be contrasted to that of Bird and Klein 1989, which

uses explicit boundary markers (‘point events’) to encode the beginning and end of items

(see Kornai 1989 and 2.5.4 below).

Using phonological terminology we might say that equivalence ensures that the blank

squares of the tape satisfy the OCP, which will be discussed in 2.5.3.

This restriction limits the expressive power of the formalism; here the idea that two

nodes share the value of a feature cannot be expressed without explicit reference to the value
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defined as any set of association lines; as the melodies are finite, the

relations will also have to be finite. A bistring is defined as an ordered

triple , where and are strings not containing G, and is an

association relation over and . As we shall see in chapter 2, bistrings

play the same role in formal autosegmental theory as strings in formal

language theory.

An association relation A is well-formed iff it contains no pairs

such that but , i.e. iff it satisfies the No Crossing

Constraint.

(2A) (2B)

x y y x

a b a b

Excluding the crossing association pattern depicted in (2A) has the bene-

ficial effect that the intended temporal interpretation, which takes associ-

ation lines to mean temporal overlap (see Sagey 1988), can be coherently

stated (see Bird and Klein 1990). By excluding further association pat-

terns such as the configuration depicted in (3), the representations can be

brought into even closer alignment with phonological intuition.

(3) x

a b a

Intuitively, configurations like (3) can correspond to a single discontinu-

ous that is interrupted by the or to a sequence of three uninterrupted

(convex) events , , and . It is not always clear which interpretation is

of the feature that is being shared. The attribute-value formalism developed in Scobbie

1991 is capable of expressing the idea of higher nodes sharing a value for a lower one –

whether this additional expressive power is needed in phonology remains to be seen.
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the appropriate one, and at certain stages of the derivation, especially near

the end, we might wish to exclude such configurations. A well-formed

representation not containing this configuration will be called proper.

Let us define the span of an element x as with respect to some association

relation A as those elements y for which (x,y) is in A. In proper repre-

sentations, the span of an element will always be a single substring of

the melody on the other tier (a weaker but phonologically more relevant

notion of proper-ness will be introduced via projections shortly).

Finally, those bistrings in which every element is in the domain or

range of the association relation will be called fully associated. Fully

associated well-formed bistrings are obviously proper, but the converse

is not true: the bistring in (4) is well-formed and proper but not fully

associated.

(4)

x

a b

Elements that are unassociated, such as in (3) or in (4) are often called

floating. In the final stage of the derivation, SPE phonology required fully

specified feature structures. Similarly, most varieties of autosegmental

phonology require fully associated representations at least in the last

step of the derivation, and often earlier. But floating elements and not

proper representations will often be indispensable in earlier stages of

the derivation, and even ill-formed representations are legitimate data

structures in those versions of autosegmental theory where the NCC is

viewed only as a tendency as in Bagemihl 1989.

Our definition of bistrings (and in general -strings, see 1.5 below)

is largely comparable to the graph-theoretically inspired definition given

in Coleman and Local 1991, which takes -tiered autosegmental repre-

sentations to be -partite graphs with nodes corresponding to features
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and edges corresponding to association lines. But there is an important

difference in that our definition treats melodies as given, so that the struc-

tures in (2A) and (2B) above are not equivalent: (2A) is ill-formed and

(2B) is well-formed. Another problem with abandoning the melodies as

fundamental elements of autosegmental representations is that in purely

graph-theoretic terms temporal sequencing would make no sense. But in

the language-theoretic formalization presented here temporal sequencing

and reversal are natural developments.

Definition 3. Given two bistrings and on tiers N and

M, their concatenation is constructed via their respective

tier-alphabet functions and as follows.

for , for G otherwise.

for , for G

otherwise. Finally, the concatenation of and , denoted , is defined

as

Notice that the concatenation of two connected bistrings will not be

connected (as a bipartite graph). This is remedied by the following

Definition 4. Given two bistrings as above, their t-catenation (resp.

b-catenation) is defined as (resp. ), where

and . Using

phonological terminology, in t-catenation the last element of the top tier

of the first bistring is spread on the first element of the bottom tier of the

second bistring, and in b-catenation the last element of the bottom tier of

the first string is spread on the first element of the top tier of the second

bistring.

The only autosegmental operation that is not the straightforward

generalization of some well-known string operation is that of alignment.

Given two bistrings and , their alignment

is defined to be , where is the relation-composition

of and ; in other words, the pair will be in iff there is some

such that is in and is in . Now we are in a position to

define projections: these involve some subset of the tier alphabet .
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A projector of a string with respect to a set is

the bistring , where is in iff and is in

. The normal bistring corresponding to a string is simply its

projector with respect to the full alphabet: . A projection

of a string with respect to some subalphabet can now be defined as the

alignment of the corresponding normal bistring with the projector.

The alignment of well-formed bistrings-strings is not necessarily

well-formed, as the following example shows. Let

and suppose that the following associations hold: and in ,

and in . By definition, should contain

and and will thus violate the NCC. (For a discussion of the possible

approaches to this and similar cases of well-formedness violations see

2.2.) I will say that a bistring is proper with respect to a subset

of the tier-alphabet (underlying the string ), iff

is proper. As we shall see in chapter 4.3, it is this relativized notion of

proper-ness (relativized with respect to the set of ‘P-bearing units’, see

Clements and Ford 1979) that plays a role in phonology.

1.4 Linearization

Using the primitive operations of concatenation, association i.e. (adding

a pair to the association relation), and delinking (i.e. subtracting a pair

from the association relation), a large and important part of autosegmental

phonology, including all the early work on tone and harmony, can be

faithfully reconstructed in the framework developed so far. But before

we can turn to this task in chapter 2, we will need one more formal tool,

namely a linear encoding for autosegmental representations.

In a sense we have solved the problem already. Since the key au-

tosegmental notions tier and association are now defined in terms of

set-theoretic and arithmetic notions, we can utilize the well-understood

The only part that cannot be reconstructed involves the simultaneous use of more than

two tiers – this will be discussed in 1.5.
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(and completely linear) notational systems of these disciplines to provide

a linear encoding for autosegmental representations, although as we shall

see in 1.4.1, there are some serious problems with this direct approach.

In the light of these problems, 1.4.2 presents a set of criteria for eval-

uating linear encodings, and shows that no encoding system can meet

these criteria fully. Thus we are forced to develop less than fully optimal

encodings: the scanning code is presented in 1.4.3, and the triple code,

due to Karttunen (pc), is described in 1.4.4. Some criticisms of these

encodings and alternative proposals by Wiebe 1992 and Bird and Ellison

1994 are discussed in 1.4.5.

1.4.1 The mathematical code

It is easy to express autosegmental representations in a linear notation

by using the standard mathematical notations for the ordered triples,

relations, and functions that played a role in the formal definition of

bistrings. But there are problems with this direct approach.

First, the resulting notation, though clearly linear, would be exceed-

ingly cumbersome. While this is not a serious problem from a high-level

theoretical perspective, there can be little doubt that the rapid spread of

autosegmental theory was due largely to the fact that it provided a per-

spicuous notation for configurations such as floating tones or contours

which are frequently encountered in linguistic practice and for which

such notation was lacking. It cannot be realistically hoped that a for-

malism that uses the string

to denote the falling

tone vowel that linguists depict as (1) above would be widely adopted,

no matter how unambiguous or well-defined.

Second, the nature of the subject matter makes it highly unlikely

that the mathematics that comes with these notations will be in any way

relevant. In particular, the use of arithmetic in phonology is viewed with

widespread (and in my opinion, totally justified) suspicion. The proper

linear notation should be one that evokes a mathematical apparatus that
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was created with linguistic problems in mind, such as categorial grammar

or formal language theory.

Third, the syntax of the standard mathematical notation is essentially

context-free (requires matching parentheses of arbitrary depth), while

there is reason to believe that phonology does not require more than the

expressive power of regular languages (Johnson 1970). Since the gener-

ative power of autosegmental theory has not been investigated before, it

is important not to pre-judge the issue by choosing a notation that makes

matters more complex than they need be. As we shall see shortly, it is

indeed possible to linearize autosegmental representations in such a way

that the syntax of the resulting expressions is finite state.

These considerations suggest that we should abandon the direct ap-

proach and encode autosegmental representations by linear strings in a

different manner. The problem is to find a coding function such that

for any autosegmental representation , is a string over some finite

code alphabet . It is clear that the coding function provided by the

direct approach is far from being ideal, but it is less clear what an ideal

coding function would look like – we turn to this question next.

1.4.2 The optimal code

The set of coding functions that we could use is extremely wide. For

instance, we could enumerate all autosegmental representations (since

there are only countably many) in some arbitrary order, and use their

number, e.g. in hexadecimal notation, as their linear code. The objections

one could raise against this coding scheme are not exactly the same as the

ones listed in 1.4.1 above, but it is clear that this coding scheme is no less

objectionable than the previous one. Rather than arguing, on a case by

case basis, that certain encoding functions are bad, let us consider some

criteria for good coding schemes.

The subscript denotes the cardinality of the code alphabet. This is the only thing that

really matters – the precise nature of the letters in the alphabet is immaterial.
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Computability Clearly, the only interesting coding schemes are those

that can be used in practice: given an autosegmental representation its

code must be effectively computable in a finite (preferably small)

number of steps. The absolute minimum we should demand is that C

must be recursive (computable by a Turing machine), but the weaker

the model of computation we use the better. Ideally, the code should

be computable by the weakest kind of computing machinery available,

namely finite automata.

Invertibility Coding schemes that assign the same code to different

representations are of little practical interest; the absolute minimum we

should demand is that C must be invertible, but the easier to invert the

code the better. Ideally, every possible string in should be subject

to decoding – if not, we will need some syntactic checking of the code

words.

Iconicity Many coding schemes are designed tominimize the similarity

between the input and the output; for cryptographic purposes the ideal

code would be the maximally opaque one. Here the ideal code should

be as close to the original as possible. In particular, changing the input

minimally should result in a minimal change in the output. For maximal

iconicity, the changes should be localized, so that making a change at

some point should leave the code of remote parts intact.

Compositionality The final requirement, closely linked to the idea of

iconicity, is that the ideal coding scheme must be compatible with the

basic operation of concatenation: .

In other words, if is composed from and , the code of should be

composed from the code of and the code of . Aweaker, but perhaps

more realistic, requirement is to permit the introduction of some fixed

Perhaps the most common encoding scheme that does not meet this requirement is the

one used in computers to encode numbers: changing a single digit in the input will affect

not only the bits corresponding to the digit in question but also the parity bit.
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‘syncategorematic’ element in the code of the composite representation:

, where is independent of the

choice of .

Unfortunately, it is impossible to construct a coding function that

meets all the above requirements maximally. Let us suppose indirectly

that is such a function. Restricting to those autosegmental repre-

sentations that contain the same number of nodes, say , on both tiers

will yield a set of code words over some . Since the coding is

iconic, autosegmental representations of the same length must yield

code words of the same length . Furthermore, compositionality

demands that concatenating autosegmental representations of length

times should yield a code word of length (homogeneity)

and that concatenating autosegmental representations of length and

should yield a code word of length

(linearity).

Since iconicity demands that the shorter the representation the shorter

the code, must be a monotonic, homogeneous, and linear function

of . The only such functions are where is a non-negative

constant. Since code length must be an integer, we are interested only

in those cases where is a positive integer at least for some (ideally,

for all) -s. Therefore, we must suppose , with natural

numbers. In the Appendix (section 1.6) I will show that , the number

of autosegmental representations over points, is asymptotically

(5)

Since the code is invertible, . Furthermore, since the number

of code words of length is , we have

(6)

Combining these we get

(7)
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But this would mean that

(8)

must hold for some positive integers , which is impossible since if

we raise both sides to the -th power the left-hand side is an integer and

the right-hand side is not.

In the Appendix, I will show that the problem cannot be solved

by restricting our attention to proper or fully associated representations.

“The optimal code” promised in the title above simply does not exist.

1.4.3 The scanning code

In the light of the non-existence result presented above we must re-

evaluate the desiderata listed above. Shall we give up computabil-

ity? Since the proof does not use the assumption of computability,

it is clear that we would gain nothing by such a move. Shall we

give up, or at least weaken, compositionality? A closer inspection

of the proof reveals that we would gain nothing by doing so. If we

permitted some syncategorematic substring of length , instead of

the original homogeneity assumption , we would have

and instead of the original linearity assump-

tion, we would have . Asymptotically

this would still yield meaning that instead of we

would have a larger (but still rational) constant and the proof would

go through as before.

Thus we are forced to weaken one or both of the remaining assump-

tions: wemust be content with a less than fully invertible code and/orwith

a less than fully iconic one. The code to be presented here is near-optimal

in the sense that it violates invertibility, iconicity, and compositionality

only minimally. Instead of being fully invertible (one-to-one onto) it is

In this context Carnap’s notions of explication quoted in fn. 2 of section 0.3 above are

very relevant. An ‘optimal’ code is not one that uses the least number of bits given some
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invertible if correct (one-to-one into). In other words, only a subset

of the possibly codewords in will correspond to some autosegmental

representation, and everything outside will be treated as syntactically

ill-formed. The violation is minimal because the well-formedness of a

putative codeword can be trivially tested (by finite automata). Instead of

being fully iconic, it is iconic modulo finite transduction. And instead

of being fully compositional, it is compositional for all those represen-

tations that are associated at both ends. We will informally discuss the

extent of these limitations as we go along, and analyze their causes more

rigorously in chapter 2.5.

In order to present the code in a systematic fashion, let us start with

the simplest possible autosegmental representations given in (9):

(9A) (9B)

x

x

x

x

We will encode (9A) by the number 1, and (9B) by the number 0. In

addition to these, we will need two other symbols, and , corresponding

to a top move or a bottommove of a basic biautomatonwhich is informally

defined as follows. The biautomaton has two tapes (corresponding to the

two tiers) and a reading head which “spans” both tiers. The head, when

positioned over square x of the upper tape and square y of the lower tape,

can read the following information:

(i) Is there a symbol in cell x, and, if so, what symbol?

(ii) Is there a symbol in cell y, and, if so, what symbol?

assumptions about the probability distribution of autosegmental representations, but one

that meets the (admittedly inexact) criteria of success listed in 1.4.2 above.
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(iii) Is there an association line between the symbol in x and the symbol

in y?

(iv) Are there further association lines from x to some cell after y?

(v) Are there further association lines from y to some cell after x?

In chapter 2, we will endow such a machine with finite-state control

and the ability to advance nondeterministically one or both tapes – the

resulting machine will be a two-tape no-turn Turing-machine with the

additional capacity to read the association lines. But here we will use the

machine only as a coder to make the definition of the linear code simple.

The idea is that in scanning a well-formed autosegmental representation

we can define uniquely which tape(s) should move.

(10) If there are no further symbols on either tape, the coder

stops. If there are no further symbols on one tape, the other

tape is advanced by one. If there are no further association

lines from x and y, both tapes move one step to the right,

if there are further association lines from x, only the bottom

tape moves, and if there are further association lines from y,

only the top tape moves, provided the move does not result

in scanning G. (The case when there are further lines both

from x and y cannot arise, since such lines would cross.)

The code is simply a record of the moves and the association lines

found during these moves. For example, in the representations given in

(11), the corresponding codes are as in (12):
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(11A) (11B) (11C) (11D) (11E) (11F)

x x x x x x x x x x x x

| | | | / \

x x x x x x x x x x x x

(11G) (11H) (11I) (11J) (11K) (11L)

x x x x x x x x x x x x

|/ \| |\ /| |/| |\|

x x x x x x x x x x x x

(12A) (12B) (12C) (12D) (12E) (12F)

00 10 01 11 0t1b0 0b1t0

(12G) (12H) (12I) (12J) (12K) (12L)

1t1b0 0b1t1 1b1t0 0t1b1 1t1b1 1b1t1

Scanning always starts at the leftmost positions. If these are associated,

we write down 1, if not we write down 0. At this point, we move the

tapes according to (10), and write down a if we made a top move, a if

we made a bottom move, and nothing if we moved both tapes. We repeat

this process until the coder stops; the resulting string of 0s, 1s, s, and s

is the linear code of the representation.

Clearly, we need not assume that the top tape has the same length as

the bottom tape – the linear code defined here will work for any possibly

‘skewed’ autosegmental representation. While the code violates iconic-

ity inasmuch as representations of the same length will not correspond

to codes of the same length, the violation is minimal once these skewed
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representations are also taken into account. The violation of compo-

sitionality stems from the fact that the autosegmental concatenation of

representations such as (11E) and (11J) does not necessarily preserve the

synchronization inherent in the parts. And as for the invertibility of the

code, codes are ill-formed iff they

(13.1) do not start or end in a number, or

(13.2) letters are not separated by numbers, or

(13.3) contain the subsequence or .

These requirements are trivial to check. All other codes will corre-

spond to some well-formed autosegmental representation, for instance,

1t11010b1t10 to

(14)

x x x x x x x x

|/ / / |/

x x x x x x x

Note, however, that for a bistring decomposed as ,

will follow only if the last elements of and/or the

first elements of are associated. The immediate reason for this is

requirement (13.3) above: even if does not contain (but

ends in ) and does not contain or (but begins in ),

their concatenation will contain the prohibited substring. The deeper

reasons for this partial failure of compositionality will be discussed in the

Appendix to chapter 2.

1.4.4 The triple code

The scanning code, as defined in 1.4.3 above, deals only with the pattern

of autosegmental associations, and completely ignores the content of the

tiers. The easiest way to extend the linear code so as to include the
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content of the tiers is to flank the 1-s and 0-s by the autosegments they

associate. Thus, for

(15)

a k c d e f g h

|/ / / |/

H H L M H L M

wewould have a1Htk1Hc1Hd0Le1Mf0Hbf1Ltg1Lh0M. This is somewhat

redundant, since each spreading autosegment is repeated as many times

as it spreads . Karttunen (pc) developed a code based on the idea that

the redundancy can be eliminated by denoting the spreading pattern in

the code with the addition of one extra symbol ‘ ’ for ‘spreading site’.

In this code, the basic inventory presented in (9) above is extended the

following way:

(16A) (16B) (16C) (16D) (16E) (16F)

x x x x x x

| ‘| ’| ‘ ’

y y y y y y

x1y x01 x1_ _1y x0_ _0y

The symbols ‘ and ’ above denote the kind of situation in which the

scanning proceeds by top or bottom move respectively. This can happen

either because there is an association line present, or because there are no

further features on the bottom (resp. top) tier.

The triple code uses the idea that deviations from the regular scanning

pattern, which were encoded by ts and bs in the scanning code, can be

absorbed in the content part of the ordinary scanning pattern, which is

composed of x1ys and x0ys. What was encoded by tx1y in the scanning

In section 2.2.2 we will see that the redundancy is easily removed.
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code will be denoted by x1 in the triple code, what was tx0y in the

scanning code will be x0 in the triple code, and similarly what was

encoded by bx1y in the scanning code will be denoted by 1y in the

triple code, and what was bx0y in the scanning code will be 0y in the

triple code. For example, the triple code of the bistring in (15) will be

a1H k1 c1H d0L e1M f0h 1L g1 h0M (spaces added only for ease of

reading).

This idea enables us to encode every bistring as a regular succession

of triples composed of the symbols of the top alphabet (plus the symbol

‘ ’), the 1 or 0 encoding the presence or absence of the association

line, and the symbols of the bottom alphabet (plus the symbol ‘ ’). If

there are symbols in the top alphabet and symbols in the bottom

alphabet, this requires triples. In the most typical case

in autosegmental representations, the ‘P’ tier contains a binary feature

and the ‘P-bearing’ tier contains archisegments , so

triple encoding requires some 186 symbols which at first sight compares

unfavorably with the symbols required by scanning

encoding. But of course the triple encoding is at least two thirds shorter,

so the economy of the scanning encoding is illusory.

Roughly speaking, the triple code is a fixed length code while the

scanning code is variable length – each has its advantages. If the

association patterns are our primary object of study and the content of

the tiers is less important, the scanning code is better as it uses only 4

symbols where the triple code uses 6. But if we are primarily interested

in the content of the tiers, and the abstract pattern of associations is

less important, the triple code is better because “fixed length” leads to

automata with more transparently organized state space (see in particular

2.2.2).

Strictly speaking this distinction does not make full sense as the bistrings that are

encoded by these schemes have no obvious length measure.
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1.4.5 Subsequent work

While the criteria proposed in 1.4.2 for the evaluation of linear encodings

have met with the approval of researchers in the field, the same cannot

be said about the scanning code presented in 1.4.3 or Karttunen’s triple

code presented in 1.4.4 above – both Wiebe 1992 and Bird and Ellison

1994 criticize these encodings and offer interesting alternatives. First,

these authors note that the definition of the codes does not cover the cases

when one or both tiers are empty. At least for the scanning code, which

requires the coder to start on the first nonempty cells of each tier, this

problem cannot be remedied without some ad hoc stipulations.

However, it is not clear whether this is a real drawback. Given

that our formalization did not permit dangling association lines (see 1.3

above), the set of degenerate bistrings with the lower tier empty is iso-

morphic to the set of strings over the upper tier alphabet, which makes

the whole issue of linearization moot. Further, as Wiebe’s Theorem 4.3

demonstrates, no linearization extending to the degenerate cases can pos-

sibly be compositional, for, if it were, the codes of single symbols on the

top tier would all have to commute with the codes of single symbols on

the bottom tier (because the bistring-concatenation order of isolated sym-

bols on separate tiers is immaterial), which in the free monoid over is

possible only if all these codes are powers of a fixed string . However,

such codewords would make the codes of non-commuting degenerate

bistrings also commute, contradicting invertibility.

While Wiebe (1992:48-49) considers his result definitive, and opts

for a -tuple encoding of -strings, it is worth emphasizing that his proof

crucially depends on extending the code to the degenerate cases. From

the perspective of the scanning and triple codes, Wiebe’s Theorem 4.3

only demonstrates that fully compositional invertible linear codes cannot

be so extended; it leaves the larger issues of iconicity and compositional-

ity untouched. The methods of the Appendix (section 1.6) are asymptotic

in nature, and therefore independent of what local tradeoffs one prefers
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for the simpler representations. Wiebe notes that degenerate representa-

tions such as tonal morphemes without segmental content and toneless

morphemes coexist in many languages, but his proof crucially relies on

compositionality for such short bistrings, while the domain where com-

positionality actually becomes indispensable contains only long bistrings

for which a mere tabulation of codes becomes infeasible.

Autosegmental representations allow for two kinds of adjacency:

elements on the same tier can be string-adjacent and elements on different

tiers can be associated. Because these notions are to a large extent

independent, in linear encodings, where only string-adjacency is directly

available, there is always tension between maintaining the linear order of

elements in the tiers and maintaining the association structure. With the

nonlinear encodings preferred both byWiebe and by Bird and Ellison, the

source of this tension is removed, and tierwise concatenation of -strings

becomes directly codeable as componentwise concatenation of -tuples.

However, the technique of investigating (families of) -string-languages

by investigating their codes, which was the main reason for introducing

linear encodings in the first place, is no longer available. One of the most

controversial questions about Autosegmental Phonology is its generative

capacity – both the present work and Bird and Ellison 1994 argue that

AP is regular, while Wiebe 1992 takes the position that it is outside the

regular domain. In chapter 2 we will see how the technique of linear

encoding can shed light on this issue.

1.5 Hierarchical structure

The representations used in present-day phonology typically involve

more than two tiers. This is because in the modern theory there is

no such thing as a segmental tier: it is just a shorthand for the more

correct representation in which the segments are specified in terms of

features located on a number of different tiers. In such a situation, it is

necessary to specify which pairs of tiers can contain associated nodes.
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This information is stored in a graph, called the geometry of features (see

also the discussion in section 4.1).

The trend in autosegmental phonology is to put more and more fea-

tures on separate tiers: first tone (as in Leben 1973), then vowel features

(such asATR andBack) participating in vowel harmony (Clements 1976),

laryngeal features (Thráinsson 1978), nasality (Hyman 1982), syllabic-

ity (Clements and Keyser 1983 ch 3.8), etc. The logical endpoint of

such a trend is a representation resembling a paddle wheel (Archangeli

1985:337), in which every feature is on a separate tier, and they are all

linked to a central (root) tier. This proposal, also known as the Indepen-

dent Linking Hypothesis (ILH) gives us a ‘geometry’ graph shaped as

a star.

Another, more refined, proposal was put forth by Clements 1985:

here the graph has a more complex tree structure. Different (rooted)

tree structures were proposed by Sagey 1986, Schein and Steriade 1986,

Archangeli and Pulleyblank 1989, Halle and Ladefoged 1988 and others

– we will return to these proposals in section 4.1 and again in section 5.3.

Without committing ourselves to the details of any of these proposals,

let as define the content of a leaf node in the geometry as the feature

labeling of the node in question, e.g. [+back], and the content of internal

nodes, called class nodes, as the set of the contents of its daughters.

It follows from the definition that the content of the root node can take

only a finite number of values. Ideally, the inventory of features and the

geometry is chosen so that all these values are meaningful, but in practice

certain combinations need not correspond to actual segments. The notion

of featural content can be trivially generalized to deal with complex

segments and partially assimilated clusters, because the complexity of

such configurations is limited to features spanning one or two nodes.

While the notion of featural content would also generalize to the

case of suprasegmental tiers where any element on one tier can have an

arbitrary long melody associated to it, the idea of using segment-like

(archiphonemic) abbreviations for nodes with a given content would not,
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because that would require an infinite number of symbols. This means

that those representations in which there is more than one melodic tier

(e.g. cases of vowel harmony with more than one harmonizing feature)

cannot be linearized using a single bistring. There are two natural ways

to deal with this problem: first, we can linearize every plane of the

representation separately; second, we can extend the definition of the

automaton described in section 1.4 so that the reading head can scan a

full temporal slice of a multi-tiered representation. We will return to this

issue in chapter 2.

In addition to the hierarchical structure provided by feature geometry,

autosegmental representations can also have explicitly marked hierarchi-

cal structure. A full discussion of the constituent structure provided by

metrical phonology is beyond the scope of this work – I will limit myself

to non-recursive boundary symbols. Aside from the blank spaceswhich

are often used as a kind of typographically hidden parenthesis, the most

important delimiter in autosegmental phonology is the long bracket in-

dicating the simultaneous beginning (or end) of two or more tiers. In

addition to its obvious use in separating larger (at least morpheme-sized)

constituents from one another, long brackets are used in three additional

functions:

(17.1) Indicating the association domain of floating elements

(17.2) Fixing the location of certain features to the edge

(17.3) Supporting abstract features pertaining to the whole domain

(17.1) is perhaps the most typical use of long brackets: for example,

compare the treatment of Tiv and Margi in Pulleyblank 1986. The use of

boundary tones in Hyman 1982 is a good example of (17.2), while (17.3)

is encountered mostly in connection with morphosyntactic features such

as lexical category marking.

As long as a relatively weak form of the Strict Layer Hypothesis (Nespor and Vogel

1986) can be maintained, this is not a real limitation.

Cf. the provision in (10) that the automaton cannot “fall off” either tier.



28 Formal Phonology

The long brackets surrounding bistrings can be encoded by ordinary

brackets surrounding the linear code of bistrings. This will work for

1. and 3. but not, without further conventions, for 2. Note that the

linearization of long brackets is obviously iconic and compositional in

the sense of section 1.4.

1.6 Appendix

In this section, I will first prove the asymptotic formula (5) for the number

of autosegmental representations using the method of generating func-

tions. Next I will establish a similar asymptotic result for fully associated

autosegmental representations, and prove an exact result for the propor-

tion of fully associated representations. Finally, I apply the method of

generating functions to the case of proper autosegmental representations.

For this case, no closed form asymptotics is given, but the key irrationality

result, which makes the enumeration relevant for coding, is proved.

Let us denote by the number of distinct association structures

between two tiers, each containing a string of length . Recall that

, (cf. (9) and (11) above). In general, the number of

such structures with length can be expressed recursively. Let us denote

the number of well-formed structures with points on the top row and

points on the bottom row by . By symmetry, ,

and obviously , since in such configurations

there can be association lines, and the presence or absence of any one

of them is independent from the presence or absence of the others. With

this notation, .

In a structure such as (18A), we can single out the first association

line that runs from the bottom tier to the last x on the top tier.
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(18A)

1 2 ....... n n+1

x x x x x x x x

x x x x x x x

1 2 ... i ..k+1

If this line runs from the th bottom node to the st top node, we can

decompose (18A) into the two parts given in (18B), and (18C).

(18B) (18C)

1 2 ... i ...n n+1

x x x x x x x x x

x x x x x x x x

1 2 ... i i+1..k+1

The number of permissible configurations for (18B) is, by definition,

, while the number of permissible configurations for (18C) is

since, by the same reasoning as above,

each of the association lines from x(n+1) in the top row to x(i+1),

x(i+2),...x(k+1) in the bottom row can be chosen independently

of the others. Therefore, we have

(19)

The extra term counts the cases where the st node is

not linked at all. The same equation for one less is given under (20) in

a form where both sides are multiplied by 2:

(20)
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Now, subtracting (20) from (19) gives (21):

(21)

Rearranging the terms we have our basic recursion:

(22)

Using this recursion the first few values of can be computed as 2, 12,

104, 1008, 10272, 107712, 1150592, and so on. As can be seen, is

divisible by but not by any other power for any integer . For some

readers, these few terms in the sequencewill constitute sufficient evidence

that there can be no ‘perfect’ linear encoding of autosegmental structures,

since a perfect code using, say, symbols would use all strings of length

for the encoding and thereby give rise to structures. Readers not

satisfied with this heuristic argument should read on.

Using (20) we can calculate backwards and define

to be 1 so as to preserve the recursion. The generating function

(23)

will therefore satisfy the equation

(24)

Therefore, we have

(25)

In order to see that the power series (23) actually converges, let us consider

the following trivial upper bound. Since ,

is initially satisfied, and by induction

. Therefore, if
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, say 1/5, the series is absolutely convergent, and can

be rearranged in any order. For our purposes we will actually rearrange

it along the diagonals. If we substitute and consider

the integral

(26)

over a contour in the crown (keeping fixed),

this will yield the constant term by Cauchy’s formula.

Therefore, in order to get the generating function

(27)

we have to evaluate

(28)

This can be done by the method of residues. Since the denomina-

tor is quadratic, the poles can be located easily:

. In the first two terms of the numerator, the only pole

near the origin is at . Since it is simple, the residue is given by

(29)

which gives

(30)

For the third term in the numerator we have to evaluate

(31)

In addition to , there is another simple pole in so we get

(32)
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Using we get

(33)

will thus have its first singularity when vanishes at

. This gives the asymptotics for which we used in

section 1.4:

(34)

The base 2 logarithm of this number, 3.5431066, measures how many

bits of information a length one segment of a bistring will carry on the

average. Finer asymptotics can be obtained by expanding around

this singularity, but for our purposes this constant is sufficient.

The numbers and count all well-formed au-

tosegmental representations, including extremely ‘disorderly’ ones. Let

us define as the number of representations containing no unassoci-

ated (floating) elements, and as . Representations on

points now can be divided into three classes. Those in which the last

points are only associated to one another are in number. Those

in which the node x(n+1) on the top tier is associated to x(k) on the

bottom tier are in number. Finally those in which the node

x(k+1) on the bottom tier is associated to x(n+1) on the top tier are

in number. Therefore, the basic recursion analogous to (20)

is

(35)

Using this recursion the first few values of can be computed as 1, 3, 13,

63, 321, 1683, 8989, and so on. Using (35) we can calculate backwards

and define to be 1 and to be 0 (for ) so as to

preserve the recursion. The generating function

(36)
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will therefore satisfy the equation

(37)

Therefore, we have

(38)

(This time, the convergence of the power series (36) is already guaranteed

since .) Again we substitute and consider the

integral

(39)

over a contour in the crown (keeping fixed),

this will yield the constant term by Cauchy’s formula.

Therefore, in order to get the generating function

(40)

we have to evaluate

(41)

The denominator is again quadratic: the poles this time will be

. Again, only is within the contour , so we

have

(42)

Notice that

(43)

and thus

(44)
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Since the functions and are analytic in a disk of radius 1/10, the

coefficients of their Taylor series are uniquely determined, and we can

conclude

(45)

meaning that the fully associated autosegmental representations over

points are only an exponentially vanishing fraction of all such repre-

sentations. In terms of information content, the result means that fully

associated bistrings of length can be encoded using bits –

exactly one bit less per unit length than for arbitrarywell-formed bistrings.

Note: I could not find a simple ‘bijective’ proof of (45). It remains a

challenge to establish this striking result by direct combinatorial methods.

Let us finally turn to the case of proper representations (in the sense

of 1.3). Denoting their number by the generating function

will satisfy a functional equation

(46)

where is rational. Using the same diagonalizing substitution

we have to evaluate

(47)

Again, the denominator is quadratic in , and the radius of convergence

is determined by the roots of the discriminant

(48)

The smallest root of this equation, approximately 0.15516939, is irra-

tional. This can be shown as follows. Suppose, indirectly, that is a

solution of (48), with relative primes. We have

(49)
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therefore

(50)

and thus

(51)

Since the right hand side is divisible by 8, must be divisible by

4. But this is possible only if both and are divisible by 2, which

contradicts the indirect hypothesis.

Nextwe establish the crucial result that its reciprocal

cannot be expressed in the form , where are integers. Let us

consider the reciprocal polynomial . is ir-

reducible over the rationals, since its roots are all irrational, and as we

shall demonstrate presently, cannot be expressed as the product of two

irreducible quadratic polynomials.

By Eisenstein’s theorem it is sufficient to check this for quadratic

polynomials S and T with integer coefficients. Since the leading coef-

ficient and the constant term in are both 1, it is sufficient to check

and .

The former would yield from the cubic term and

from the linear term, while the latter would yield from the

cubic term and again from the linear term, both a contradiction.

Therefore, is irreducible over the rationals and if would

hold then would divide :

(52)

Let us denote the quotient polynomial

by . Differentiating both sides of (53) repeatedly and substituting

we get and in

general

(53)
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From this we can prove by induction that will divide , and

thus will divide the leading coefficient of , contradiction.

The theorems proved above lead to the conclusion in 1.4.2 that no code

can be fully invertible, iconic, and compositional. The codes presented

in 1.4.3 and 1.4.4 are quite compositional and iconic, but invertible

only for well-formed code strings. If we viewed full invertibility as the

overriding optimality criterion, it is an open question whether reasonably

compositional/iconic codes could still be found.
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Chapter 2

Rules

In the previous chapter we have seen that autosegmental representations

can be replaced by typographically less transparent, but informationally

equivalent linear strings. Is autosegmental phonology just a typographical

gimmick, or is there a substantive difference between the linear and the

nonlinear systems? In order to answer this question, we have to go beyond

the analysis of data structures and investigate the basic computational

devices of phonological theory, called autosegmental rules.

Section 2.1 distinguishes phonological and phonetic rules and pre-

sents a variety of phonological rule ordering hypotheses from the perspec-

tive of finite state control. Section 2.2 discusses the major phonological

rule types and exemplifies the method of encoding these in a linear fash-

ion. Section 2.3 introduces a class of autosegmental automata that operate

directly on autosegmental representations, and exemplifies the method of

replacing phonological constraints and rules by such automata. The gen-

eralization of these results to multi-tiered representations is discussed in

section 2.4.

The Appendix (section 2.5) develops the basic theory of autoseg-

mental languages and automata, and provides several equivalent charac-

terizations of regularity in this domain. Kleene’s theorem is generalized
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to the autosegmental case. This generalization has some rather striking

implications for the theory of autosegmental phonology, in particular

for theories of reduplication and for a deeper understanding of Leben’s

(1973) Obligatory Contour Principle – these are discussed in 2.5.3.

2.1 Data and control

From the perspective of the speech engineer interested in the actual phys-

ical phenomenon of speech, phonological theory is primarily a method

of data compression. Instead of having to deal with a large number of

quickly changing continuous parameters, phonological theory promises

to reduce the task to dealing with a small number of slowly changing dis-

crete parameters. The price to be paid for this data compression is that

the parameters of the compressed representation, namely the features, are

no longer directly interpretable in physical terms.

From the perspective of the phonologist, the relationship between

the features and the physical parameters is conceptualized in terms of an

uncompression, rather than in terms of a compression, algorithm. The

elementary procedural steps of this algorithm, called rules, fall into two

broad classes: rules of phonological derivation, and rules of phonetic

interpretation. The phonological component of the grammar, which in-

cludes both lexical and postlexical phonology, takes morphemes andmor-

phosyntactic features as its input, and provides a quite detailed phonemic

representation for the well-formed words that it generates. The phonetic

component of the grammar takes the output of the phonological compo-

nent as its input, and provides an articulatory phonetic representation that

will, in turn, give rise to an acoustic representation. Ignoring the internal

(stratal) organization of the phonological component, and restricting our

attention to segmental phonology, this can be depicted as follows:

According to O’Shaughnessy 1987 Table 7.1, the bit-rate should be reduced from

96kbits/sec to 200bits/sec. Flanagan 1972 Ch.1.2 gives somewhat different figures

(30kbits/sec vs. 50 bits/sec) but essentially the same ratio (5-6 hundredfold reduction).
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underlying representations

Lexical Phonology

Postlexical Phonology

surface phonological representations

Phonetics

surface phonetic representations

The justification for this division of labor is that phonology deals

with the mental representation of sound, composed of discrete units such

as syllables, phonemes, and features, while phonetics deals with the

physical representation of sound which is, ultimately, continuous. Fur-

thermore, the phonological rules that characterize the lexical component

are arbitrary in the sense that rules other than those actually observed in a

language would be just as possible, while the rules of phonetic realization

can be motivated in the sense that they depend on the laws of physiology

and acoustics. Phonological rules can vary a great deal in time, across

languages and dialects, and are riddled with exceptions, while phonetic

rules are more constant and admit no exceptions.

The rules relating underlying representations to surface representa-

tions are traditionally divided into three broad classes of morphological,

phonological and phonetic rules (with the possible addition of a fourth

class of morphonological rules, see e.g. Dressler 1985). The model-

theoretic framework adopted here will make it necessary to follow this

classification as far as the distinction between phonetic rules (envisioned

here as rules of interpretation) and non-phonetic rules is concerned, but it

is neutral with respect to the other traditional distinctions. In the present

section I will abstract away from the actual inventory of phonological

rules and concentrate on the way these rules interact in a derivation.

In SPE phonology (Chomsky and Halle 1968) the input and output

specifications of phonological rules are called structuralDescription (SD)

and Structural Change (SC), respectively – these terms are long familiar

from transformational syntax (Chomsky 1957, Chomsky 1965). Given a
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form and a rule such that , we say that

is the result of applying to . In case we say the rule

applied vacuously. For the sake of completeness, we can define a result

even in case the structural description of the rule is not met by a form

. In this case we say that the rule applied with appearance checking and

its output is (see Salomaa 1973 Ch 6).

In the standard (linear) case, the rule of choice is context-sensitive

rewriting, and ‘ ’ is the operation of concatenation, but the definition

will work just as well for transformations, context-free rewrite rules, and

nonlinear phonological rules. Given a set of rules ,

and a set of underlying forms we can try to apply

every rule to every form. This will yield the set

, to which we can again apply every rule, yielding and

so on. If we consider the totality of forms in (defining,

as usual, to be ), we get the notion of a language generated by

a pure grammar (Maurer, Salomaa and Wood 1980). In syntax, is

usually taken to be a single start symbol S, and only those strings of L

are considered which do not contain nonterminal symbols. In phonology,

however, the set contains the underlying form for every morpheme in

the language, and the nonterminal/terminal distinction is seldom crucial.

In the field of phonology, the basic control structures are known

as various types of rule orderings. Before turning to a discussion of

more complex structures involving the cycle, the strict cycle, and stratal

organization, let us first recapitulate some of the key results of Pelletier

1980 concerning rule ordering within a cyclic domain. Let us assign a set

of labels to each rule . In the simplest case each set is a singleton and

no two different productions have the same label. In this case we can use

the subscripts themselves as labels. Each derivation yields

a string of the labels, called the control string, and various hypotheses

concerning rule ordering can be stated as restrictions on such control

strings.

I will use the algebraic notation placing the function on the right and the argument on

the left. Parentheses will be omitted unless ambiguity threatens.
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Total ordering means that a fixed permutation of the labels, say

123...n, is the only permitted control string, i.e. that the rules apply

in a given order. This hypothesis (also known as full linear extrinsic

ordering), is to be contrasted with an uncontrolled application of rules

(the random sequential hypothesis of Koutsoudas 1976) which yields all

the forms that can be derived from underlying forms by applying the

rules in some order. In this case the control language is .

Iterative rule application, meaning that a rule can reapply to its own output

arbitrarily many times but cannot reapply to the output of later rules

(see Kenstowicz and Kisseberth 1973) would correspond to the control

language . The idea that rules can apply in any order, except

that a rule once applied is no longer eligible for application (‘Principle

VI’ of Ringen 1976) corresponds to .

As the readers can verify for themselves, the alternatives considered

by Pelletier (1980) can all be described with the aid of regular control

languages, and there are many other hypotheses that could also be de-

scribed in this framework, most importantly, the overall hypothesis of

cyclic rule application. Staying within a single cycle, Pelletier shows

that among the various hypotheses entertained by phonologists at one

time or another, total orderings have the smallest strong generative ca-

pacity and random orderings have the greatest, with iterative orderings

and ‘Principle VI’ being incomparable theories of intermediate strength.

Interestingly, total ordering has the same generative power as simultane-

ous rule application. The terminology can be a little confusing. While

random orderings are the ‘strongest’ in Pelletier’s technical sense, what

this really means is that random ordering is the weakest hypothesis about

the class of languages generable under some ordering restriction, and to-

tal ordering is the strongest (most restrictive) hypothesis. In other words,

every language that can be generated by some rule system with some

linear ordering imposed on it has a strongly equivalent grammar given

by some other rule system that is randomly ordered, but not conversely.

In order to describe the strict cycle and other notions crucial to Lexical Phonology, we

will need a somewhat different apparatus – I will return to this matter in section 2.2.5.
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However, these results crucially depend on a subtle point concerning

the locus of rule application. It is often the case that a form that can be

decomposed as can also be decomposed as

so that the rule can yield either or . To give

an example, if and , can be or . As

Matthews 1963 shows, if context-sensitive rules are restricted to apply at

the leftmost possible site, the generated language is always context-free.

Even more strongly, if context-sensitive rules do not apply to their own

output, the generated language is actually regular, as shown by Johnson

1970, Kaplan and Kay ms. Since this result, taken at face value, seems

to contradict Pelletier’s results, it is necessary to consider the effects of

restrictions on the place of rule application (locus effects) and on the

order of rule application (control effects) together.

In order to put Johnson’s theorem in proper perspective, let us recall

a classical result of Chomsky 1959 which guarantees that a context-

free grammar will only generate a regular language if it is not self-

embedding. Therefore, if we take a context-sensitive grammar with no

self-embedding, Matthews’ theorem will guarantee the context-freeness,

and Chomsky’s theorem will in turn guarantee the regularity of the gen-

erated language. The advantage of this indirect proof over Johnson’s

direct proof becomes clear if we consider the following strengthening of

Matthews’ theorem (due to Cannon 1975): in a phrase-structure gram-

mar, if the number of non-leftmost rule applications between leftmost

applications is bounded, the resulting language is context free. Therefore

Johnson’s results rely on the lack of self-embedding more crucially than

on a strict left-to-right manner of rule application.

2.2 The rules of autosegmental phonology

For a smooth integration of autosegmental phonology withMarkovMod-

els, it is quite essential to establish the finite-stateness of the autosegmen-

tal component. This is not to say that probabilistic techniques cannot be
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extended to the domain of context-free grammars (Baker 1979) or even

further (Schabes 1991), but such extensions bring with them a compu-

tational cost that makes the development of large-scale systems unlikely

in the foreseeable future. Therefore, it is quite important to show that

neither locus nor control effects increase the power of the phonological

component beyond finite state. In this section I will make an inventory

of rule-types used in contemporary autosegmental phonology, and inves-

tigate their interaction in greater detail. The key regularity result will

then be based on the rather trivial observation that regular grammars with

regular control will only generate regular languages.

According to the traditional view (clearly articulated in contempo-

rary terms by Anderson 1992, Zwicky 1992) the lexicon is semantically

driven. The aim of a derivation is to create a word-form that encodes, in

addition to the meaning of the stem, all the morphosyntactic information,

such as number or case marking, that is relevant for placing the word in

syntactic context. On this view, both derivational and inflectional rules

function as spell-out rules that supply the relevant morphological mark-

ing, and their phonological form, be it suffixation, reduplication, or some

other operation, is largely epiphenomenal.

In contrast to this, the ‘mainstream generative’ view of the lexicon is

based on the observation that in general the morphology and the phonol-

ogy of languages is tightly interwoven. The influential theories of Lexical

Phonology and Morphology (Kiparsky 1982) and Prosodic Morphology

(McCarthy and Prince 1986) both aim at creating a unified theory that

can handle all sorts of ‘lexical’ regularities in an essentially combinator-

ial manner. Lexical Phonology proposes a stratal organization in which

phonological rules and morphological operations are controlled by the

same ‘level-ordered’ structure, and Prosodic Morphology attempts to re-

duce the inventory of morphological operations to the single operation of

concatenation.

Since the goal is to create a formalism compatible with a wide vari-

ety of approaches, it is best to investigate the inventory of rules that are are
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necessary for the phonological description of morphological operations

from a theory-neutral perspective. Whenever we find a linguistic regu-

larity that the ‘lexicon’ (i.e. the combined effects of phonology and mor-

phology) has to account for, the autosegmental mechanisms employed

in its description are taken to be part of the inventory of phonological

operations developed here. Extralinguistic regularities, such as poetic

meter or word games, will not be considered.

2.2.1 Association and delinking

Perhaps the simplest possible operations on autosegmental representa-

tions are association and delinking, formally defined as the addition

(subtraction) of an association line to (from) an association relation.

There are so many automatic assimilation and dissimilation processes

to provide motivation for these operations that only a simple example

is provided here. In Hungarian, an will totally assimilate to a follow-

ing under various conditions (for a detailed discussion, see Vogel and

Kenesei 1987) so that becomes . In autosegmental phonology,

assimilation is treated as the spreading of the to the preceding timing

unit (X), meaning that the first association line and the segmental unit

are removed from (1A) and an association line is added from the first

timing unit to y to yield a associated to two timing units as in (1B):

(1A) (1B)

l y

X X

y

X X

In terms of the linear code developed in 1.4, neither the insertion nor

the deletion of an association line can be uniformly described. In the

simplest case, when x and y are corresponding features that bear no other

association, it is simply a matter of changing to (for association)
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or to (for delinking). However, if the representation is more

complex, the rule will take a correspondingly more complex form. As an

example, let us encode the rule of spreading an associated H tone to the

following toneless syllable:

H

/:

S S

This will be encoded as or, in standard

context-sensitive notation . As this example shows,

the ordinary iterative use of spreading ruleswill create no self-embedding,

and thus will not increase generative capacity beyond finite state.

2.2.2 Insertion and deletion

The insertion of a node on a tier T containing the string

after means that the class of mappings that take into for

and to G if is outside this range is replaced by the class of

mappings that take into for ; into ;

into for ; and to G if is outside this range. (The cases

where is inserted before or even before the first G or after the last G

can be defined analogously.)

Similarly, the deletion of a node from a tier T containing the string

means that the class of mappings that take into

for and to G if is outside this range is replaced by the

class of mappings that take into for ; into if

; and into G if is outside this range.

According to these definitions, the insertion of a new node on a tier

does not create any new association lines and the deletion of a node will

require the concomitant deletion of all association lines that linked it to

other tiers in order to restore the well-formedness of the representation.

There are three distinct approaches in dealing with this problem – I will

call them filtering, monitoring and wait-and-see. Under the filtering
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approach, the deletion of a linked node creates a ‘dangling’ association

line and the derivation is blocked because the representation is no longer

well-formed. This approach, exemplified by the Linking Constraint of

Hayes 1986, sanctions deletion rules only to the extent that they explicitly

take care of the association lines aswell. Under themonitoring approach,

exemplified by the Wellformedness Conventions of Clements and Ford

1979, there are a number of ‘monitoring devices’ in the background

of any derivation that will slightly change the intermediate ill-formed

representations in order to restore their wellformedness, in this case, by

the deletion of any dangling association line. Finally, the wait-and-see

approach would leave the representation ill-formed in the hope that some

later rule will restore its well-formedness (at the end of the derivation we

would still have a choice between filtering and monitoring).

The choice between these approaches is especially relevant when the

inserted/deleted autosegment is a timing slot, because these are arguably

governed by prosodic considerations such as the well-formedness of

the resulting syllables (see in particular Itô 1989). The mechanisms of

prosodic theory will be discussed in 2.2.4; here I restrict myself to the

cases where insertion/deletion of an autosegment is governed by rule. In

the linear code, insertion and deletion of nodes correspond to the insertion

or deletion of code segments. For example, inserting a node y in

x z

| |

S S

so as to yield

x y z

| /

S S

corresponds to or, in standard context-sensitive

notation, . Furthermore, the synchronization of the
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tiers might change, resulting in global changes in the code, as in the

deletion of y from

x y z v w

X Y Z V W

which yields from .

However, the changes always involve adjacent triples, so they can still be

handled by finite transducers in spite of the fact that these are commonly

thought of as being ‘memoryless’. While it is certainly true that finite

state devices cannot handle tasks that require an arbitrary amount of

memory, it is perhaps worth emphasizing that they can in fact handle

tasks requiring an arbitrary but fixed amount of memory. In the case of

autosegmental representations, any version of the theory will use only a

certain fixed and finite inventory of features (or feature:value pairs), and

these can be encoded in the states of the machine.

To give a concrete example, let us see how the redundancy can be

removed from the linear code. As we have seen at the end of chapter 1.4,

a code word such as a1Htk1Hc1Hd0Le1Mf0Hbf1Ltg1Lh0M is redundant

for the representation

a k c d e f g h

|/ / / |/

H H L M H L M

because each spreading autosegment is repeated as many times as it

spreads. Therefore the automaton that removes the redundancy will have

to keep ‘in memory’ the last letter adjacent to a 1, and compare it to the

next letter flanking the next 1 (if there is one) on the same side. To do

this, we will need an by array of states, where is the cardinality of

the top tier alphabet and is the cardinality of the bottom tier alphabet.

For the sake of determinism, this array will be enlarged by a zeroth row

and column, and triplicated in a third dimension, so that a single state
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can be described by a triple where is an element of the top tier

alphabet (or 0), is an element of the bottom tier alphabet (or 0), and

is 0, , or .

Let the starting state of the machine be (0,0,0). Upon encountering

the first symbol of the code (which will necessarily be a member of

the top alphabet) the machine moves to state and outputs . If

the next symbol is a 0, the machine stays in (and outputs the

0); if it is 1, the machine moves to (and outputs the 1). Next

we get a symbol from the bottom alphabet, which will be output, and

the machine moves to from and stays in if it

was in any state (if there was no association line, there will be

no redundancy to remove). At this point the machine can encounter a

or symbol, which points to spreading (redundancy in the code) or

it can encounter some element from the top alphabet, which means no

spreading (no redundancy). In the case of no redundancy, the machine

falls back to state , where was the newly encountered element

of the top alphabet, and outputs . But if there is redundancy, the state

will remain if a was encountered, and will become if a

is encountered (and the or is output).

The point of all this manipulation is to define a state space that will

serve as a ‘memory’ storing the features linked by the last association line.

Let us suppose that the machine is in state . If the next symbol

encountered is , this means that the is spreading. Themachine outputs

the andmoves into . At this point, it will of necessity encounter

a 1, which is output, and will then encounter a , which is not output. If

the machine was in state , the same method is applied – the first

is not output but the 1 that necessarily follows it is output. This method

will therefore remove the redundancy inherent in the repetition of labels

(the dual transducer that puts it back is left as an exercise to the reader)

in a way that is very close to the idea behind the triple-based encoding

presented in 1.4.4 above. The 0th row and column can be thought of as

corresponding to the symbol ‘ ’.
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Neither this transduction, nor triple-based encoding (which, by our

preceding remarks, is essentially the same as building the transduction

directly into the encoding) will remove the redundancy inherent in the

fact that sequences of the form or are necessarily ill-formed

(cannot correspond to autosegmental representations). This is not to say

that the redundancy inherent in the encoding of the association pattern

cannot be removed – in fact as much of it can be removed as we wish, at

the price of increased complexity of computation, and loss of iconicity

in the code string. However, the redundancy in the encoding of the

association pattern is so small that from a practical standpoint there is not

much reason to eliminate it.

2.2.3 Concatenation and tier conflation

In defining the concatenation of bistrings in 1.3 above, I supposed that

we concatenate the tiers with the same names (and tier alphabets) in a

pairwise fashion quite automatically. However, the normal assumption

in phonology is that concatenation will be more or less automatic only

for one distinguished tier (the timing tier) and bringing all other tiers into

alignment requires a separate operation, namely tier conflation. In fact,

it would be possible to decompose tier conflation into conceptually even

more simple micro-operations, such as ‘finding the rightmost member on

the segmental tier of the first morpheme’, ‘finding the leftmost member on

the segmental tier of the second morpheme’ and ‘bringing these two into

alignment’. But these putative operations seem to act in concert all the

time, while with pure concatenation and tier-conflation this is arguably

not the case, as we have to order other operations between them (see e.g.

Cole 1987).

While the notions of planar segregation and tier conflation are in-

timately linked to ideas of templatic morphology (see McCarthy 1989

In the triple code, the analogous sequences are x0 0y and 0y x0 .

In a multi-tiered representation it is a further issue whether we must conflate all the

tiers at the same time or whether we can, say, conflate the place tiers but leave the manner

tiers separate until later.
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for the connection and see McCarthy 1979 for the original statement of

templatic morphology), for expository convenience I will present a sim-

ple example of tier conflation devoid of the templatic complexities to be

discussed in 2.2.4 below. The reader should be aware that the example

does not fully reflect the current phonological practice of using word-

domain marking (see 2.2.5 below), rather than tier conflation, to handle

phenomena of this sort, and that the data are considerably simplified.

In Hungarian (and in most languages with vowel harmony), the

domain of vowel harmony includes stems and suffixes, but not prefixes

or compound stems. Traditionally, these facts are described by ordering

prefixation and compounding after the rules of vowel harmony. The main

problem with this otherwise straightforward solution is that it assigns

the wrong internal structure to suffixed compounds. Rather then the

semantically correct [[AB] S] they appear as [A [BS]]. This is particularly

clear if the compounds in question are left-headed, such as betűtı́pus ‘font’

or gabonaféle ‘cereal’, which do not inherit the harmonic behavior of their

heads betű ‘letter’ and gabona ‘grain’.

Autosegmental phonology, by placing the harmonizing feature on a

separate tier, offers a way out of this ‘bracketing paradox’. The domain of

harmony is defined as stem+suffix, but the morphemes of the compound

stem appear on different planes initially. Simplifying matters somewhat

(for a more detailed discussion, see Kornai 1994), the basic rule of vowel

harmony requires that stems with back vowels take the back alternant of

suffixes such as the dative nak/nek and stems with front vowels take the

front alternant so we get fának ‘wood-DAT’ but fejnek ‘head-DAT’. In

compounds, the second member is decisive, so we get fejfának ‘grave-

marker (lit. head-tree) -DAT’ vs. fafejnek ‘blockhead (lit. wooden-head)

-DAT’ rather than *fejfánek or *fafejnak.

For the standard analysis of the phenomenon see Vágó 1980; for autosegmental treat-

ments see e.g. Farkas and Beddor 1987, van der Hulst 1988.

Following Archangeli 1985 I often speak of two tiers that can be connected by associ-

ation lines as a plane. In our terminology every bistring can be located on one plane and

one plane only.
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As long as both kinds of stems have a feature associated to them at

the relevant stage of the derivation, it makes no difference whether we

use the unconflated representation

(2) B

|

fej+fa

|

F

or the conflated representation

(3) F B

| |

fej+fa

because the spreading of the F[ront] autosegment would be blocked under

both accounts: in (2) because it is in the wrong plane and in (3) because

of the No Crossing Constraint. However, the difference becomes crucial

when we introduce a third class of stems that contain transparent vowels.

In Hungarian, the vowel ı́ is generally transparent (for more details, see

Ringen and Kontra 1989), so the choice of suffix is governed by the

preceding vowel, as in zaf́ırnak ‘sapphire-DAT’ and zefı́rnek ‘zephyr-

DAT’. This behavior is best captured by leaving the transparent vowel

unassociated:

(4) B F

| |

zafirnAk zefirnAk

Now, if a conflated representation of compounds such as (3) were in

effect, the case in which the first member of the compound is B[ack]

would similarly lead to back suffixation:

(5) B

|

borviznAk
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i.e. fromborvı́z ‘mineralwater (lit. wine-water)’wewould get*borvı́znak

rather than the correct borvı́znek, hence the need for the unconflated rep-

resentation given in (2).

As this example shows, the intended effect of leaving the tiers uncon-

flated is to block spreading. Formally, this will be encoded by a vertical

bar ‘ ’ to be placed between the linear encodings of the two bistrings that

make up the unconflated representation. The operation of tier conflation

corresponds to the deletion of this which yields the simple concatenation

of the bistrings.

2.2.4 Templatic and Prosodic Morphology

With the aid of the phonological operations discussed so far it is impos-

sible to describe the way reduplication is used to express morphological

categories (typically plurality or augmentation, but often less iconically

reduplicative categories such as tense or aspect). Each of the autoseg-

mental accounts of reduplication involve one or more operations that fall

outside the inventory of operations discussed so far. Marantz 1982 uses

melody copy, phoneme driven association, and floating element drop in

addition to concatenation and tier-conflation, and only the last one of these

(also known as stray erasure) seems to be an independently motivated

phonological operation, comparable to association and delinking. In ad-

dition to stray erasure, Clements 1985a requires transfer and sequencing,

an operation that, as McCarthy and Prince 1986 argue, cannot be replaced

by the tier conflation operation discussed in 2.2.3 above. While the theory

developed in Mester 1986 uses no transfer, the sequencing operation is

still required. Finally, McCarthy and Prince 1986 require a weakening

of the No Crossing Constraint – an approach that changes the nature of

autosegmental phonology quite radically.

Rather than providing a formalization for each or even most of these

approaches to reduplication, I will concentrate on the key mechanisms

employed by ProsodicMorphology (McCarthy and Prince 1986), namely,

For an even more radical proposal along these lines, see Bagemihl 1989.
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template satisfaction and prosodic circumscription, because these seem to

be applicable to a wider range of phenomena that includes, besides redu-

plication and infixation, truncation as well (Mester 1990). For template

satisfaction, my starting point will be Kiparsky 1987, where reduplication

is analyzed so as to preserve the formal apparatus of templatic morphol-

ogy, though the following discussion is more general inasmuch as it also

makes provisions for the use of X units common to other analyses but

not used by Kiparsky (1987).

For the sake of simplicity, let us define a (CV) template as a string of

C,V, and X symbols, and a (phoneme) melody as a string over an alpha-

bet which is exhaustively partitioned into two (not necessarily disjoint)

nonempty subsets called consonants and vowels. Under this conception,

each melody has its Inherent Skeleton which is defined by the following

length-preserving homomorphism IS: if a phoneme belongs in the con-

sonant but not the vowel partition, IS( )=C; if it belongs to the vowel,

but not the consonant partition, IS( )=V; and if it belongs to both parti-

tions, IS( )=X. The symbol X is usually conceptualized as a variable that

can be instantiated either as C or as V. To reproduce this notion without

introducing variables let us define the nondeterministic homomorphic

mapping H which maps C to C, V to V, and X to either C or V.

A melody will perfectly satisfy a template T if IS( )=T or if IS( )

= H(T); i.e. if vowels match Vs, consonants match Cs, and phonemes of

either type match Xs. The operational character of template satisfaction

is not evident in such cases, because nothing really needs to be done to

create a match – just aligning the template and the melody on parallel

tiers and associating them one to one, left to right (or right to left) will

create the expected bistring. However, if the template is shorter than

the melody, some portion of the melodic material must get deleted (stray

erasure) and if the melody is shorter than the template, multi-attachments

will be created. Since any given template is finite, it is possible to create

a template-specific finite transducer that will for any melodic input return

a bistring describing the maximally satisfied template. However, there
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is no single finite transducer that will instantiate e.g. the principles of

“template-driven association with priority for vowels” for such a trans-

ducer would require, in addition to the usual output tape, two input tapes:

one for the melody and one for the skeleton. The natural way of describ-

ing the general mechanism of template satisfaction is with autosegmental

automata – see section 2.3.

For prosodic circumscription my basic source will be McCarthy

and Prince 1990, where the Arabic ‘broken plural’ is analyzed in depth.

The fundamental idea of prosodic circumscription is that rules do not

necessarily operate on morphologically defined units such as stems or

roots, but can sometimes select a prosodically defined unit such as the

syllable or the foot as their domain. In such cases, the rule that is

prosodically circumscribed performs three separate tasks:

(i) Parse the morphologically defined base into a prosodic constituent

unit (by definition located at the left or right edge of the base) plus

a remainder, if any

(ii) Perform the rule on the prosodic unit (or on the remainder, depend-

ing on the specification of the rule)

(iii) Put the the result back together (or “unparse”) with the remain-

der (or the original unit, if the operation was performed on the

remainder) in the same order as they were before the parse

For example, in the formation of the Arabic broken plural a stem

such as undub will undergo the following changes:

(i) Parsing into a leftmost heavy syllable un plus a remainder dub

(ii) A rule yielding VnVV from un is performed

(iii) The result VnVV is put back together with the remainder dub to

yield VnVVdub
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If prosodically circumscribed rules are composed in a parse , apply ,

unparse , parse , apply , unparse , .... sequence, the formal reconstruc-

tion of prosodic circumscription requires only the reconstruction of the

suboperations of parsing, application, and unparsing. This can be triv-

ially done by inserting, and later deleting, temporary boundary markers.

Since these operations can all be modeled by finite state transductions,

our basic conclusion that phonology is regular is unaffected by this mode

of prosodic circumscription.

A more challenging case is when the prosodically circumscribed

rules are not cascaded but nested in a sequence such as parse , apply ,

parse , apply , unparse , unparse . At first sight, this appears to be a

case of context-free, rather than finite state control structure, given the

lack of principled limitations on the depth of such nesting. But a closer

look at the situation will reveal that the “matching parenthesis” effect is

illusory. In any given grammar there will be only finitely many rules,

and these can only create a finite depth of nesting.

Since this problem already came up once in our discussion of redun-

dancy removal in 2.2.2 above, and will come up again in the discussion

of reduplication in 2.5.3, it is perhaps worth calling this the memoryless-

ness fallacy. Simply put, the reason why finite automata cannot handle

context free languages is to be found in their memory limitations. If

we can encounter matching parentheses of arbitrary depth as we scan a

string we need an arbitrary amount of memory, e.g. the kind provided

by a pushdown store, to keep track of how many of these parentheses are

still open. This reasoning will of course break down if we can put some

fixed limit on the depth of the nesting or whatever information needs to

be stored.

The memorylessness fallacy is based on a confusion between a struc-

tured class of problems and an unstructured collection of problems. To

An important theorem of Chomsky 1962 asserts that every context free language is

the homomorphic image of the intersection of a regular language and a Dyck language

(language of matching parentheses), so we can restrict our attention to these.
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give an example, suppose the problem is to find the roots of polynomials.

When viewed as a structured class of problems, the only good solution is

a general-purpose algorithm that takes polynomials as input and produces

their roots as output. But when viewed as an unstructured collection of

problems, we do not need a general-purpose solution. For each poly-

nomial we are free to devise a separate root-finding algorithm that can

exploit the specific properties of the polynomial in question.

In the case at hand, the problem is to express complex phonological

operations, such as (prosodically circumscribed) template satisfaction

by means of finite state devices. When viewed as a structured class

of problems, there is no general-purpose finite state solution, for that

would indeed require arbitrarily large amounts of memory. However,

when viewed as an unstructured collection of problems, each of these can

receive a finite state solution. We do not have a general-purpose finite

state solution to the problem of recognizing strings in Dyck languages,

so we do not have a general-purpose algorithm for modeling nested

prosodically circumscribed rules by means of finite state control. But if

we know that we need only a finite class of such strings recognized, we

can of course devise a finite automaton for that class of strings, meaning

that for any arbitrary but fixed grammar we can devise a special-purpose

finite state model.

2.2.5 Domain marking

The marking of certain substructures as belonging to a certain prosodic

domain such as the mora, syllable, foot, or (prosodic) word, or to a

certainmorphological domain such as root, stem, or (syntactic)word, is an

essential part of phonological representations. First of all, a great number

of phonological rules makes reference to such domains (for the syllable

(in English) see Kahn 1976, for the foot (in Japanese) see Poser 1990,

and for the morpheme (in Arabic) see McCarthy 1981), and at least one

domain, the word, has been built into the very architecture of the theory.

Second of all, domains in themselves can carry feature information –
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boundary tones provide a clear and widely attested example. Third, and

perhaps most important, is the existence of information that has to be

associated with all the material in a domain, rather than with a selected

part of it (e.g. with the nucleus of a syllable, or the left edge of a phrase).

The most trivial example of this kind is word meaning, which has to be

associated to the whole word, rather than to some part of it.

The usual assumption in present-day phonology/morphology is that

domain information is represented by hierarchical structure, rather than

boundary markers. A typical example is the ‘syllable tier’ that contains

a node for each syllable in a given string. Hierarchical structure can be

represented both by trees or by a suitable ‘geometry’ of strictly tier-based

structures – both methods are usedwidely in actual phonological practice.

The operation naturally associated with tree structures is percolation, (see

e.g. Lieber 1981, Selkirk 1982, while the operation naturally associated

with ‘geometry’ is projection (see Halle and Vergnaud 1987). Of the

two, percolation is problematic for the formalization developed here, as

its most natural statement is within the context-free domain, along the

lines of Knuth 1968. Projection, however, can be easily handled with

the aid of (length-decreasing) homomorphisms, so it fits into the regular

framework without any problem.

Thus we see two ways context-freeness can enter into the otherwise

regular framework: via arboreal metrical structure or via morphological

constituent structure. Since the necessity of arboreal metrical structure is

highly questionable themain source of non-finite-stateness that we have

to deal with is morphological structure. Even here, affixation can usually

be resolved without recurse to arbitrary depth matching parentheses, and

only compounding requires genuinely non-regular structure (see Carden

1983, Culy 1985).

While it is tempting to develop a ‘purely syntactic’ theory of the lexicon in which

meanings play no part whatsoever, it should be kept in mind that such a theory will not

be able to accommodate central insights of morphological theory such as blocking (see

Aronoff 1976).

See Prince 1983, Selkirk 1984 for arguments supporting this view, and Hayes 1984,

Kager and Visch 1988 for arguments against it.



60 Formal Phonology

Though we succeeded in isolating the problem, it must be admitted

that we did not really solve it, and that in fact there seems to be no

solution that does not rely on some ad hoc stipulation. How seriously is

the finite state approach compromised by its failure to handle hierarchical

structure? At one extreme we find the view that hierarchical bracketing is

at the heart of the cyclic mode of rule application, so that the phenomena

handled by Lexical Phonology are by definition outside the purview

of finite state machinery. At the other extreme we find the view that

hierarchical structure of arbitrary depth is by no means the only way to

deal with the most important phenomena, and that in fact grammarians

can get by with a few nonrecursive boundary symbols that will give rise

only to structures of limited depth.

From the internal perspective of phonological theory, the first view is

better supported. Hierarchical structure has displaced boundary symbols

in the vast majority of current phonological work. But from the external

perspective imposed by the demands of applications, the second view

makes more sense. The reason for this is that in the theory we are

interested in the types, while in applied work we are interested in the

tokens. For example, in the domain of stress assignment, which provides

the strongest arguments in favor of hierarchical structure of unbounded

depth, theoretical work is to a considerable extent driven by extremely

long polysyllabic stems and compounds. But Zipf’s law guarantees that

these will appear extremely infrequently, so simple finite state models

that fail to cover them can still be preferable to context-free or even more

complex models that have only marginally better coverage.

2.3 Automata

So far we have seen that the reconstruction of phonological analyses in-

volves the manipulation of autosegmental representations (chapter 1) by

autosegmental rules (section 2.2) subject to finite state control (section

We will return to the issue of evaluating systems at the margin in section 5.4.
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2.1). To complete this picture, we need to express the rules in terms of

better understood data manipulation devices, namely, automata. Since

in section 1.4 we provided encoding schemes that turn autosegmental

representations into linear strings, it is now possible to express the au-

tosegmental rules in terms of automata that manipulate these strings.

However, there are some subtle issues concerning the expressive power

of autosegmental rules that are blurred by this encoding procedure (for a

full discussion, see the Appendix), so it is better to devise automata that

operate directly on autosegmental representations.

In 2.3.1 one class of such devices, called biautomata, is introduced in

lieu of the mathematically more appropriate, but for expository purposes

more cumbersome class of regular autosegmental automata presented

in the Appendix. Biautomata are then used for the explication of Tone

Mapping (section 2.3.2), vowel projections (section 2.3.3), and reduplica-

tive templates (section 2.3.4). Finally in 2.3.5 we answer the question

posed at the beginning of this chapter: is autosegmental theory just a

typographical gimmick?

2.3.1 Biautomata

In order to define devices manipulating autosegmental representations,

it is instructive to consider devices manipulating simpler data structures

such as strings. There is a wide variety of string manipulating devices

in practical use, ranging from compression algorithms and stream editors

to compilers and machine translation algorithms. From a theoretical

perspective, they range from the simplest, called a finite state transducer

or fst, to the most complex, such as a Turing-machine. Our aim here is

to explicate autosegmental phonology in the simplest possible terms, so

we will attempt to borrow as many features of fsts as we can.

A finite state transducer, as standardly defined, has an input tape,

which it can only scan, and an output tape, which it can only write.

Depending on its present state and the input symbol under scan, the

fst writes one or more symbols on the output tape, advances the input
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tape, and moves into another state (possibly the same state). It is often

convenient to modify this definition in such a manner that no writing

takes place, the automaton can only scan both tapes, and will accept or

reject any pair of tapes. With ordinary transducers, it does not matter

at all whether the machine can write the tape or only reads it, the sets

generated by writing are the same as the sets accepted by scanning. As

we shall see, the same holds for autosegmental representations. There

is no particular need to associate previously unassociated elements (or

to delete an association line) as long as we can check whether a given

association line appears and are free to reject the whole representation if

it does not.

At any given state, a (read-only) fst can advance one of the tapes (and

make an e-move on the other one), the other tape, both or neither (which

gives it nondeterministic power). Ifwe collect the pairs of letters thatwere

under scan simultaneously, the collection will be a proper association

relation assuming, as usual, that the machine can never go back to a

position previously scanned. The resulting bistring can be called the trace

of the program executed by the transducer. Such traces would therefore

provide a method of defining bistrings and bilanguages using more or

less standard transducers, but only for proper bistrings and bilanguages.

Since not all linguistically relevant autosegmental representations are

proper before a projection is taken, the automaton to be described below

treats the association relation as part of the input data, rather than as a

by-product of the scanning process.

Let us define biautomata as 6-tuples (S, T, U, i, F, t) where S is a set

of states, T and U are the alphabets of the two tapes, i is the initial state, F

is the set of final (accepting) states, and t is the transition function which,

depending on the present state, the letters under scan, and the presence

of association lines to these letters, will assign a new state, and advance

the tapes (independently) by zero or one cell in accordance with the rule

described in (10) in chapter 1. According to this definition biautomata

are deterministic, since they must advance at least one tape.
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From a linguistic perspective, deterministic automata are of great

interest, since one of the tapes is often interpreted as containing timing

units, and real-time operation means that on that tape the automaton will

always have to advance. But from a mathematical perspective, finite

autosegmental automata (which will not always advance automatically –

see the Appendix for details) are closer to the “regular” family inasmuch

as Kleene’s theorem and the so-called finite index property hold for

bilanguages accepted by regular autosegmental automata but fail for

bilanguages accepted by biautomata. In the rest of section 2.3 I will use

biautomata for the explication of phonological rules and constraints of

various sorts. The question whether these can also be explicated in terms

of regular autosegmental automata will be considered (and answered in

the affirmative) in the Appendix.

2.3.2 Tone Mapping

As our first example of expressing phonological regularities by means of

automata, let us consider the biautomaton that performs Tone Mapping

in the sense of Williams 1976. Tone Mapping means association of

P-bearing units and P-elements (syllables and tones) in a left to right, one

to one manner, unless we run out of syllables, in which case tones remain

unassociated, or run out of tones, in which case the last one spreads

on the remaining syllables. The automaton to be defined here does not

actually add any association lines – it simply checks the representation

to determine whether the association lines are present in the manner

predicted by Tone Mapping.

The finite state control of the automaton has only one state, the

starting state. Upon encountering a singly associated tone associated

with a singly associated syllable, the automaton remains in this state and

both tapes are advanced simultaneously in accordance with the rule of

automatic advancement given in (7) in chapter 1 and repeated here for

convenience:
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(1:10) If there are no further symbols on either tape, the coder

stops. If there are no further symbols on one tape, the other

tape is advanced by one. If there are no further association

lines from x and y, both tapes move one step to the right,

if there are further association lines from x, only the bottom

tape moves, and if there are further association lines from y,

only the top tape moves, provided the move does not result

in scanning G. (The case when there are further lines both

from x and y cannot arise, since such lines would cross.)

If no association line is present, the machine blocks. If more than one

association line is present at the bottom (tonal) tier, themachine goes on as

before (given the above rule, it can only be an advance on the top tier) but

if the multiple association is at the top (syllable) tier, the machine blocks.

The reader can easily verify that this automaton, whose transition function

is tabulated below, will indeed accept all representations on which Tone

Mapping was correctly performed, and only these.

(6)

from x from x from y automaton

to y to z>y to w>x will

absent any any block

present present any block

present absent any go on

2.3.3 Vowel projections

As our second example of explicating devices of phonological theory

in terms of automata, let us consider an automaton that is sensitive to

the content of the tiers. This automaton will accept all and only those

It is convenient to permit failure on transition – alternatively, we could define a “sink

state” which is not an accepting state and every outgoing arc from it loops back to it.
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representations which correspond to correct vowel projections (in the

sense of section 1.3) such as (7A), and reject incorrect ones such as (7B)

or (7C):

(7A) (7B) (7C)

barko barko barko

| | | | |

V V V V V

(8)

IS(x) y from x from x from y automaton

is is to y to z>y to w>x will

C V absent any any go on

V V present absent absent go on

X V present absent absent go on

For the sake of simplicity the cases are not tabulated exhaustively. For

instance if a symbol other than V appears on the bottom tier (and in

all other cases not specifically listed above) the machine blocks. The

reader can easily verify that the automaton defined this way will indeed

accept only those bistrings where vowels (and segments underspecified

for syllabicity) are associated to Vs one to one, and there are no other

association lines.

2.3.4 A reduplicative template

As our third and final example of explicating phonological devices in

terms of automata, let us consider the filling of the reduplicative CVC

template that is used by Marantz 1982 to derive Agta reduplicated forms

such as taktakki ‘legs’ or ufuffu ‘thighs’ from base forms takki ‘leg’ and

uffu ‘thigh’. Using the terminology introduced above, if the inherent

skeleton of the stem begins with CVC, the whole reduplicative template
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is filled in, but if it begins with VC, the first C of the template remains

unassociated. Following Clements 1985a I will assume that the associa-

tion of Vs has priority, thus we have

(9A) (9B)

takki uffu

| |

CVC CVC

at an intermediate stage, after which both the t and the k of takki

can associate, but the first C of the template in (9B) can no longer be

associated, as that would result in crossing association lines.

in IS(x) y from x from x from y automaton

state is is to y to z>y to w>x will

0 C V any any any block

0 C C present absent absent go to 1

0 V V any any any block

0 V C present any any block

0 V C absent present absent go to 1

1 any C any any any block

1 C any any any any block

1 V V present absent absent go to 2

2 C C present absent absent go to 3

3 any C absent absent absent go to 3

(Here again all configurations not explicitly listed are blocking the au-

tomaton.) With 3 as the only accepting state, the reader can easily verify

that the automaton will accept representations such as (10A) and (10B),

but not those in (10C) or (10D):
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(10A) (10B)

takki uffu

||| ||

CVC CVC

(10C) (10D)

takki uffu

|||/ /||

CVC CVC

2.3.5 The role of automata

The most important weakness of the kind of formalization exemplified in

2.3.2-2.3.4 is that it is inhomogeneous. Rather than defining the overall

principles of association once and for all, one has to handcraft a sepa-

rate automaton for each mapping principle, projection, or reduplicative

template. From a linguistic perspective, this makes the formalism too

powerful, because many other automata, not necessarily attested in actual

mapping principles, projections, or templatic patterns, are also definable

this way. Since from a mathematical perspective the formalism is very

weak (finite state mechanisms are at the bottom of the Chomsky hierar-

chy), this problem is not easy to remedy.

One possible approach is to bite the bullet and treat this formalism

the way one treats the formalism of calculus. Clearly it is an extremely

flexible and practical system and the fact that one can formulate within

it differential equations that do not correspond to any attested physical

phenomena does not detract from its usefulness in the description of

phenomena actually attested. The other approach, much more in keeping

with the tradition of phonological research, is to seek generalizations at a

higher level of abstraction. Rather than treating the automata themselves

as embodying linguistically significant generalizations, we look at the
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way the automata are defined. For instance, the automaton defined in the

last example above has the principle that Vs have priority in templatic

association “hardwired” into its definition. But in fact the exact same

automaton can be defined as the serial composition of two automata: one

that checks the association of Vs and another that checks the association

of Cs. Under such a decomposition, the linguistic principle of V-priority

(Clements 1985a, Kiparsky 1987) is not part of the automata. Rather, it is

encoded in the way the automata are put together (because the V-machine

makes the first pass).

Now that we have evaluated the role that automata play in the for-

malization of autosegmental phonology, we are in a better position to

answer the question raised at the beginning of this chapter: is autoseg-

mental phonology only a notational gimmick? The answer is yes and no.

To the extent that everything that can be done within an autosegmental

framework can also be done with finite automata, the answer must be

yes. But to the extent that the autosegmental notation gives rise to a new

rule formalism, more capable of expressing linguistic generalizations in

a notationally compact manner, the answer is no. The inhomogeneity

discussed above is a general property of the automata (including the ones

that perform linear encoding). Processes that receive a homogeneous for-

mulation in autosegmental notation require a complex, often disjunctive,

formulation if finite transducers are used. Since notational compactness

is an important goal of linguistic theory, autosegmentalization is worth

retaining.

2.4 Multi-tiered representations

The key technique of linear encoding used in the formalization of two-

tiered representations (bistrings) does not generalize to the case of multi-

tiered representations easily, because the basic rule governing the ad-

vancement of tapes can yield different results for different planes. Let us

first illustrate this with an example:
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(11)

d e f

|/ |

g h i

|/ |

j k l

As can be seen, the move after scanning (d,g,j) is ill-defined. On

the top plane the presence of the line between d and g requires that we

do not advance from g to h, while on the bottom plane the line between

h and j requires advance from g to h. There are several ways out of this

quandary – I will discuss the four major alternatives here.

2.4.1 Tuple notation

The top bistring in (11) can be encoded as and the

bottom bistring can be encoded as . Of these two we can

form a 2-tuple

The advantage of this method is that it trivially generalizes to represen-

tations with more than three tiers. The chief disadvantage is that it is not

iconic (in the sense of section 1.4) because changing a single element

on the middle tier requires changes in both members of the tuple. A

related problem is that the well-formedness of a representation, i.e. that

the bottom tier of the top bistring is the same as the top tier of the bottom

bistring, becomes extremely hard to check. These problems are better

dealt with in the second approach discussed below.

2.4.2 Autosegmentalized tuples

The tuple of the previous approach

can in fact be thought of as a bistring
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(12)

d1gte1gf0hbf1i

\ / / / \

g1jth1ki0kbi1l

with the association lines drawn among the codes of the elements on the

shared tier. This way, the problem of checking the well-formedness of

the 2-tuple reduces to the problem of checking the appropriateness of the

association lines in the corresponding bistring, a task that can easily be

handled by autosegmental automata. Furthermore, the bistring can be

encoded linearly. For the sake of better readability we add spaces, use T

instead of t, B instead of b, 3 instead of 1, and 2 instead of 0 in the code

strings themselves. This yields the code:

d0g t30g tg 1g tT0g te0g t30g tg 1g f0320jh 0Tbh 1h

B03f0k30i ti 1i bi 02bi 0kbi 0Bbi 1i bi 03bi 0l

This encoding, in spite of its forbidding look and considerable redun-

dancy, is actually iconic in the sense that copies of the same token in the

tristring (such as the nine copies of g and the ten copies of i) cannot

appear arbitrarily far from one another. This guarantees that tristrings,

much as bistrings, are also in the finite state domain.

While it is possible to generalize this scheme to multitiered repre-

sentations with a larger number of tiers, the redundancy of the encoding

grows exponentially in the number of tiers. For theoretical purposes,

such as describing the generative power of phonological rules, this does

not matter, but for practical purposes we need a better code.

2.4.3 Tier ordering

At the beginning of this section we saw that the simple rule of tape

advancement given as (7) in chapter 1 leads to contradictions in multi-

tiered representations. But if we replace this rule by a more complex rule,
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one that is designed for several tiers, a simpler encoding might still be

possible. Many such replacements are conceivable. Here I will discuss

only two, called lazy advance and eager advance.

In lazy advance, the tiers are linearly ordered. Tier 0 has the highest

priority, tier 1 is next, and so on. The scanning head is advanced on tier

0 if this will not create a skipped association line. If it would, we try

advancing the scanning head on tier 1, and so on. As long as the geometry

of tiers (in the sense of Clements 1985b) is not circular, this approach

will always work. This can be proved indirectly. Suppose that there is a

multi-tiered representation with scanning heads on position on tier 0,

on tier 1, and so on that is deadlocked. We cannot advance on tier 0,

because there is an association line running from to some on

tier that would be skipped by this advance, . Similarly, we cannot

advance on tier , because there is an association line running from to

some on tier that would be skipped by this advance, .

Since there are only finitely many tiers, sooner or later we must come to

a tier such that the head scanning cannot be advanced, but there are

no association lines running from to any such that .

But this is a contradiction, because the lazy rule says that in such a case

we must advance by one.

In eager advance, the tiers are unordered. We try to advance by one

on asmany of them as we can. Since (by similar reasoning as above) there

can be no situation when no reading head can be advanced, at least one

of them, and possibly all, will advance in any single move. Such a move

is best depicted as an n-tuple of 0s (no movement) and 1s (advance), so

for tiers we have possible moves. In the case of bistrings, (1,0)

was denoted by (top move), (0,1) was denoted by (bottom move),

and (1,1) was left unmarked. There are letters, and potential

association lines under scan at any given moment. The machine can also

notice further association lines going out of the positions under scan,

otherwise it could not determine which tiers are to be advanced next.

The presence or absence of association lines, the letters under scan, and
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the internal state of the finite state control will determine its subsequent

internal state and position of scanning heads. Given the possibility of the

kind of linear encoding described in 2.4.2, such multi-tier automata do

not create an increase in generative power as compared to the (two-tier)

autosegmental automata discussed so far (and defined more rigorously in

the Appendix).

2.4.4 A distinguished timing tier

The discussion of multi-tiered representations would not be complete

without mentioning the one method that is actually used for linearization

in phonological theory, namely the use of a distinguished timing tier.

While a formal treatment has to be deferred until chapter 4, the basic idea

can be informally stated here as follows.

One distinguished tier is used for encoding timing information.

Roughly speaking, one cell on the tape corresponding to this tier is

approximately 80 ms. long, i.e. corresponds to the average duration of a

short segment. The exact duration of the segment will then be determined

by rules of phonetic interpretation sensitive to stress, segmental context,

etc., much as in Klatt’s model of segmental duration discussed in section

3.1 below . In the original version of the theory (Clements and Keyser

1983) the timing tier also contains information about the syllabicity of

segments, but in the more widely accepted contemporary version (Levin

1985) it is devoted entirely to the encoding of coarse-grained timing

information.

All other tiers receive temporal interpretation through the distin-

guished timing tier. Feature F precedes, follows, or overlaps feature

H if the timing units associated to F precede, follow, or overlap those

of H. In terms of the multi-tiered automata introduced in 2.4.3 above,

this conception is closer to lazy than to eager advance – tier 0 (the one

with the highest priority) is the timing tier and advancement along this

The chief difference from Klatt’s model is that here every segment starts with the same

INHDUR, except for long ones (geminates) which have two timing units.
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tier is what corresponds to the flow of time. But there is an important

difference. While in lazy advancement it is the association pattern that

dictates the next move, so that several moves might be required to make

actual advance on tier 0, in the timing tier conception all such moves are

performed within a single timing unit.

Therefore, the timing tier concept involves a kind of time warping.

The time periods between successive moves of the automaton are not

constant, except in the special case when a single move accomplishes an

advancement on the timing tier. But if it takes moves to get to the new

cell on the timing tier, each move is assumed to have taken only units

of time. The situation is further complicated by the fact that most tiers

link to the timing tier only indirectly, via class node tiers (see Clements

1985b) and by the fact that the association of two nodes means only that

they are overlapping, not that they are coterminous (Sagey 1988, Bird

and Klein 1990). After developing a phonetically more realistic model

of duration in chapter 3, we will return to this issue in chapter 4.

2.5 Appendix

In section 2.3 we informally defined biautomata and gave some examples.

Here we will concentrate on a seemingly more complex, but in fact

less powerful (and more coherent) class of autosegmental automata that

will be called, for reasons that will become apparent, regular. Since

all the linguistic burden carried by biautomata can be carried by the

mathematically more coherent class of regular autosegmental automata,

the distinction between the two is important only to readers interested in

the finer details of autosegmental generative capacity – others can simply

skip ahead to 2.5.3. In 2.5.1 some simple examples of bilanguages

are analyzed, and two finitistic classes of autosegmental automata are

defined: nondeterministically advancing and regular. The key result

about regular automata, Kleene’s theorem, is proved in 2.5.2, where the

relationship between various classes of automata, regular expressions,
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and (non)determinism are investigated. The results are then applied in

2.5.3 to a deeper analysis of reduplication and the OCP.

2.5.1 Finite-stateness and regularity

Let us begin by defining a nondeterministically advancing autoseg-

mental automaton (or na -automaton for short) as a 6-tuple (S, T, U,

i, F, t) where S is a set of states, T and U are the alphabets of the two

tapes, i is the initial state, F is the set of final (accepting) states, and t is

the transition function. As before, if we denote the cell under scan on the

upper tape by x, the cell under scan on the lower tape by y, the transition

function from a given state depends on the following factors:

(i) Is there a symbol in cell x, and, if so, what symbol?

(ii) Is there a symbol in cell y, and, if so, what symbol?

(iii) Is there an association line between the symbol in x and the symbol

in y?

(iv) Are there further association lines from x to some symbol after y?

(v) Are there further association lines from y to some symbol after x?

The transition function t, depending on the present state, the letters under

scan, and the presence of association lines to these letters, will assign a

new state, and advance the tapes in accordance with the following rule

(compare rule (7) in chapter 1):

If there are no further association lines from x and y, both

tapes can move one step to the right, if there are further

association lines from x, only the bottom tape can move,

and if there are further association lines from y, only the top

tape can move.

The case where there is no symbol under scan is represented by the special symbol G

introduced in section 1.3.
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To specify which tape does move, it is best to separate out the transition

function into three separate components: one that gives the new state,

provided a top move was taken; one that gives the new state, provided

a bottom move was taken; and one that gives the new state, provided

a full move was taken. Here and in what follows denotes the

result state of making a top move from state upon input , and similarly

for (bottom move) and (full move). In a nondeterministic

version there can be more than one such state, and we do not require that

only a top, bottom, or full move be available at any given point .

Such automata are capable of accepting non-finite-state bilanguages

or, if used as coders, can generate arbitrarily large code strings from fixed,

limited length autosegmental representations. In chapter 1.4, where our

interestwas in coding, we removed the nondeterminism from the scanning

process and thus guaranteed a unique code. But the underlying cause

of non-finite-stateness is not the lack of determinism in the transition

function. As we shall see shortly, deterministically advancing biautomata

can still accept non-finite-state bilanguages.

Before giving an example, we first have to provide an automaton-free

characterization of what we mean by finite-state or regular. This is done

by carrying over a definition from the linear case. Define the syntactic

congruence generated by a bilanguage as containing those pairs

of bistrings which are freely substitutable for one another, i.e. for

which . When ( ) is fixed as the empty string,

we will talk of right (left) congruence. As in the linear case, we define

a bilanguage to be regular iff it gives rise to a (right)congruence with

finitely many classes, and as in the linear case, we shall show that there

is an equivalent characterization by suitable finite automata (but not by

biautomata).

Let us denote the bistring composed of floating features on the top

tier and floating features on the bottom tier by , and consider

It might still be the case that only one of these moves is available, because that is what

the association pattern dictates, but there is no general requirement enforcing uniqueness

of next move.
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the bilanguage . Is it regular? At first sight,

it appears to be, both because its linear encoding C( ) is the regular

language 0 , and because it can be expressed as the Kleene-closure

of the one-member bilanguage . But by the above definition

it is not regular, since the bistrings all belong in different

(right)congruence classes for as can be seen using

. If then but .

While this result is initially a little surprising (and will require a more

careful approach to what wemean by “regular expression” in the autoseg-

mental case), the more we look at it the less desirable it appears to call

‘regular’. However we define ‘regular’ for bilanguages, it is a good idea

to retain as many of the properties of regular stringsets as possible. For

instance, regular stringsets are closed under regular transduction (gener-

alized sequential mapping), and the mapping that introduces association

lines optionally is certainly sequential. From this mapping produces

the bilanguage of well-formed bistrings with an equal number of fea-

tures on the two tiers – so if was regular, should be regular too. But

this is quite unnatural, given that its code C( ) is properly context-free.

By careful analysis of where context-freeness creeps in, we can

pinpoint the source of the difficulty. The reason why C( ) is not regular

is that it contains every string that has an equal number of s and s.

C( ) is a special case, strings in it contain an equal number, namely 0,

s and s. But in a sense there are s and s hidden in the deterministic

advancement on both tiers, where the (or equivalently ) move is left

unencoded. If the bilanguage was encoded by the kind of biautomaton

defined above, it would then be the case that we get each code string that

has an equal number of s and s. Why is this so bad? After all, a full

move should be equivalent to a and to a move sequence, and such

sequences will of necessity give rise to an equal number of s and s.

The problem manifests itself on end condition, when the machine

is about to fall off of one or both of the tiers. In such cases, automatic

advancement does not treat and equally. For example if we start
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the machine at the beginning of , a sequence would fail with

the bottom head scanning the first feature, while a sequence would

fail with the bottom head scanning the second feature. This suggests the

following definition: the transition function at state u S is scanning

independent iff every possible scanning of a string takes the machine

from u to the same state x=u[ ]. In particular, a full move should be

equivalent to a sequence of a top move followed by a bottom move, as

well as to a bottom move followed by a top move, two full moves should

be replaceable by and similarly for

and longer sequences of moves. A na -automaton will be called a

regular autosegmental automaton iff its transition function is scanning

independent at every state. As we shall see in 2.5.2 below, the use of the

term ‘regular’ is justified by the validity of Kleene’s theorem.

2.5.2 The characterization of regular bilanguages

At this point, we have two independent notions of regular bilanguages,

one defined by the finite index property of the syntactic congruence, and

one by acceptance by a regular autosegmental automaton. Our goal here

is to extend Kleene’s theorem to the autosegmental domain by showing

that these two notions are equivalent with one another, and with several

other characterizations via regular expressions, closure under operations,

and code sets.

First note that nondeterministic regular autosegmental automata can

always be replaced by deterministic ones. The proof is exactly the

same as for the standard (linear) case. Instead of the state set S of the

nondeterministic automaton, consider its power set and “lift” the non-

deterministic transition function t to a deterministic transition function d

the following way. For S define d( ) as t( ) , and for S,

d( ) = d( ). The proof will not generalize to the coder case, be-

cause different nondeterministic options can lead to different positioning

of the heads. However, if the transition function is scanning independent,
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different positionings of the heads can always be exchanged without al-

tering the eventual state of the machine.

Thus we have three families of bilanguages. Those accepted by

finite autosegmental automata (deterministic or nondeterministic) will

be collected in the family R, those accepted by na -automata will be

collected in the family NA, and those accepted by biautomata will be

collected in the family B. Clearly we have R NA, B NA, since

both scanning independence and deterministic advancing are additional

properties to those required in the general class of biautomata. As we

shall see below, where the “geography” of these classes is investigated,

both of these inclusions are proper. Let us prove Kleene’s theorem first.

Theorem 1. A bilanguage is in R iff the right congruence gener-

ated by it has finitely many classes.

Proof. If is accepted by a regular autosegmental automaton, it is also

accepted by a deterministic regular autosegmental automaton (which

can be constructed by the method outlined above) and further it can be

accepted by a reduced automaton in which no two states have exactly

the same transition function (for such states can always be collapsed into

a single state). We claim that there will be as many right congruence

classes in as there are states in a minimal (reduced, deterministic,

regular) autosegmental automaton =(S, T, U, i, F, t).

To see this, define iff for every scanning of starting in the

initial state i and ending in some state j there is a scanning of starting

in i and also ending in j and vice versa. Clearly, is an equivalence

relation, and . If , there must exist a state

j such that at least one scanning of one of the bistrings, say , will lead

from i to j, but no scanning of will ever lead from i to j. Since is

deterministic, scanning will lead to some state k j. We will show that

there exists a string such that from j we get to an accepting state by

scanning and from k we get to a non-accepting state (or conversely),
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meaning that but (or conversely), so in either case

.

Call two states p and q distinguishable iff there exists a string

such that starting from p, scanning leads to an accepting state, but

starting from q, scanning leads to a rejecting state or vice versa.

Indistinguishability, denoted by I, is an equivalence relation. Clearly,

pIp holds for every state p, and if pIq, also qIp. For transitivity, suppose

indirectly that pIq and qIr, but p and r are distinguishable, i.e. there is a

string for which p[ ] is accepting but r[ ] is not. Now, q[ ] is either

accepting or rejecting. In the former case, qIr was false, and in the latter,

pIq was false, contradiction. Further, in a minimal automaton there can

be no two (or more) indistinguishable states, for such states could be col-

lapsed into a single state without altering the accepted bilanguage. Since

j and k above are not equal, they are distinguishable by some , which

proves the “if” part.

To prove the “only if” part of the theorem, we have to show that if

a bilanguage gives rise to a finite right congruence, it is accepted by

some regular autosegmental automaton. We will construct the states of

the automaton from the congruence classes of the equivalence relation.

Let us denote the congruence class of a bistring under by ( ). The

initial state of the machine is the congruence class of the empty bistring,

( ), and the transition function from state ( ) is defined the following way.

Recall that t-catenation of a feature T (on the top tier) to some bistring

was defined in chapter 1 as associating T with the last feature on the

bottom tier of , and analogously b-catenation of a feature B (on the

bottom tier) to some bistring is defined by associating B with the last

feature on the top tier of . The result will be denoted by T and

B respectively. (Ordinary concatenation of bistrings and will

be denoted by as before.) Now, the result state of a top transition

from ( ) can be defined as the congruence class ( T) and similarly the

result state of a bottom transition from ( ) will be the congruence class

( B). Thus top (bottom) transitions are nondeterministic – there are as
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many result states as there are congruence classes for each member of

the top (bottom) tier alphabet. For ordinary concatenation of a bistring

, the result is defined by the class ( ), so as to guarantee scanning

independence.

Finally, the accepting states of the automaton are defined as those

congruence classes that contain the members of – this is well-defined

because if , both must be members of or both must be outside

(meaning that is a union of congruence classes). What remains to be

seen is that the bilanguage accepted by the automaton defined here is

the same as the bilanguage we started with. First let us take a bistring

included in – since is an accepting state, it follows that is

also in . Next let us take a bistring not in – since ( ) is not an

accepting state it would follow that is not in if we can show that no

scanning path would lead to any state other than ( ). This can be done

by induction on the length (defined as the maximum of the length of the

top and bottom strings) of . For length one, i.e. when C( )=x0y or x1y,

is trivial, since the scanning path is unique.

If it is true for all s of length , it will also be true of s of

length , but the proof is complicated by the fact that such bistrings can

arise in several ways (as discussed under (12) in chapter 1.6). When the

code of contains two adjacent numbers, i.e. when there was a full move

during scan, the parts preceding and following the break where the full

move occurs are guaranteed to be shorter than , so the induction step

is complete. But when there was no break, i.e. when all moves during

scan were top or bottom moves, splitting up the bistring would be a

more complex matter. Fortunately, in such cases the scanning is uniquely

determined by the association pattern, so the induction completing the

proof of Theorem 1. can be trivially performed on the number of moves

instead.

Now that R is established as a coherent class we can investigate its

relationship to B and NA more fully. Let us consider the bilanguage

– it contains those bistrings that have floating
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features on the top tier, floating features on the bottom tier, followed by

an end marker ‘1’ which is simply a feature on the top tier associated to

a feature on the bottom tier. Clearly, if , then

so is not in R. However, it is in B, since the following

automaton will accept it:

(13)

in from x from x from y automaton

state to y to z>y to w>x will

0 absent absent absent stay in 0

0 absent absent present go to 1

1 absent absent present stay in 1

1 present absent absent go to 2

2 any any any go to 3

With 2 as the only accepting state, the machine will accept only those

strings whose scan puts the machine in 2, but not further. To get into

2, the last thing the machine must encounter is a single association line

(the end marker) in state 1. To get into state 1, the machine can make a

number of top moves over floating elements (this is the loop over state

1) preceded by a number of full moves over floating elements (this is

the loop over state 0). Note that this is not scanning independent – no

provision was made for top and bottom moves to replace full moves out

of state 0.

What this example shows is that B is not contained in R. It is,

of course, contained in NA, and the bilanguage introduced above

shows that the containment is proper. The biautomaton that accepts this

bilanguage is trivial – it contains only one state and only full advance is

permitted (and that only when no association lines are present). To see

that no biautomaton can accept this bilanguage, suppose indirectly that an

-state biautomaton accepts . The bistrings (x0y) are all accepted
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, so there is at least one accepting state f which

accepts both (x0y) and (x0y) , , by the pigeonhole

principle. Let , and consider the bistring . In the first

steps, we arrive in f, and in the next p steps we make legal top moves

(since we are at the end of the bottom string) which are indistinguishable

from legal full moves. But p full moves would take as back to f, which

is an accepting state, so p top moves also take us back to f, meaning that

is accepted by , contradiction. To complete our “geographic

survey”, note that R is not contained in B. This can be seen e.g. by

considering the regular bilanguage . Collecting

these results gives us

Theorem 2. Both R and B are properly contained in NA, but neither is

contained in the other.

Let us consider how R can be characterized by operations. It is closed

under union and intersection as the standard direct product construction

shows, and also under complementation (as can be trivially established

both from the finite index property and from the characterization by

automata) – the group of boolean operations offers no surprises. But the

group of string operations, namely concatenation and Kleene-closure,

requires considerable revision if we move to the domain of bistrings.

If we use concatenation as the only “succession” operation, we have a

problem in that there are an infinite number of further undecomposable

structures, such as the bistrings encoded as 1(t1) (or 1(b1) ), which

correspond to the spreading of a single element on the bottom (top) tier.

These structures, and many others, have no structural break in them if

indeed concatenation was the only possibility. That is why we introduced

t-catenation and b-catenation above.

Once these operations are available for creating larger bistrings from

two successive bistrings,Kleene-closure will include these as well. This

way the “mystery” of bilanguage introduced in 2.5.1 above disap-

pears. is not the Kleene of ,
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because the closure means arbitrarily many catenation operations includ-

ing t-catenations and b-catenations. The Kleene of is really

, which is of course regular. From the characteri-

zation by automata it easily follows that the concatenation, t-catenation,

b-catenation, and Kleene-closure of regular bilanguages is again regular.

Standard proofs will also generalize for closure under (inverse) homo-

morphisms and (inverse) transductions. Since closure under transduction

is particularly relevant for the method of replacing phonological rules by

transducers, let us state this in a separate

Theorem 3. If is a regular bilanguage and G = (S, I, O, i, F, T), a

generalized bisequential mapping, the image G of under G is also

regular.

Proof. First we create a trace of the GSM transducing a bistring over

some top tier alphabet and bottom tier alphabet . In a single step,

G scans some letter on the top tier, on the bottom tier. Depending

on these, on the presence of association lines (see 2.5.1), and on its

current state s , G will scanning independently advance the tapes, move

to some state s , and add a bistring (by concatenation, t-catenation, or

b-catenation) to the output created so far. Since there are only finitely

many bistrings in T, we can create a finite alphabet of 10-tuples (s , p, q,

b , b , b , n , n , , s ) corresponding to such elementary moves. s

is the state of G before transition, p (q) is the symbol under scan on the

top (bottom) tier before transition, b is 1 or 0 depending on whether an

association line between x and y was present, b (b ) is 1 or 0 depending

on whether an association line from x (y) to some further element on the

bottom (top) tier was present, n is or depending on the move taken

on the input string, n is or depending on the catenation operation

used for output, is the output, and s is the resulting state.

The idea of the proof (modeled after Salomaa 1973, Ch. 4) is to

encode the generalized sequential mapping in strings of 10-tuples. Those

that correspond to the action of the GSM on some input bistring will



84 Formal Phonology

homomorphically yield sequences of 4-tuples (p,b ,q,n ) that give linear

encodings of the input string, and similarly the concatenation of 2-tuples

( , n ) gives a linear encoding of the output string. Thus if we show that

any regular bilanguage is the inverse homomorphic image of a regular

language of 4-tuple codes, and filter out those 10-tuple sequences that

do not correspond to well-formed transductions (e.g. because the first

member of the first 10-tuple is not the initial state of the GSM), the 2-

tuple code of the output bilanguage can be obtained from the resulting

stringset by homomorphism. Since the filtering involves the intersection

of a regular language with regular sets, what remains to be seen is that the

encoding of a regular bilanguage is a regular language and, conversely,

the decoding of a regular language is a regular bilanguage, which is trivial

for the scanning invariant encodings/decoding.

We have seen that the family R of bilanguages is closed under the

boolean operations, catenation operations, andmappings and thus appears

as a perfect analog of the regular family of string languages. The final

step in characterizing regular bilanguages is to show that a “regular

expression” characterization is also available for regular bilanguages. It

is a good exercise to prove the following

Theorem4. Every bilanguage accepted by an autosegmental automaton

can be built up from elementary ones by union, t-catenation, b-catenation,

concatenation, and Kleene-closure.

2.5.3 Implications for phonology

Now that the foundations of formal bilanguage theory have been laid, it

is perhaps time to stop for a minute and take stock. What have the first

two chapters accomplished? At the conceptual level, the basic ideas of

autosegmental phonology have been explicated in a relatively simple but

As the example of the language shows, scanning invariance is crucial here – the linear

code introduced in chapter 1.4 can yield regular stringsets from non-regular bilanguages.
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rigorous theory analogous to that of formal languages. At the practical

level, the method of linear encoding enables us to do autosegmental

phonology using the algorithms already in place for linear phonology.

But the formal method offers more than an answer to what things are and

how they work, it offers insight intowhy things are the way they are. Here

I will consider two rather puzzling aspects of autosegmental phonology:

the proliferation of theories of reduplication, and the OCP.

After the spectacular success of autosegmental phonology in elimi-

nating root-and-pattern infixation from the inventory of rules (McCarthy

1979), most phonologists subscribed to the broader program of elimi-

nating transformational rules altogether. One of the prime targets of the

effort to streamline the rule component was, and continues to be, redu-

plication. Starting with Marantz 1982 a new autosegmental account of

reduplication appears almost every year. Why dowe see this proliferation

of theories? The obvious answer would be that they are empirically in-

adequate (as argued e.g. in Carrier-Duncan 1984). But many empirically

inadequate theories remain unchallenged for years, and we can safely

conclude that the real reason lies deeper. The problem is not that these

theories cannot account for the data, for that can always be fixed, but

rather the fact that they fail to carry out the promised reduction. As we

noted in 2.2.4 above all theories of reduplication make essential use of

some otherwise unmotivated operation.

Can one day a more clever phonologist come along and eliminate

reduplication without introducing some other operation or abandoning

some fundamental tenet of autosegmental phonology at the same time?

The formal theory developed here enables us to answer this question in

the negative. It has been widely recognized that the power of the redupli-

cation transformation is not within the reach of autosegmental phonology.

xx languages, such as created by full stem or word reduplication, were

known from the outset to be outside the regular domain. What has not

been recognized is that limited length, templatic reduplication is also
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outside the domain of autosegmental phonology as long as it is viewed

as a structured class of problems (in the sense of 2.2.4).

Two identical copies of any string, appearing on two tiers, and asso-

ciated feature by feature, are easy to create by finitistic methods (using

biautomata). This is the copy or transfer stage of the derivation. It is also

possible to dissociate the two strings by finitistic methods – what is not

possible is to linearize the results. Using the techniques developed so far

it is easy to show that the language of matching strings with a single

association line running from the last feature on the top tier to the first

feature on the bottom tier is outside NA, and thus outside B and R. But if

we had a general-purpose algorithm of the kind theories of reduplication

attempt to create, i.e. one that would work for any arbitrary CV template,

xx languages were possible to generate by regular autosegmental rules,

so would also be possible, contradiction.

Not only does this analysis pinpoint the reason for the failure of

existing theories of reduplication – it also explains their partial success.

Clearly, as long as instances of reduplication rules in various languages

are viewed as an unstructured collection of problems, it is possible to

devise a solution to any such collection as long as it does not contain

unbounded cases. In other words, it is not the individual cases, but

precisely the attempt to integrate these into a structured, perhaps even

parameterized, “theory of reduplication” that leads, of necessity, to the

introduction of some extraordinary device.

The Obligatory Contour Principle (OCP) of Leben 1973 has been

an important part of autosegmental phonology since the initial develop-

ment of the theory. In its basic form, the principle states that contours

(sequences of non-identical features) are obligatory, i.e. that sequences

of identical features are disallowed, at least in underlying representations.

Without attempting to do justice to the complex discussion surrounding it

(see e.g. Odden 1986, Hayes 1986, Schein and Steriade 1986, Yip 1988,

Odden 1988), here I will focus on one rather puzzling aspect of the OCP,
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namely that all kinds of dissimilatory lexical constraints are explained

on the basis of it (see e.g. McCarthy 1988). What makes such a simple

principle able to carry so heavy an explanatory burden?

The answer is to be found in the relationship of contours and advance-

ment along the tiers. The finite state control of autosegmental automata

can move to a new state on the basis of detecting a different feature or a

new association pattern. But if the features on one tier become identical

in value and association pattern, the automaton must repeat a cycle of

states. In the simplest possible case, this cycle will be a loop over a single

state, in the next simplest case the cycle will involve alternation between

two states, and so on. Conceptually, the OCP corresponds to the simplest

case. In automatic advancement a machine remaining in the same state

cannot distinguish between the bistrings for arbitrarily large

, i.e. a sequence of identical features will be indistinguishable from a

single feature.

Thus the OCP appears not as an inviolable pattern but as the simplest

case within a hierarchy of increasingly complex patterns. The next case,

alternation between two states, is widely attested in the construction of

metrical feet from syllables. The case after that, ternary feet construction,

is only sporadically attested, if at all, and there are no known examples

of quaternary cycles. The OCP can exert such a wide influence because

it is the simplest possible case. In terms of autosegmental automata the

kind encountered most often in phonology is the looping kind (where

accepting states are final), and such automata will necessarily show OCP

effects.

The conclusion I would like to draw from these examples of looking

at autosegmental phonology from a finite state perspective is that the

formalism developed here is loose only superficially, to the extent that it

makes possible to state phonological rules which are nowhere attested.

But in amore fundamental respect the regularity of the formalism gives us

a rather tight grip on phonology, because it imposes a powerful constraint

on the languages characterizable by autosegmental means.
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2.5.4 Subsequent work

Wiebe (1992) realized that the tuple notation proposed in 2.4.1 above

for 3-strings and in general for k-strings with will be applicable

for (bistrings) if we simply flag each element on each tier with

the number of association lines it has (expressing the number in base

one). For example, for the bistrings listed in (1:15) and repeated here for

convenience,

(14)

a k c d e f g h

|/ / / |/

H H L M H L M

Wiebe would have a 2-tuple (a1k1c1de1f1g1h, H11H1LM1HL11M). As

he notes, this coding scheme is far easier to extend to than the linear

codes proposed in chapter 1.4 above because the 2-tuples extend naturally

to -tuples and the identity of the association lines can be maintained by

using a separate unary base symbol for each plane. For example, if we use

the symbol ‘1’ for the plane between the top and the middle tier and ‘2’

for the plane between the middle and the bottom tier in the representation

given in (11) above and repeated here for convenience,

(15)

d e f

|/ |

g h i

|/ |

j k l

Wiebe’s tuple encoding would yield (d1e1f1,g112h2i12,j22kl2). Another

advantage of this code is that it easily extends to degenerate cases where

one or more of the tiers is empty or where the graph encoding the tiers

permitted to have associated nodes (called the geometry of features, see



2. Rules 89

section 4.1) is not required to be a tree. Also, ordinary multi-tape finite

automata are now applicable since the association lines going to cells on

the -th tier are now encoded in the -th member of the tuple. However,

the larger program of reducing the autosegmental case to the

study of the linear case is no longer feasible in this framework.

A similar -tuple encoding is presented in Bird and Ellison 1994 as

part of a larger program of compiling autosegmental representations into

regular expressions and finite automata. Unlike Wiebe 1992, Bird and

Ellison accept the conclusion of chapter 2.2 that autosegmental phonol-

ogy is regular, and provide a method for directly expressing phonological

constraints as finite automata. The major differences between the formal-

ization presented here and that of Bird and Ellison are the monotonicity

and the soft semantics of their system. Monotonicity will be discussed

in greater detail in chapter 4 – here it is sufficient to say that Bird and

Ellison use constraints in a genuinely monotonic, monostratal setting,

while the present work uses a multistratal setting which does not exclude

non-monotonic analyses.

The present work has strict semantics in the sense that the notion

subrepresentation of requires the association lines to be explicitly listed.

For example the structure given by is a sub-APR of (16)

but is not.

(16)

x y

a b c

The semantics is strict inasmuch as a rule with SD would

not be triggered in this environment. In other words, ordinary concate-

nation (as opposed to t-catenation or b-catenation) plays a distinguished

This is exactly as required by the Linking Constraint of Hayes 1986.
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role in decomposing the input to a locus and a context of rule application.

But for Bird and Ellison, rule application means constraint superposition,

and subrepresentation of is defined simply by the subset of relationship.

One particularly noteworthy consequence of this approach is that

sequences of two identical segments become semantically indistinguish-

able from geminates. A sequence of two short vowels aa as in (17A)

and a long vowel a: as in (17B) will, by the Bird and Ellison algorithm,

be encoded in the 2-tuples and

respectively.

(17A) (17B)

a a

V V

a

V V

As we convert these 2-tuples to regular expressions, the first will yield

while the second will yield .

Though syntactically different, semantically these terms are equivalent,

since the term can be absorbed in the terms. Because a large number

of phonological rules, both lexical and postlexical, are sensitive to the

difference between a sequence of two identical short segments and a

single long segment, the semantics of (17A) and (17B) must be kept

distinct. In earlier versions of the formalism such as Bird and Klein

1989 this could be accomplished by inserting a phonetically unrealized

point event between the two segments in (17A), but in the current version

the use of such devices cannot be reconciled with the overall claim to

monotonicity.
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Itô, Junko 1989. A prosodic theory of epenthesis. Natural Language

and Linguistic Theory 7 217–260.

Johnson, Ch. Douglas 1970. Formal aspects of phonological represen-

tation. PhD Thesis, UC Berkeley.
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Chapter 3

Duration

So farwe have learnedwhat autosegmental representations are (chapter 1)

and how they are manipulated by autosegmental rules (chapter 2). But

what is the point of all this manipulation? What are the representations

produced by the rule systems good for? The received view in generative

phonology is that the ‘surface phonological representations’ output by

the phonological component serve as the input to a phonetic component

which will produce an articulatory or acoustic specification from these. In

other words, the meaning of phonological representations is to be found

in their phonetic interpretation. Our aim here and in the next chapter

will be to explicate this idea using the same formal mechanism that

is generally used in logic and linguistics to explicate meaning, namely

model-theoretic semantics.

The key idea of model-theoretic semantics is to specify a mapping,

the interpretation function, which links the theoretical structure under

investigation to actual structures that can be found in (platonic) reality.

In order to make use of this idea in phonology we need three things: a

specification of the domain of the interpretation function, a specification

of its range, and a specification of the mapping itself. So far we have

dealt with the domain, which is the set of well-formed autosegmental
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structures (see 1.1-1.3) and its temporal structure, which is given in terms

of timing units (see 2.4.4). In this chapter we will deal with the range

and its temporal structure, and with the real-time aspect of the mapping

linking the two.

Phonologists generally view the task of phonetic interpretation as a

procedure yielding the articulatory (or possibly acoustic) specification of

a single prototypical utterance, perhaps parameterized for the physical

dimensions that determine the speaker’s idiosyncratic pitch range, vocal

tract characteristics, and other biologically determined factors. Since

explicitly specifying such an interpretation procedure is, as every speech

engineer working on synthesis systems knows so well, a task of immense

complexity, here attention will be shifted from the single prototypical

utterance to the statistical ensembles of all utterances that can be the

phonetic interpretation of a given surface phonological representation.

At first sight this might appear to be a more ambitious undertaking;

for example, to specify the phonetic interpretation of vowel length we

needed only one value (the duration of the prototypical vowel) under the

generally accepted view, while under the view presented here we need to

specify a random variable that assigns a duration value to each member

of the statistical ensemble of vowel utterances. But as we shall see, it

is in fact much easier to describe an interpretation function that maps

representations onto model structures containing random variables than

to include in the interpretation function all factors that contribute to the

variability of speech. It is by now a commonplace in speech engineering

that phoneticians in fact do not have a full understanding of the factors

underlying the observed variability of speech, and that ignorance models

(in the sense ofMakhoul and Schwartz 1986)which capture the variability

by statistical optimization techniques do much better than models based

on human expertise.

This work attempts to bridge the gap between the practice of pho-

nologists and the practice of speech engineers, and the key technical

step in this undertaking is choosing model structures which on the one



3. Duration 99

hand preserve the essence of the linguistic idea that phonological rep-

resentations are to be interpreted as (parameterized) utterances and on

the other hand are compatible with the speech engineering idea of deter-

mining parameters by statistical analysis (training). While the need for

some kind of phonetic structures that can serve as models for interpret-

ing autosegmental notation was recognized from the outset, the existing

models, such as the event structures of Bird and Klein 1990, suffer from

a serious deficiency: they are incapable of capturing the real-time nature

of speech. The apparatus of temporal logic used in these investigations

(see van Benthem 1983) is sufficient only for gross temporal relations,

such as overlap and precedence, which are preserved by time warping.

Since speech recognition applications demand a less abstract view, here

I will concentrate on the real-time effects that are not warping-invariant.

These aspects, primary among them the duration of phonological events,

are only expressible in a formalism like the metric temporal logic of

Koymans 1990 which contains an explicit notion of distance between

points in time.

In order to establish the overall properties of segmental duration I

will take theories, rather than data, as my starting point. The classical

theory of duration, implicit in the vast majority of the experimental work

on duration from Meyer 1903 to Klatt 1976 and beyond, is explicated in

section 3.1. The gestural theory of duration developed at Haskins Labs

(Browman et al. 1984, Kelso and Tuller 1987, Browman and Goldstein

1990a) is discussed in section 3.2. The lognormal hypothesis found to be

implicit in these theories is used in section 3.3 to guide the reanalysis of

the data of Crystal and House 1982. The implications of the results for

phonetic interpretation in general, and Markov modeling in particular,

are discussed in section 3.4, where the durational properties of the most

important Hidden Markov topologies are analyzed, and input models are

shown to be trainable to any prescribed duration density. This result is

then used in 3.5 to justify the idea of using Markov models as the model

structures in specifying the semantics of segmental duration.
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3.1 The classical theory

In this section I investigate the “classical” theory of duration by means of

looking at a formally defined version due to Dennis Klatt (for a detailed

exposition, see Allen, Hunnicutt and Klatt 1987) from a rather abstract

point of view, and deducing predictions (e.g. shifted lognormal distrib-

ution of duration densities) on the basis of this formal definition, rather

than on the basis of measurements. Whether my dubbing the theory

“classical” is justified or not is debatable, but I believe that the term is

correct inasmuch as the fundamental assumption underlying the model,

namely that the observed variability of segmental duration can be ana-

lyzed as the compound effect of various contexts (and overall tempo) on

the inherent duration of the segment, seems to be shared by nearly every

20th century phonetician/speech engineer.

To fix ideas, in this chapter utterances will be viewed as being com-

posed of smaller units, such as phonological words, syllables, and seg-

ments in an exhaustive, non-overlapping manner. Within every layer

of the hierarchy, each unit begins exactly the moment the previous

one ends, i.e. there is no overlap between the production/perception

of neighboring units. By the phonemic principle each phone belongs to

one of a small number of language-particular equivalence classes called

phonemes. However, phonemes are defined as minimal contrastive units,

not as maximal homogeneous intervals, so we must leave open the pos-

sibility that a single phone is composed of a succession of more uniform

subphones (or microsegments such as a stop closure and a stop burst,

see e.g. Fant 1973). Here we assume that subphones are also strictly

concatenative – the issue of fuzzy boundarieswill be taken up in chapter 4.

Let us denote the duration of a phone , belonging to some phoneme

, by . The numerical value of will not, of course, be fully

For a fuller discussion of the hierarchy of units relevant for phonology, see e.g. Nespor

and Vogel 1986, and for a clear statement of the alternative view, namely that phone-sized

units (and therefore larger units as well) generally overlap one another and there is no clear

partitioning of the utterance into intervals corresponding to segments, see e.g. Fowler and

Smith 1986.
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determined by the phoneme or phoneme variant belongs to; it will be

influenced by overall speech tempo (which in turn depends on the speech

style, and even the emotional state, of the speaker), by the segmental

and hierarchical context of the token and perhaps by other, not readily

identifiable factors. It is therefore reasonable to treat as a random

variable, and to define the duration of a phoneme as the expectation

(1)

Here E stands for mean (expected value) and are the relative

frequencies of the variants belonging to the phoneme . In the

simplest case, when a phoneme has only one variant, the formula

reduces to . In what follows, I will discuss primarily this simple

case – the results will trivially generalize to the case where a phoneme

has a number of variants.

The simplest way to account for the effect of speech tempo is to

normalize by a factor that is characteristic of the overall tempo (Heinitz

1921). With this normalization in effect, the classical theory of duration

assumes that the expectation is an inherent property of segment

type . In other words, the actual duration will be a function

of some inherent duration and some corrective factors which

depend on segmental and hierarchical context and perhaps on other

factors. Most of the experimental research on segmental duration can

be recast in this framework as an inquiry as to the numerical values of

and the corrective factors . A more abstract, but still data-driven

approach is taken by van Santen andOlive 1990, where attention is shifted

from the actual numerical values to the determination of the exact range

of , and to the manner in which different factors interact.

The term phoneme variant is used here to denote those groups of phones within

a phoneme which are characterized by a high degree of phonetic similarity. Ideally, a

phoneme will have only one variant, but we often find variants such as tapped vs. trilled

which form phonetically coherent subgroups within the whole group constituting the

phoneme.
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The classical literature on the subject of segmental duration is full

of statements of the form “vowels are lengthened by 20% in stressed

syllables” or “segments are 20% shortened before a nasal”. In fact,

durational rules of speech synthesis, such as discussed in Baker 1979,

Carlson and Granström 1986, Allen, Hunnicutt and Klatt 1987, tabulate

INHDURvalues (our ) and PRCNT changes (out ) of these values

in contexts . In what follows, I will concentrate on this multiplicative

structure of the classical model which, in Klatt’s formulation, is enhanced

to include an additive MINDUR parameter, inherent in each phoneme,

that serves as a lower bound for the values can take. Our starting

point is the basic equation of the Klatt model:

DUR – MINDUR =

PRCNT (INHDUR – MINDUR )

It has been observed that the distribution of segmental length becomes

more and more characteristically normal, with decreasing variance, as we

fix more and more of the factors, such as phonemic identity, segmental

context, degree of stress, etc. that influence duration. The Klatt model

abstracts away from the remaining variability by replacing this normal

variable by one that can be thought of as uniformly distributed (over a

very short interval determined by the precision of the arithmetic) or even

degenerate (concentrated on a single point). But the exact nature of the

underlying distributions is irrelevant: as long as there are a large number

of independent factors that play a role in the rules governing duration,

for every phone these will be present (or absent) in a random manner,

and we can appeal to the Central Limit Theorem and deduce that (DUR –

MINDUR) will follow a lognormal distribution, i.e. that the distribution

of follows an upshifted lognormal law.

By Olive (pc). I am also indebted to Jan van Santen for his comments and criticisms.

Needless to say, my conclusions are not necessarily shared by them.
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For such an appeal to be successful we need to demonstrate two

facts: that there are enough rules to justify taking the limit (which, in a

literal sense, would require infinitely many rules) and that the contexts

that trigger the rules are truly independent. As for the number of contexts,

an overview of the duration literature shows that at least thirty contexts

must be considered. Without attempting an exhaustive listing, we can

identify at least the following factors:

1. local speech tempo

2. phonemic identity

3. position in the metrical structure

4. position in the word

5. position in the utterance

6. segmental context

Here local speech tempo refers to the fact that word length grows subad-

ditively in the number of syllables, i.e. that the more syllables a word has

the shorter these become. This factor is to be distinguished from over-

all speech rate, which is not listed above because of the normalization

assumption made earlier. Phonemic identity contributes at least a dozen

factors and possibly more, depending on the feature analysis used in the

analysis of phonemes. Position in the metrical structure refers to three

independent factors: position of the segment in the onset/rhyme, position

within the syllable and position within the metrical foot. Position within

the word and position within the utterance refer to edge effects, generally

closeness to the end, rather than the beginning, of a word or utterance, cf.

Selkirk 1986. Finally, segmental context refers to nearby segments, both

tautosyllabic and heterosyllabic. Even if we pool the effects of segments

The impact of higher metrical constituents, such as “superfeet” remains to be

demonstrated.



104 Formal Phonology

belonging to the same major class, if only adjacent segments are consid-

ered, this gives at least six factors, and if two segments are considered on

both sides, this gives at least twelve factors, because at least three major

class features are necessary.

Needless to say, not all these factors are completely independent.

If a segment is utterance final, it must also be word final. Phonotactic

constraints can establish strong correlation between the phonemic identity

of a segment and its neighbors. The major class features will largely

determine the position of a segment within the onset or the rhyme. But

by a suitable change of base the feature system can be made completely

orthogonal; for instance, we could replace the intricacies of metrical

structure by a single (perhaps even binary) factor of stress. The real

issue is not the number of factors we start with, but rather the number

of orthogonal factors we end up with. According to van Santen (pc) we

need some seven (multivalued) factors to account for 80% of the variance

in duration data; this makes it likely that at least twice as many factors

would be needed to account for 90% of the variance, and four times as

many to account for 95%. This suggests that the number of independent

factors will be sufficiently large to justify the abstraction of looking at a

finite sequence of rules as if it was infinite.

But even if we could account for 95% of the variance using a mul-

tiplicative model or could closely fit a shifted lognormal curve to the

samples analyzed in the literature, this does not, by itself, prove the cor-

rectness of the model. Still, there are some weighty reasons to believe

that the classical model of duration, as presented above, cannot be far off

the mark. First of all, it fits the data reasonably well (though not nearly as

well as we would like – see section 3.3 below). Second, it is the case that

the empirical distribution of will be zero for some minimal dura-

tion (with =3 msec, for concreteness), independent of the particular

method of measuring duration (kymogram, spectral analysis) chosen. It

should be emphasized here that the lower bound for MINDUR does not

In the light of published data, 3msec is perhaps excessively cautious. For example, the

smallest MINDUR value used in Allen, Hunnicutt and Klatt 1987:96 is 20 msec.
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depend on the inherent precision of the measurement, which is in the .1

msec range, but rather on the inherent impossibility of recognizing any

“overshort” stretch of speech as belonging to any phoneme. In other

words, the instruments are sensitive enough, but the physiological notion

of a “phone” is not; for example, it simply makes no sense to speak of a

vowel phone shorter than a single pitch period.

There is no doubt that psychologically a phoneme can be perceived

even where all primary articulation is missing, just on the basis of sec-

ondary clues such as compensatory lengthening, nasalization, or formant

movement in adjacent segments. However, the temporal span of such

coarticulatory effects does not provide the missing segment with tempo-

ral extent for the simple reason that the phone carrying the coarticulation

has its own temporal extent which it does not relinquish. (To use a simple

spatial analog to the temporal situation that obtains, let us take a tightly

packed bag of groceries. When I remove a banana showing the unmistak-

able signs of having been next to a pineapple, I will conclude that there

was a pineapple next to this banana at some earlier time. I can even infer

the size of this pineapple from the pattern it left on the banana. However,

I cannot draw a conclusion as to how much space this pineapple now

occupies in the grocery bag, for it might have crushed the banana back at

the store, and it might not be present in the grocery bag at all.)

Another justification of MINDUR comes from the linear, but not

homogeneous relationship between the duration of short and long vowels

established by Fant and Kruckenberg 1989. In Swedish, at least, the aver-

age duration (in milliseconds) of long stressed vowels and short stressed

vowels is related by a regression as overall tempo

ranges from connected speech to words spoken in isolation. If there was

no MINDUR parameter, we would expect the average duration of long

stressed vowels to be exactly twice as large as that of short stressed vow-

els, with the difference between the predicted 2 and the observed 1.9

perhaps attributable to local tempo effects. But there would be no reason

to assume that a 45msec constant enters the equation, this makes sense
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only if there are MINDUR parameters present in the equations describing

the relationship of vowel duration to overall tempo.

3.2 The gestural theory

The classical model, as embodied in the synthesis algorithm of MITalk,

is deterministic: its ultimate justification comes not from good fit with

duration measurements but from the quality of duration synthesis it pro-

duces. But it was almost trivial to peel off the deterministic layer (which

is necessarily present in any algorithm) to reveal the key feature of the

underlying probabilistic model, namely the multiplicative effect of inde-

pendent factors. In this section Iwill analyze another deterministicmodel,

the gestural theory developed at Haskins Labs (Browman and Goldstein

1989, Browman and Goldstein 1990b) with the aim of identifying the

sources of variability according to the model.

The basic assumption of gestural theory is that speech production

can be described in terms of successive and parallel gestures, with any

single gesture corresponding to the “formation (and release) of a charac-

teristic constriction within one of the relatively independent articulatory

subsystems of the vocal tract” (Browman and Goldstein 1989:201). The

unfolding of a single gesture is a solution to a second-order linear differ-

ential equation corresponding to a mass-spring model:

(2)

In the Haskins model, damping is set to critical, mass is normalized

to unity, and the only parameters subject to variation across gestures,

contexts, and individuals, are the stiffness k and the displacement .

Given these assumptions, the solutions to (2) are given by:

(3)

The attainment of target position is defined in terms of the natural

frequency of the system, as 2/3 of a full cycle:
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Because it takes an infinite amount of time to actually reach

the target in a critically damped system, we have specified

that the effective achievement of the target is at 240 degrees

with respect to the abstract underlying 360 degree cycle.

(Browman and Goldstein 1987:7)

If stiffness, like many other biological parameters that can only take

positive values, is distributed lognormally (see Johnson and Kotz 1970

Ch 14.6), the time required to attain the target, which is given by

(4)

will also be lognormally distributed. (Similarly, if log stiffness is distrib-

uted uniformly, log duration will also be uniformly distributed, and the

same conclusion would hold for any family of distributions closed under

linear transformations.) This prediction is directly relevant only for those

segments which can be assumed to employ a single gesture (e.g. sim-

ple vowels). However, it can be easily extended to segments requiring

multiple gestures, because the model defines the relative timing of such

gestures in terms of phase angles. Therefore, in such cases the theory

predicts duration to be the sum of lognormally distributed variables.

3.3 A statistical study

The lognormal hypothesis that emerged from the theories discussed so

far encompasses a broad range of models. We have a choice between

three-parameter and two-parameter lognormal distributions, i.e. we can

investigate the model with or without MINDUR. For segments such

as stops, where the decomposition into several subphones/gestures is

justifiable, we could use the sum of lognormals, and for segments such

as liquids where different phoneme variants can be assumed, we could

use a mixture of lognormals. Furthermore, these families of lognormal

models should be compared to the corresponding normal families, gamma

families, and so on.
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At this point it seems natural to proceed by analyzing a data set

according to these hypotheses and applying statistical criteria to judge

the goodness of fit. But before we do this, a word of caution is in order.

Unless we deal with a finite domain, no amount of data is ever sufficient

to establish positive results. It is certainly possible to find out which of

two models fits the observations better. But it is not within the power

of statistical analysis to create a model: models are created by humans

capable of formulating hypotheses about the causal mechanism behind

the observed data. To give an example, the careful and sophisticated

exploratory data analysis presented in van Santen and Olive 1990 will

certainly convince the reader that among the models they considered,

describes the patterns in the data best. But why take the logarithm,

rather than, say, the arcus tangent, of duration data? There is an infinite

variety of functions to consider, and ultimately our goal is not to establish

an empirical law that is expressible in terms of the more commonly

used functions, but to understand the mechanism responsible for the

observed phenomena. Statistical analysis is a powerful tool for comparing

(and rejecting) empirical laws, but it loses its power when it comes to

explanation.

With this caveat, let us now turn to the analysis of a rather detailed

data set, kindly provided to the author by House (pc). The goals of this

analysis are rather modest: we would like to establish the fact that the

lognormal hypothesis is superior to the normal hypothesis, and conclude

from this that a multiplicative model is superior to an additive one. Over

10,000 measurements from the “Hunter” and “Farm” scripts (see Crystal

and House 1982) are summarized in the following table:
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Table 1.

CH N MIN MAX MEAN STD SKEW K
aa 247 47 322 134.3 42.7 0.9448 2.2752
ae 217 21 324 130.9 60.3 0.5215 -0.2328
ah 294 26 213 87.6 36.7 0.8165 0.3797
ao 167 37 318 146.0 57.8 0.6796 0.1958
aw 121 78 395 201.6 56.2 0.7442 0.7537
ax 413 7 198 49.2 17.0 2.3963 15.6174
ay 242 55 371 160.0 57.5 0.7692 0.7020
b 165 20 163 69.5 26.4 0.4982 0.3983
ch 77 53 222 126.6 36.0 0.6323 0.2243
d 158 16 187 72.4 24.9 0.5288 1.9931
dh 395 9 140 35.4 17.1 1.3957 3.8906
dx 153 9 72 30.0 11.0 1.0036 1.2641
eh 358 26 204 81.9 38.3 1.0414 0.7009
er 125 40 312 130.9 59.9 0.7260 -0.0092
ey 196 40 390 132.7 49.3 1.8027 6.0673
f 234 13 195 92.7 33.3 0.3635 0.1704
g 52 48 129 84.4 19.9 0.2819 -0.6588
hh 218 11 186 55.6 29.0 1.3526 3.0132
ih 674 9 159 59.7 24.9 1.0330 1.3809
in 23 34 162 88.0 29.2 0.3887 0.8587
ix 30 20 121 60.6 26.6 0.7564 -0.3247
iy 272 24 301 107.0 43.5 1.2557 2.5328
jh 45 59 176 105.1 31.4 0.7458 -0.5627
k 240 31 233 107.3 35.1 0.4256 -0.1259
l 395 25 205 71.2 27.9 1.2887 2.9937
m 305 15 165 71.2 24.7 0.8491 1.1586
n 653 18 218 64.6 28.4 1.6292 4.1849
nx 72 36 253 91.0 41.4 1.7171 3.5809
ow 122 65 340 155.0 61.3 1.0154 0.5446
p 59 45 174 101.5 26.7 0.1283 -0.1351
r 448 15 227 74.6 34.3 1.3503 2.8404
s 528 25 202 99.2 34.0 0.2058 -0.3224
sh 72 69 198 125.8 27.3 0.5255 0.0344
t 445 31 183 83.3 27.2 0.6961 0.3846
th 88 17 184 77.4 34.1 0.4241 -0.0194
uh 120 22 203 68.7 34.4 1.8762 4.0174
uw 108 36 309 113.6 53.4 1.5469 2.2509
ux 21 45 332 137.7 77.4 1.3221 1.0589
v 158 21 114 54.3 18.9 0.9941 0.9396
w 359 9 149 61.8 26.8 0.6065 -0.2206
y 59 19 160 56.9 25.4 1.3751 3.3729
z 359 21 210 67.2 26.0 1.6586 4.7250

Here and in Table 2 CH identifies the segment in darpabet notation. N is the

number of tokens – in the case of stops only those with full hold and release

portions are included here. MIN, MAX, and MEAN durations, as well as STD

(standard deviation) values are given in milliseconds. Skewness (SKEW) and

kurtosis (K) are sample, rather than population values.
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For the sake of completeness, let me include here in Table 2 those

segment types that only have a handful of tokens, as well as pause (pa)

and silence (si) durations. In the following discussion, these will be

ignored.

Table 2.

CH N MIN MAX MEAN STD SKEW K
il 3 84 140 109.3 28.3 0.9147 0.0000
im 7 28 84 59.4 17.6 -0.5023 0.8394
oy 6 229 368 297.6 53.1 0.1141 -1.2723
q 5 13 46 26.0 13.7 0.8792 -0.9204
wh 3 23 85 52.1 31.4 0.7296 0.0000
pa 220 16 2362 375.6 293.0 2.0612 9.5819
si 217 10 4735 838.3 510.2 2.7655 16.6205

Clearly, the overall shape of shifted lognormal distribution has the same

gross properties as the samples, as can be seen from the first few empirical

moments. Length measurements always yield an empirical distribution

with a heavy tail: the number of tokens with duration above the mode

will be in excess of the number of tokens with duration below the mode.

This becomes very conspicuous when compared to the prediction made

by normal distribution (i.e. the assumption that context effects on length

are additive, rather than multiplicative). The assumption of normality

(Zwirner and Zwirner 1936) implies that the distribution of length is

symmetrical around the mean. But because the mean does not coincide

with the mode, no sample ever follows this law near the mean. And of

course no sample ever follows this law away from the mean, because 0 is

an absolute lower limit and there is no absolute upper limit on the length

of segments.

On the other hand, there are several important distributions, most no-

tably the gamma, that will have the same gross shape after the addition of

a constant MINDUR, so not even an excellent fit with the data can prop-

erly justify the choice of lognormal distribution, especially as (1) makes

it clear that in principle we must deal with a mixture of upshifted lognor-

mal densities. But even if we leave this complication aside, we have to
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deal with a 3-parameter family, and only the means and the variances

can serve as a basis for a straightforward estimate of the relevant

parameters (mean and variance) of the upshifted lognormal distribution.

In particular, the estimation of MINDUR (the upshift constant) remains

problematic. In what follows, I will primarily compare the 2-parameter

lognormal family with the normal family, and discuss the 3-parameter

curves only in passing.

The fact that normal curves do not fit our data well can be easily

established by considering the error induced by the negative values of the

normally distributed variable: for a population that contains no negative

values this will be negligible only if the mean is at least three times

larger than the standard deviation. Since only a few segments (aa aw

ch g in jh k p sh t) meet this simple test, the normal hypothesis can

be safely disregarded. Similarly, if these samples were drawn from a

normal population, we would expect skewness and kurtosis values close

to zero – as Table 1 clearly shows, this is not what we find. The fact

that (two-parameter) lognormal curves fit the data much better can also

be established easily: both the chi-square and the Kolmogorov-Smirnov

tests support this conclusion. Table 3 summarizes the chi-square and KS

results for the original data and its logarithm:
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Table 3.

CH N-CHI LN-CHI N-KS LN-KS 3-CHI THR
aa 340.17 18.87 728 713 18.79 4
ae 35.52 20.62 899 903 20.62 0
ah 41.00 7.26 922 403 7.26 0
ao 8.41 7.08 715 601 7.08 0
aw 54.09 11.96 801 508 11.45 31
ax 1198.14 415.53 878 355 76.82 6
ay 49.70 11.90 783 561 11.90 0
b 26.25 12.26 498 931 12.26 0
ch 9.10 4.25 765 426 4.16 15
d 318.49 25.69 437 857 22.75 5
dh 150.32 17.14 1123 536 17.14 0
dx 39.88 3.52 965 325 3.45 2
eh 121.30 16.45 991 345 12.96 12
er 19.09 9.55 872 872 9.55 0
ey 2695.66 13.01 1119 698 10.21 19
f 16.14 43.77 406 869 43.77 0
g 3.95 3.04 845 725 3.03 9
hh 211.98 15.32 810 666 15.32 0
ih 233.30 11.84 887 312 11.84 0
in 2.19 1.95 1424 1447 1.95 0
ix 7.18 4.45 1767 1007 4.43 3
iy 238.63 8.34 743 311 8.28 4
jh 13.88 9.30 1621 1316 7.91 52
k 27.04 16.11 649 676 16.11 0
l 2423.26 11.57 910 252 10.87 4
m 79.83 16.68 850 438 16.68 0
n 44457.82 27.17 953 318 9.38 15
nx 106.17 6.50 1477 673 2.30 31
ow 38.27 10.48 1172 736 4.41 57
p 1.65 5.76 821 1067 5.76 0
r 630.12 13.95 781 404 13.95 0
s 4.51 1.50 368 740 1.45 13
sh 8.79 37.73 1019 610 37.73 0
t 4.39 6.45 784 353 6.45 0
th 39.30 6.29 636 898 6.29 0
uh 325.62 31.96 1656 749 11.98 21
uw 82.99 13.06 1718 995 5.18 31
ux 8.98 3.16 2072 1062 2.31 35
v 61.30 11.79 1015 377 9.31 12
w 43.85 17.31 879 586 17.31 0
y 26.70 3.38 1090 775 2.54 14
z 17294.24 22.05 1181 499 17.91 12

As in Table 2 CH identifies the segment in darpabet notation. N-CHI and LN-

CHI give the chi-square values for the normal distribution and the lognormal

distribution. N-KS and LN-KS give 10 times the Kolmogorov-Smirnov values.

For 3-CHI and THR see below.
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For the overwhelming majority of segment types, both the chi-square

and the KS scores improve as we replace normal by lognormal. There

are some exceptions (f p sh t for chi-square and ae b d f in k p s th for

KS), but the overall tendency is very clear – we can safely conclude

that a multiplicative model is better than an additive one. But the fit

of the lognormal model is still rather bad, and does not improve really

significantly if we add the third parameter.

Because of the numerical instability problems mentioned above (for

a fuller discussion, see Aitchison and Brown 1957, Cohen 1988) no three-

parameter curve fitting was attempted. Rather, the third parameter (the

threshold value) was systematically varied between 0 and the smallest

observation for each phoneme, with the other two parameters fitted, and

the threshold yielding the best chi-square value was selected. The results

of this theoretically questionable, but practically quite robust optimization

method are summarized in the last two columns of Table 3 above: 3-CHI

is the optimal chi-square value, and THR is the corresponding threshold

(MINDUR) parameter. As Table 3 shows, the addition of a MINDUR

parameter improves the chi-square values only in little more than half

of the cases (23 out of the 42 considered), and only in a few cases is

the improvement very pronounced. Nonetheless, the resulting MINDUR

values are not unrealistic.

In conclusion, the lognormal model justified above on the basis of

limit considerations clearly does not have enough parameters to account

for the extreme variability present in duration data – in fact the variability

is strong enough to make anything beyond the simple conclusion that

multiplicative is better than additive hard to prove. One can assume,

following van Santen (pc), that the reason for this is that the first few

factors governing duration account for a disproportionately large share

of the variance, so that later factors simply do not have the impact that

would be necessary to homogenize the distribution.

Be that as it may, the multiplicative effect is still strong enough

to call for an explanation. In section 3.2 above we have seen such a
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highly specific explanation of the underlying mechanism in terms of the

dynamics of speech production; here I will sketch a less specific, but

no less plausible explanation in terms of speech perception. We will

need three assumptions. First, that segmental duration is proportional

to the overall energy of a segment. This is trivially true for segments

such as sonorants that can be said to be dominantly steady state, and is

probably a reasonable approximation for obstruents as well. Second, that

the psychological intensity of a stimulus is proportional to log energy

(Weber-Fechner law). Third, that the psychological intensity of speech

sounds is normally distributed. From these assumptions it follows by the

definition of lognormality that duration will be lognormally distributed.

However, it remains to be seen whether the third assumption has to be

stipulated or can be shown by independent means.

3.4 Duration in Markov models

The inherently variable nature of speech production, rather strikingly

demonstrated by the duration data discussed above, would be lost if

the interpretation function mapped autosegmental structures onto metric

event structures deterministically. Thus we are led to the conclusion

that the range of the mapping should involve random variables; in the

case of timing units, these should be mapped on duration variables,

rather than directly on time intervals of definite length. If we had a

good model of the factors involved in duration, each of these variables

could be chosen to be defined by a few parameters that could be explicitly

calculated from other aspects of the representation in question, such as the

featural composition of the segment and its neighbors, and from overall

parameters, such as speech rate and speaker-dependent parameters, that

are not part of the representation but could be added to it at the point of

phonetic interpretation. Unfortunately, we do not have a good model of

the factors involved in duration, so we can not specify the parameters

of the distributions; all we have is the rather abstract idea that timing

units are mapped on random variables that take non-negative values
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which encode the durational aspects of the utterance. For the notion of

interpretation function to make sense conceptually, this abstract idea is

sufficient, because phonological representations abstract away from the

actual content of the random variables anyway. But as a practical matter,

we would like to find a compact way of capturing these random variables,

preferably a way that will allow us to read off the distribution of the

variables from the data directly. Such a compact representation is offered

by Markov models, to which we turn our attention now. Here we will

concentrate on the temporal aspect (topology and transition probabilities)

of Markov models, and defer the discussion of their signal content until

chapter 4.

Following Levinson, Rabiner and Sondhi 1983 I define a Hidden

Markov Model (HMM) as a triple where is the initial state

distribution, A is thematrix of transition probabilities, and B is thematrix

of signal distributions. A single run of the model will start in some state

with probability , where a signal is emitted with probability ,

and the model moves into state with probability where another

signal is emitted etc. In a word recognition task, each candidate word will

have its own triple, and the recognition of a signal sequence is

based on computing which triple could emit this sequence most probably.

In order to investigate the durational behavior of HMMs this generic

scheme will be replaced by a more specific one in which HMMs cor-

respond to single phones, rather than to full words. While in practice

HMM recognizers always operate with mixed size units, often including

clusters, syllables, full words and even combinations of words (Lee et

al. 1990), in principle the durational characteristics of phone-in-context

(triphone) models will make the dominant contribution as we move to

more and more varied texts. Therefore, the duration density of a single

(allo)phone will be a mixture of the densities characterizing the triphone

Strictly speaking, this need not be true in the case of segments like which are restricted

to functions words like that, than which will have full word models anyway. In such cases,

however, the HMM model actually makes no predictions as to the duration characteristics

of the segment in question – the only prediction that is made concerns the duration of the

whole function word.
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models, assuming that the only context effect that is handled in the system

is the influence of the adjacent segments.

In general, the same caveat has to be made concerning mixtures as in

section 3.1 above: if the duration densities given by context-dependent

models are , and the probability of context is , the overall

density will be given by

(5)

Let us therefore concentrate on the case of a single phone in a fixed

context. The single most crucial assumption I will make is that the

succession of states 0,1,..., in the HMM corresponds to the flow of time,

i.e. if themodel is in state at time it cannot be in some other state

for . (The possibility that the model remains in the same state for

some period of time is left open, i.e. the transition probabilities are

not assumed to be 0.) Given this “left-to-right” assumption (see section

IV of Levinson, Rabiner and Sondhi 1983), the initial state distribution

can be left out of consideration: we can simply say that state 0 is the

initial and state is the final state of the model.

3.4.1 The cascade model

The simplest model that corresponds with the flow of time is one in which

state will necessarily follow state , . If we denote the

time it takes to make a single transition by , any run will take exactly

time to arrive in the final state. A somewhat less trivial model is one

in which state follows state only with probability , and the

model can remain in state with probability . This makes

a certain amount of time warping possible. The resulting model is called

cascade following Crystal and House 1988:1566.

The cascademodel, in spite of its striking simplicity, already has some

highly desirable properties. First of all, it has a well-defined MINDUR

which is distinct from its INHDUR . Second of all, the time

of arriving in the final state has Pascal (negative binomial) distribution
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(because advancing by a single state can be thought of as a Bernoulli trial

– see Feller 1966. Ch 6.8.) which will show the required asymmetry.

Therefore, it is worth looking into its behavior given an ideal computer

which puts no limits on the number of states an HMM can have.

Clearly the granularity of the Pascal distribution will decrease with

the time an elementary transition takes. In order to keep MINDUR

and INHDUR constant, we can assume contravariant timing, i.e. that

whenever we double the number of states in the model, we halve the

execution time of an elementary step. As can be shown by the method

of characteristic functions, the limiting distribution arrived at in this way

will be concentrated on a single point, the expected value INHDUR.

This result has rather striking practical consequences: it means that if

transition probabilities are kept constant, increased frame rate can lead to

decreased fit with the data! The alternative is to decrease the probability

of self-loops as we increase the number of states, but this will converge

only if we use covariant timing assuming that the time an elementary

transition takes is proportional with the probability of this transition.

While the limiting distribution arrived at this way is not unreasonable

(we get Poisson density), the models used in this limiting process are,

since the time it takes to traverse an arc will be different for different arcs.

3.4.2 The tridiagonal model

Perhaps the most frequently used variant of the Markov models embody-

ing the left-to-right assumption is the tridiagonal model which permits

not only self-loops and single transitions, but also double transitions or

jumps from state to state . Assuming that the probability of loops

is , the probability of a single step is , and the probability of a jump is

, , the probability of a machine making exactly moves

to get from state 0 to state is given by

A more elementary demonstration of this fact can be based on the observation that as

the parameter is increased (and the parameter is proportionally decreased) the variance

of the Pascal distribution will tend to 0.



118 Formal Phonology

(6)

While this distribution is considerably more complex than the Pascal

distribution associated with the cascade model, I will argue that in the

limit the two are essentially the same, since again we get a distribution

concentrated on a single point, namely the expectation . For a

formal proof of this result and the other results announced without proof

so far see the Appendix (section 3.6).

3.4.3 The input model

The equivalence of the input model and the output model (called “Type

B topology” in Russell and Cook 1987) was noted in Crystal and House

1986. Input models are similar to the cascade model but they also

contain transitions from the input state to any other state. The way these

models will be investigated in the Appendix is by taking the initial state

distribution of cascade models to be adjustable; obviously the effect of

starting in a random state is the same as the effect of starting in an initial

state and than randomly jumping to some state. The final theorem in the

Appendix shows that by a judicious choice of we can fully control the

duration density of the limiting distribution between 0 and .

But the resulting density function will always be 0 for , and

this would be more adequate for distributions with a light tail. Still, if we

are willing to stipulate the existence of a constant (let’s say, )

such that no token longer thanMAXDUR= INHDUR is ever admitted,

Without this requirement, we would be left with the physically unrealizable complex

probabilities employed in Cox 1955.



3. Duration 119

we can use the input model (or the cascade model with nonuniform ) to

model any conceivable duration density. Evenwith the stipulation of such

a constant, this observation guarantees the convergence of the substitution

approach discussed in Russell and Cook 1987 to train for duration by

standard Markov techniques. Since , we can choose

MAXDUR so as to generate an error term , and

approximate on the interval [0, MAXDUR] with error . This

way, the total error of the approximation can be kept below any prescribed

, making inputmodels an ideal vehicle for expressing duration densities.

3.5 Markov models as model structures

Let us now return to the idea we started out with at the beginning of this

chapter, namely that the phonetic interpretation of autosegmental repre-

sentations should involve statistical ensembles of utterances rather than

single prototypical utterances. Nowwe are in a position to make this idea

more precise as far as the phonetic interpretation of duration is concerned:

the segment-based interpretation function maps autosegmental repre-

sentations onto strings of left-to-right Markov models so that a separate

Markov model corresponds to each root node in the representation.

There is no provision in this definition that root nodes with identical

featural contents must be mapped on identical Markov models: for ex-

ample, the first and the third Markov model in the interpretation of bib

might be quite different. We will say that a model structure durationally

corresponds with an autosegmental representation to degree if the

observed duration density of each segment (now restricted to the

context provided by the representation) and the model’s duration density

have L distance . Content correspondence

can be defined analogously, using spectral distance measures.

From a practical point of view, only models with a few states are really interesting.

Although there is no guarantee that such models can approximate the actually obtaining

duration densities to any degree, the results can be surprisingly good, especially as the

transition probabilities of such models need not be kept uniform across states.
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Before we generalize this idea to the autosegmental case in chap-

ter 4, let us inspect it more closely from the model-theoretic semantic

perspective. The basic idea is to explicate the meaning (semantics) of

syntactically well-formed expressions bymeans of an interpretation func-

tion that maps such expressions onto the appropriately typed entities in

model structures. In this case, the syntactically well-formed expressions

are the segments and (as long as we abstract away from spectral con-

tent), the appropriate model structures are random duration variables, as

expressed by Markov models. What is crucial here is that we do not

map the (duration of) phonological entities such as segments directly

onto stretches of utterances (having some definite duration). Rather, we

create an indirect mapping: we map the segments onto random variables,

which are themselves mappings from the set of segmental stretches of

utterances to real numbers.

This way, the attention is shifted from the problem of ascertaining

whether a single utterance token, or some stretch thereof, is an appropri-

ate phonetic interpretation of the segmental representation to the larger

but more interesting problem of ascertaining whether an ensemble of

utterance tokens, endowed with the natural frequency-based probability

measure, is an appropriate phonetic interpretation. Actually, we gain

in simplicity by this shift in perspective because the random variables

themselves can be thought of as accidental – only their distribution is rel-

evant. It makes no difference whether the (duration) values come from

measuring actual utterance tokens or from runs of appropriately designed

Markov models, as long as the two have the same distribution. Given the

result discussed in 3.4 above and proved at the end of the Appendix below

that any duration distribution can be captured with arbitrary precision by

Markov models with trainable input, we have a clear theoretical justifi-

cation for using Markov models as model structures, since this specific

choice of model structures results in no loss of expressive power .

If spectral content is also taken into account, the completeness of Markov models

becomes questionable – we return to this issue in chapter 5.
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3.6 Appendix

In this section, I will first discuss the limiting distribution of duration

density predicted by the tridiagonal model, and than show that the input

model makes no comparable predictions. The reasons why the input

model can yield any prescribed duration density distribution are eluci-

dated in a way which is considerably more direct than the methods used

in Cox 1955.

Given the structure of the tridiagonal model, its transition matrix

(except for the last two elements of the last column) can be written as

, where is the identity matrix and has 1-s directly above

the diagonal and 0-s elsewhere. In order to preserve the stochastic nature

of the matrix, the row sums have to be set to 1 by taking and

– aside from this complication, the above decomposition

holds. Notice that the matrix is nilpotent: since it takes every base

vector to the next one (except for the last one which it takes to 0), applying

it times will take every base vector to 0.

The probability of being in state after steps is given by .

The probability of being in state after exactly steps is times the

probability of being in state after steps plus times the

probability of being in state after steps. (Recall that in order

to preserve the stochastic nature of the matrix the probability of transition

from state to state had to be taken as .) This gives

(7)

We can partition the transition matrix by splitting off the last column and

the last row; this has no effect on the powers of as far as values other

than those of the last row and column are concerned, and in particular

it leaves equation (7) unchanged. Therefore we no longer have to deal

with the special transition probabilities of the last two states. In order to

simplify the notation from now on the remaining top left submatrix will

be denoted by – for this the decomposition is fully

valid.
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The st power of this matrix can be explicitly calculated: it is

given by

(8)

In order to evaluate (8) notice that only will contribute to

and only will contribute to . Therefore we have

(9)

and similarly for . This gives

(10)

Rather than working with this explicit distribution, it will be convenient

to to use its generating function

(11)

and later to collect these generating functions together in a two-variable

generating function

This is what Wilf 1990 calls the “Snake Oil Method”.
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(12)

The crucial elements of equation (8) are the coefficients of and

in the st power of – the equation is complicated because we

expressed these coefficients from the trinomial expansion of the st

power of . However, if we use the matrix-generating

function

(13)

we can capture all these powers as

(14)

(The use of the identity is justified because the

eigenvalues of are all for .) Using (11) we have

(15)

We can express using only powers of (recall that is nilpotent)

by solving

(16)

which yields the Fibonacci-type recursion

(17)

with , . For a matrix of dimension

this recursion terminates with , but as the initial two terms and the
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recursive definition are independent of , we can use the same sequence

of coefficients throughout. The st power of is given by the

(matrix) coefficient of in

(18)

(For any fixed , powers of above will be 0, but the notation is

justified as the series is absolute convergent for e.g. .) In fact, we

are interested only in the nd (and st) element in the 0th row of

this matrix, and only (and ) will contribute to these, so

(19)

Using (14) with this can be further simplified to

(20)

for (for we set ). Recall that for the we

have a Fibonacci-type recursion that can be captured in the generating

function

(21)

Let us now investigate the two-variable generating function

(22)

Using (17) this yields

(23)

Informally, we could enlarge the dimension of A indefinitely and partition this matrix

so that we only consider the first by submatrix.
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which, using (18), gives

(24)

If , this reduces to , which yields , which

is indeed the generating function of the Pascal distribution (cf. Feller 1966

ch XI.2.d). For any random variable X over the nonnegative integers,

, , and (cf.

Feller 1966 ch XI.1). Since the two-variable generating function

is rational by (24), in effect it contains all the information concerning

the distributions (because these numbers are the coefficients

of in its Taylor expansion). We can exploit this fact by finding

the expectation and variance of the limiting distribution by asymptotic

analysis. and thus

(25)

so the asymptotic behavior of the th coefficient is given by the

behavior of around its first pole in . Taking

we get

(26)

meaning that the coefficient of the (second order) pole in the Laurent

expansion around 1 is . Therefore, the mean of the th

distribution is asymptotically and using contravariant timing

the mean of the th normed distribution is . In fact the mean

of the th distribution is exactly as can be seen from the

following argument.

In a single move, the model stays in the same state with probability

, advances by one state with probability , and advances by 2 states with

probability . Therefore, on the average it will advance by states,
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and advancing states will take on the average steps. The

only problem with this simple argument is that it does not generalize from

the mean to higher moments – if we had a similar elementary argument

for the variance, the whole function-theoretic apparatus of this Appendix

could be dispensed with.

In order to establish the variance, let us differentiate in a

second time. This gives

(27)

meaning that the coefficient of the (third order) pole in the Laurent expan-

sion around 1 is . Therefore, the variance the th distribution

is asymptotically

and using contravariant timing the variance of the th normed distribution

is .

For the special case , the result that the limit of the normed dis-

tributions is concentrated on the mean can be established directly. Recall

that the generating function of the th distribution was

and therefore the characteristic function of the th normed distribution is

(28)

If tends to infinity, can be approximated by , which means

that the base in (25) can be approximated by

(29)

Dividing both the numerator and the denominator by and applying the

approximation will yield

(30)

which is indeed the characteristic function of the distribution concentrated

on the point .



3. Duration 127

Finally, let us establish the theorem that the input model can be

trained to any prescribed duration density distribution. If we assume

uniform initial distribution, the probability of arriving in state in the

th step is:

(31)

For the generating function we thus have

(32)

Again using contravariant timing, the characteristic function of the lim-

iting distribution is

(33)

which is the characteristic function of uniform distribution in .

In order to create a heavier tail, we can adjust the weights of the input

distribution in favor of smaller input jumps: for instance, if the weights

decrease linearly from to 0, the density function will increase linearly

from 0 to in the interval . This result can be generalized to

any system of weights that satisfy for

some piecewise continuous function in because the weights

act, in the limit, on impulse functions.

Amore rigorous proof can again be based on characteristic functions.

The generating function of the th weighted sum will be equal to

, so the characteristic function of the th normed

distribution will be which tends

to . By taking to be 0 for and this

is exactly a Fourier- Stieltjes transform of , QED.
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Chapter 4

Synchronization

At this point, the formalization of autosegmental theory is nearly com-

plete. We have developed a theory of autosegmental notation in chapters

1 and 2, and in chapter 3we have presented the key idea of interpreting this

notation, namely that the model structures appropriate for phonology are

statistical ensembles of utterances to be captured in structures containing

random variables. Here the example of segmental duration that we used

for presenting this idea will be generalized to the autosegmental case.

This further step is necessary because segments are not primitive units

in autosegmental phonology, they are composed of partially overlapping

features that unfold in time according to the synchronization provided by

the association lines among them. Thus in order to complete the picture

we need a theory of synchronization that tells us how to interpret features

and the association lines among them.

Rather than presenting the formal definition of synchronization at

the outset and proceeding deductively, we will build the formalism step

by step, in an inductive manner. What are the model structures, and

how do we map autosegmental representations on them? No doubt

there will be readers who want to see the answers immediately. Yet the

complexity of these notions is quite considerable, and it seemed best

to choose the aesthetically less pleasing, but perhaps more effective,
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inductive manner of presentation. First, in section 4.1 we examine the

notion of features and feature geometries informally (the results of a more

formal investigation are presented in the Appendix). Next we divide the

problem into two closely interrelated, but logically separate issues, local

and global interpretation.

Local interpretation, reflecting the microsynchrony of articulatory

gestures, is the subject of section 4.2, where the notions of phasepoints

and lag are introduced. This is where the basic ideas of timing presented

in section 2.4.4 are related to the theory of features and feature geometry

by specifying the model structures and the interpretation of segments.

Global interpretation, reflecting the large-scale structural properties of

speech, but built compositionally from local interpretations, is the subject

of section 4.3.

4.1 What does feature geometry mean?

In order to formulate a theory ofmicrosynchrony thatmaps autosegmental

representations composed of features on model structures of some sort,

it will be expedient to look at the ideas of autosegmental phonology

embodied in features and feature geometry from a broader perspective.

First we will look at two older conceptions of features, that of SPE

and that of Pān. ini, and then proceed to show that the modern theory

of feature geometry is more general than either of these. Using the

insights gained from thismetatheoretical comparison, themodel-theoretic

interpretation of segments will be presented in section 4.2, and that of

longer representations in section 4.3.

In a narrow sense, we already have the answer to the question of what

feature geometry means – it means that the tiers containing the features

that make up the representation of segments and larger units are arranged

This division is made possible by the fact that the use of association lines between

features in autosegmental theory rests on two kinds of evidence: subsegmental, such as the

behavior of affricates, prenasalized stops, and other complex segments, and suprasegmental

such as the behavior of tonal melodies and harmony domains (for a concise overview, see

e.g. van der Hulst and Smith 1982).
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in a (rooted) tree structure (see section 1.5). This formal, syntactic

definition will later in this chapter be coupled with a formal, semantic

definition that tells us how to interpret segmental structures conforming

to some pre-defined feature geometry in models. Our goal here is to

provide an answer in less formal, but, for the practicing researcher, more

central, terms – how can features and feature geometries be used?

If we wish to characterize the phonological system of a language,

we need to specify the segmental inventory (defined broadly so as to

include both underlying and surface phonemes) and some rules, either

declarative or procedural, which specify the mapping between underlying

and surface forms. For example, the nominative form of Russian nouns

can be predicted from their dative forms by removing the dative suffix

and inspecting the final consonant; if it was or the final consonant

of the nominative form will be . This could be expressed in a purely

segmental rule of final b devoicing:

(1)

Most remarkably, we find that a similar rule links to , to , and in

fact any voiced obstruent to its voiceless counterpart. This phenomenon,

that the structural description and/or the structural change in rules will

be met not only by a single segment, but rather by some bigger set of

segments , is in fact so pervasive that it makes a great deal of sense

to introduce some formal apparatus that enables us to exploit it in our

characterization of the phonological system. What is required is a clever

notation that lets us characterize any such , traditionally called a

natural class, in a compact manner so that rules stated in terms of natural

classes are just as easy, or perhaps even easier, to deal with as rules stated

in terms of segments.

The set of natural classes is not really under the control of the

grammarian; it is externally given by the phonological patterning of the

language. The notational devices that we use to capture natural classes

are successful to the extent that they make it easier to use natural classes
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(i.e. members of ) than unnatural ones (i.e. those not in ) in the rules.

Clearly, nothing can be won by expressing natural classes disjunctively in

terms of their members, since this approach works for unnatural classes

like just as well as it works for natural classes like . What

is needed is a more clever notation, such as the one provided by feature

geometry, that exploits the internal structure of to achieve notational

compactness. Since feature geometry accomplishes this goal by rather

complex means, first we will present two simpler notations aiming at

compactness, and show that they are, in a well-defined sense, special

cases of feature geometry.

The two simple notations that we will consider here are the well-

known “standard” (SPE) feature-based notation and the perhaps less

widely known, but no less interesting interval-based notation employed

by Pān. ini – let us take each in turn. Cherry 1956, Cherry 1957 describes

the assignment of feature values to segments as a mapping from the set

into theEuclidean space of dimension , where is the number of features

used in the analysis. Cherry conceives of this Euclidean space as being

phonetic in nature – the coordinates correspond to physically measurable

properties of the sounds such as formant values. In this work we take

a slightly more complex technical route. The direct mapping between

features and observables is replaced by two-stage mapping in which

feature assignment is viewed as a phonemic, rather than phonetic, first

step, and the resulting abstract structures (rooted trees) are interpreted

phonetically in the second step. In keeping with the binary nature of

phonological features, the underlying field of reals used by Cherry is

replaced by the finite field GF(2). Thus we define a feature assignment

An algebraic investigation of the way feature geometry expresses natural classes is

relegated to the Appendix (section 4.4), as it would take us far away from the central issue

of motivating the model structures introduced in section 4.2.

Since the use of distinctive features is fundamental to both classical (SPE) and modern

(autosegmental) generative phonology, it is altogether remarkable that the best known

formal model of features (see also Cherry, Halle and Jakobson 1953) actually predates

generative phonology.

There are only two elements in GF(2): 0 and 1. Arithmetic is performed in the usual

way, except for the fact that 1+1=0.
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as an injective mapping C from a given set S of segments

into the linear space GF(2,n). In other words, each segment is mapped

on an n-tuple of 0s and 1s. At this stage of the analysis, no partially

specified segments (archisegments) are permitted.

Aswe have discussed above, a clever feature assignmentmust be able

to capture the natural classes defined by the phonological system of the

language in a notationally compact manner. Following Halle 1964:328

those classes that can be expressed by fewer features than their individual

members will be called N-classes. In GF(2,n) these are the hyperplanes

parallel to the axes and their set will be denoted by N(2,n). A feature

assignment will be called compact if it maps sets in onto

. If a compact feature analysis exists, it is easy to show

that the following propositions are true:

(2) The number of natural classes is small – for

(3) The set of natural classes Nmust be basically closed under intersection

– for , either or .

Essentially the same two propositions follow from the first extant

treatment of natural classes, given in Pān. ini 1.1.71. Simplifying matters

somewhat (for a fuller discussion, see Staal 1962), Pān. ini’s method is

to arrange the phonemes in a linear sequence (the śivasūtras) with some

indicatory letters (anubandha) interspersed. Natural classes (pratyāhāra)

are defined as those subintervals of the śivasūtras which end in some

anubandha. The number of pratyāhāra on segments with equidistant

anubandha is , again a small power (at

most the square) of . Furthermore, the intersection of two pratyāhāra,

if not empty, can also be expressed as a pratyāhāra, and is, therefore,

‘natural’.

In addition to using pratyāhāra, Pān. ini employs a variety of other devices, most notably,

the concept of ‘homogeneity’ (sāvarn. ya) as a means of cross-classification (see Cardona

1965). This idea, roughly corresponding to the autosegmental concept of a [supralaryngeal]

class node, enables Pān. ini to treat quality distinctions in vowels separately from length,
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So farwe have seen two kinds of notations that enable the grammarian

to refer not only to segments, but also to natural classes in the statement of

phonological rules. In the standard theory, the savings come from the fact

that only those features are mentioned which take the same value for each

member of the natural class in question. For the Russian final devoicing

rule mentioned above these features are [–sonorant] and [+consonantal]

in the structural description, and [–voice] in the structural change of the

rule. In the Pān. inian theory the savings come from the fact that rather than

referring to the whole set of obstruents, we only have to refer to the initial

member and the closing anubandha of the class. What is common to

both of these theories is that their evidence comes from the phonological

domain – it is the phonological clustering of segments that determines

feature assignment or anubandha placement.

The modern theory of features rests on Jakobson’s fundamental in-

sight that the phonological clustering of segments has a phonetic basis.

As we shall see in chapter 5, the method of interpretation developed

here makes it possible to exploit this fact for the construction of statis-

tical models of speech. Feature geometry, when formulated abstractly,

turns out to be a generalization of both the standard and the Pān. inian

approaches. The standard theory, based on feature vectors, gives rise

to the finite linear space GF(2,n) which has Boolean algebraic structure.

In the Appendix this will be generalized to feature geometries using the

semi-independent boolean rings (SIBRs) introduced by Ehrenfeucht (pc).

As we shall see shortly, in feature geometry the linear intervals of the

Pān. inian model are replaced by generalized (lattice-theoretic) intervals,

meaning that the main source of generality in feature geometry is that it

permits all kinds of rooted labelnode trees (see section 1.5), but only one

of these, called the “paddle wheel” in Archangeli 1985, and the “rolodex”

in Goldsmith 1990, is a notational variant of the standard model.

nasality, and tone distinctions, as well as to treat place of articulation distinctions in con-

sonants separately from nasality, voicing, and aspiration contrasts. Another subsidiary

concept, that of antara ‘nearness’, is required to handle the details of mappings between

natural classes. Since the rules only map classes onto classes, the image of a segment under

a rule is decided by 1.1.50 sthāne ’ntaratamah. ‘in replacement, the nearest’.
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To establish a one-to-one correspondence between the feature vectors

of the standard theory and the star-shaped trees in which all features are

daughters of the root node of the tree, consider an arbitrary set of features

. If a segment has, say, value 1 (+) for features , and

value 0 (–) for , the corresponding ‘geometrically arranged’

feature structure will have the nodes , and only these, dominated

by the root node. It is easy to see that the collection of feature structures

corresponding to an N-class will be a collection of substars all containing

some star B and contained in some larger star T. Since labeled graphs

form a distributive lattice for the usual set theoretic operations of union

and intersection, the elements of the N-class will thus correspond to a

(closed) interval, in the lattice-theoretic sense, between B and T. Every

interval of this sort will be called anM-class.

In the standard case, N-classes and M-classes coincide, and in the

case of more complex geometries, I will use M-classes to define what is

meant by ‘compact notation’. (Given the Linking Constraint of Hayes

1986, this definition also accords with phonological practice in the case of

segments with branching root nodes like affricates and geminates, since

such complex segments can never fit the same structural description

or structural change as simplex segments .) As we shall see in 4.1.2

below, the use of M-classes enables us to view both ordinary segments

and archisegments as part of the same geometry, so that more complex

displays where a group of features is dominated by a single class node

can be reduced to two-tiered displays that have a much simpler geometry.

This concludes our discussion of the paradigmatic relations among

features. Before we turn to syntagmatic relations (linear ordering and

synchronization) below, the following remark is in order. Features, just

as segments, can be viewed as fuzzy units with no clear-cut temporal

boundary, or as sharply delimited, strictly concatenative units. In the

If we maintain a theory of single-valued features throughout (see e.g. van der Hulst

1988), the notion of M-classes can be used to explicate the notion of natural classes without

the introduction of the coordinate system discussed above, but if we use two-valued features,

some kind of boolean apparatus must also be used, as we shall see in the Appendix.
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rest of this work we will present the interpretation of feature structures

from the strict perspective – it will be assumed that features have definite

beginning and endpoints. But it should be emphasized that a strict view

of features is compatible with a fuzzy view of segments, so much so

that a strict view of features can actually serve as a basis for a formal

reconstruction of the fuzzy view of segments. It has been recognized

from the outset (Goldsmith 1976) that the framework of autosegmental

phonology is based on a rejection of the Absolute Slicing Hypothesis;

since features are placed on different tiers, there is no guarantee that

all features in the bundle comprising the segment will begin or end

simultaneously (see section 5.1). On the contrary, the expectation, which

we will make more precise shortly, is that the features that make up a

segment will begin at different points in time, so that the feature content

characterizing a segment is manifested incrementally. While not fully

fuzzy, this view entails that segments do not come into being in a single

time instant, but rather they will manifest themselves gradually, possibly

through as many stages as there are features.

4.2 Interval structures

To see how the interpretation mechanism works, we will proceed from

the case of a simple binary feature node in the geometry to more complex

class nodes which carry the explanatory burden of multivalued features.

Let us first consider an undoubtedly binary feature such as [nasal]. In

the feature geometry of Clements 1985, [nasal] attaches to [manner],

which in turn attaches to [supralaryngeal], which in turn will attach to the

root. But with an easy formal trick, we can reduce the case of indirectly

attached features to the case of features directly attached to the root node.

In section 1.5 we defined the content of a leaf node in the geometry as

the feature labeling of the node in question, e.g. [+nasal], and the content

In fact, the feature [nasal] is attached directly to the root in McCarthy’s (1988) version

of feature geometry. But McCarthy uses substantive arguments to show that [nasal] must

be located there, while here we use formal arguments to show how it can be relocated there.
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of internal nodes as the set of the contents of its daughters. Thus the

content of a root node is what is traditionally called the featural content

of a segment. The formal trick is to extend this idea to trees starting at

the root but missing a subtree. For example, the content of a vowel node

modulo nasality is defined as the archisegment composed of all those

segments that share the featural content of the vowel, except possibly

for the feature(s) dominated by the nasal node. Given the segmental

inventory , we can thus create a nasality-neutral inventory , and

express the segments in a two-tiered display, with one tier reserved for

nasality and the other for nasality-neutral archisegments. Using this

method of “currying” repeatedly, we can reduce the issue of interpreting

any geometrical configuration of multi-tiered displays to the issue of

interpreting two-tiered displays (except in the degenerate case when the

geometry is allowed to contain cycles).

The intended interpretation of a feature is the set of time intervals

in which the feature is present in the utterance. To express this, theories

of phonological interpretation such as Bird and Klein 1990 map the

representation of an oral consonant (4A), onto an event structure that can

be described in simple set-theoretic notation as (5A), that of a prenasalized

consonant like (4B) onto an event structure such as (5B), and that of a

nasal consonant like (4C) onto an event structure such as (5C).

(4A) (4B) (4C)

C C C

| / \ |

O N O N

(5A) (5B) (5C)

Needless to say, the information contained in the event structure such as

(5A) “as long as there is a consonant event, there is an oral event”, or

(5B) “a nasal and an oral event overlap with the consonant event, and
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the nasal event precedes the oral event”, is less than a full description

of the events taking place during the articulation of these segments .

Phonetically, the interval occupied by the consonant can be divided into

more homogeneous subintervals or microsegments such as attack, hold,

and release phases. Paolillo 1990 argues that such a three-fold distinction

is also justified on phonological grounds. At the boundaries of segments,

and even at the boundaries of the microsegments, we might find short

transition intervals that cannot be assigned to any (micro)segment without

some ad hoc criteria but (in keeping with the “strict” view of segments

discussed in sections 3.1 and 4.1 above) we will ignore this issue for

the moment. Most importantly, diagrammatic representations of these

events, such as (6) below ,

oral opening

velic opening

(6A) (6B) (6C)

need to be supplemented with precise timing information. Exactly when

does the consonant (or its phases) begin and end? When does the velum

begin to close, and when does the closure become complete? We will

specify this information, much like in the segmental case, in terms of

randomvariables. Ignoring the issues of transition phases for themoment,

and concentrating on the hold phase, we need one variable to describe

the duration density of the hold interval, another variable for the

(fully) nasal interval, and some means of describing the possibility of

synchronization (association line) between the two.

Feinstein 1979 analyzes prenasalized stops bisegmentally (as nasal+stop clusters),

while Sagey 1986 takes them to be monosegmental. There are other representational

possibilities within autosegmental phonology; for example, Rosenthall 1988 argues for two

root nodes dominated by the same timing unit and sharing some class nodes. Here we will

treat prenasalized stops monosegmentally, as Fig. (4B) suggests. Our discussion owes a

great deal to Paolillo 1990, though it is not tied to the details of that proposal.

This figure is based on Fig. 4.1.1 of Paolillo 1990.
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In order to incorporate the transition phases and/or transition mi-

crosegments, it is expedient to think of the interval occupied by a segment

as a cycle and define various subintervals in terms of phase angles (Kelso

and Tuller 1987). For example, if the attack phase occupies approxi-

mately the first 90 degrees, the hold phase approximately the following

180 degrees, and the release phase approximately the final 90 degrees of

a full cycle, we can introduce four phasepoint variables taking values in

the interval [0, 2 ]: for the the beginning of the attack, for

the end of the attack (beginning of the hold), for the end of the

hold (beginning of the release), and finally for the end of the release.

In the example, and are identically 0 and 2 respectively, so only

are really interesting. These will describe when the hold phase

begins and ends relative to the interval occupied by the whole segment.

The description of synchronization between two events on two tiers

requires the specification of one phasepoint variable for each of the events,

and possibly an additional random variable for the description of the

absolute time lag between the phasepoints. For example, in the prenasal-

ization case depicted in (6B) above, the beginning of the consonant event

precedes the raising of the velum by some time. This can be described

by setting and to 0 (deterministically), and to an appropriate

random variable whose expected value is the average time delay. Alter-

natively, it can be described in relative terms, e.g. by saying that the 120

degree phase of the nasal event coincides (L=0) with the starting phase

(0 degree) of the consonant event.

To give another example, in the aspiration of a voiceless consonant

followed by a vowel, the tensing of the vocal folds (the 0 degree phase

of the vowel event) will lag behind the stop release (which is, say, the

270 degree phase of the consonant event) by some time . Again, alter-

native descriptions are possible. For instance, we can say that aspiration

is internal to the consonant, being its 270 to 360 degree phase. This

possibility of alternative descriptions suggests that in the description of

synchronization we permit too many parameters. It is conceivable that
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only the beginnings and ends of features can be synchronized in terms of

an absolute time lag, or that synchronization never involves a time lag,

just perfectly aligned phasepoints. The choice between these (or other)

possibilities should be determined experimentally.

A third, and perhaps more interesting, example is the “pundit’s pro-

nunciation” of Sanskrit vowels followed by visarga. This is described

by Coulson 1976 as producing the vowel, followed by the visarga (as-

piration), followed by “a faint echo” of the vowel. Thus, in addition to

the duration density of the vowel, we have to use the duration density

of the echo, say .2 , which will begin at the end of the aspiration. But

in order to describe that it is the same vowel that gets echoed, we must

assume that the shape of the oral cavity is preserved throughout the aspi-

ration phase, suggesting an autosegmental analysis in which the unvoiced

event is defined as being in the middle of the voiced (vowel) event.

So far we have seen how a single binary feature is interpreted as a set

of intervals, and we have informally sketched the mechanism governing

the duration of such intervals and their synchronization, via phasepoints

and lags, to other features attached to the same node. Before describing

the synchronization mechanism more formally, let us first extend the no-

tion of interval structures from binary to multivalued features. Formally,

an n-valued interval system is defined as an n-tuple of sets of (left closed,

right open) intervals such that

(7.1) No two intervals (in the same or in different sets) overlap,

(7.2) Every point of the real line belongs in exactly one interval,

(7.3) No interval is shorter than a positive constant MINDUR .

The idea is to view the th member of the tuple as the collection of time

intervals in which the th value of the feature is present in the utterance.

(It would be possible to use -tuples for -valued features, reserving

For a discussion of the role of MINDUR see sections 3.1 and 3.3 above.
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the 0th value for intervals of silence , but as we shall see in 4.3 below it

is better to use a slightly more general concept and reserve the 0th value

for those points where the feature is underspecified.) This is not to say

that we intend to use multi-valued features as the basis of our semantic

interpretation – on the contrary, we accept the position, carefully argued

in McCarthy 1988, that the use of feature geometry makes multi-valued

features largely unnecessary. Largely, but not (yet) totally – the evidence

presented e.g. in Ladefoged 1971 that classically binary oppositions,

such as voiced vs. unvoiced, reveal, upon closer inspection, rather finely

graded phonetic scales, has not been fully assimilated in feature geometry.

Thus we leave open the possibility of multi-valued features such as high

vs. mid vs. low tone, but concentrate on the binary case below.

In order to model the use of class nodes dominating several (binary)

features in the geometry we will have to extend the notion of (binary) in-

terval systems to direct products of these. The resulting structures, when

equipped with the appropriate synchronization, will be called interval

structures and will form, recursively, the model structures we need to

define the range of our interpretation function. Before turning this into a

formal definition, let us present a few examples.

In the geometry proposed by McCarthy 1988 the root node contains

the major class features [sonorant] and [consonantal]. This extends the

original proposal of Clements and Keyser 1983 to distinguish C and V

units in the direction suggested by Vágó 1984, who reserves a separate

tier for major class information. From our perspective, the most impor-

tant aspect of these proposals is that the “major class” tier receives its

synchronization from the associated timing unit (or units, in the case of

long segments) so that we do not expect the features on this tier to desyn-

chronize. For such groups of features, the interval systems introduced

above will provide an adequate representation, provided that we permit

as many values as there are feature combinations.

For our purposes it makes sense to treat silence as a full-blown segment occupying at

least a single timing unit (cf. the silent demibeat of Selkirk 1984) or an integral number of

timing units. We will return to this issue in section 5.3.
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A different example is provided by the [coronal] node in McCarthy’s

proposal. Since its dependent features [distributed], [anterior], and [lat-

eral] describe different aspects of tongue positioning, they are not ex-

pected to be fully synchronized with one another, a point that can be

made even more clearly with respect to class nodes dominating features

corresponding to different articulators the way [place] dominates both

[labial] and [coronal] or the way the root dominates both [laryngeal] and

[place]. In order to capture this lack of synchrony under [coronal], we

need three separate (binary) interval systems for [distributed], [anterior],

and [lateral]. To describe the total state of the [place] node, as it evolves in

time, we need a simultaneous description of the three subordinated inter-

val systems, complete with duration variables. The information content

of the three simultaneous binary interval systems can be captured in a sin-

gle octary system of intervals, called the coarsest common refinement

(ccr) of the subordinated interval systems, and defined as follows:

(8.1) Every nonempty intersection in the form , where

the are members of the th subordinated interval system, will be a

member of the ccr.

(8.2) The value of such an interval is the direct product of the values of

the features obtaining in any timepoint of the interval.

It is trivial to verify that the ccr is well defined and meets criteria

(7.1) and (7.2) of interval systems. However, it will not necessarily meet

criterion (7.3) – it is quite conceivable that the lag between two intervals

on different tiers is so small that in the coarsest common refinement an in-

terval shorter thanMINDUR is created. Were it not for this complication,

we could use interval systems, as they stand, for model structures. As

it is, we have to employ the more complex interval structures defined

recursively as follows.
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(9.1) Every -valued interval system, equipped with a series of random

duration density variables, one for each interval, is a type interval

structure.

(9.2) A type interval structure is the freely aligned direct

product of type interval structures, which is equipped

with series of random duration variables (one series for each subordinate

interval structure).

(9.3) A type interval structure is the direct product

of type ..., interval structures aligned according to an

interval system t, equipped with series of random phase variables

(one series for the ccr of each subordinate interval structure and one for )

as well as with series of random lag variables between the phasepoints

of the subordinate structures and the phasepoints in .

In general, interval structures are built from the basic components,

given by (9.1), and from other interval structures, by means of free

alignment (9.2), or alignment according to some interval system (9.3)

recursively. Free alignment is used for class nodes such as [coronal]

where the content of the class node is completely determined by the

contents of the nodes dominated, so that no synchronization is expected,

while alignment according to some interval system is used for class nodes

such as [root] that have their own featural and temporal content to which

synchronization of subordinate nodes can be anchored.

Aside from the phasepoint/lag mechanism, specifically designed to

take care of the real time aspects of the representation, the construction

of the model structures follows the construction of feature-geometrical

trees very closely. This has the disadvantage that computations involving

model structures are rather complex, but has the advantage of making

the interpretation function simple, almost trivial. To see whether a tree

dominated by a root note can be mapped on a given model structure, we

need to check the tree against the structure recursively.



148 Formal Phonology

Again, rather than starting with the formal definition, first we give

an informal (and considerably simplified) example. It is well known

that nasal-obstruent clusters such as found in rinse or hamster often

undergo a rule of Intrusive Stop Formation (ISF) to yield nts, mps on the

surface. Anderson 1976 describes this in the following terms: “Since

an oral sound is to follow the [m], the velum will have to be raised (...)

and it is (...) plausible to imagine that the velum is raised earlier than

necessary”. Wetzels 1985 restates the main idea of this analysis in an

autosegmental framework; the feature [–nasal] spreads leftward onto the

preceding consonant which, as a result, turns into a prenasalized stop.

Abstracting away from all other features, in the underlying form

[nasal] changes from+ to – synchronously with the change in [continuant]

from – to +. This is described by a simple interval structure in which

the nasal and the continuant interval systems are aligned according to

the timing tier, with no lag in either. IFS corresponds to a somewhat

more complex interval structure in which a positive (say 30%) phase of

the [–nasal] interval is aligned with the beginning of the second timing

unit. This yields an intermediate [–continuant, –nasal] interval in the ccr

which, when reanalyzed as a full segment, corresponds to the intrusive

stop.

Clements (1987) argues that the proper way to view this phenomenon

is retarded oral occlusion, rather than advanced velar opening. In this

analysis, the [–continuant] spreads onto the following node, so that the

domain of the intrusive stop is carved out from the domain of the obstruent

following, rather than from the nasal preceding it. It is easy to see how

this analysis can be rephrased in terms of interval structures. Again

[continuant] and [nasal] are aligned according to the timing tier, but this

time a positive (say 70%) phase of the [–continuant] is aligned with the

end of the first timing unit.

The (local) interpretation of a segment (root node) can now be

defined in a top-down recursive manner:
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(10.1) If the root node contains features corresponding to the inter-

val structure and dominates class nodes of type ,

the interpretation function maps it onto an interval structure of type

(10.2) If a class node does not contain any features, and dominates (class)

nodes of type , the interpretation function maps it onto

an interval structure of type

(10.3) A type node is mapped onto an n-valued interval system.

Perhaps the most noteworthy feature of this definition is that it leaves the

assignment of temporal structure free. This has the effect of leaving the

interpretation of segments time-free, i.e. containing no more information

than the original representation contained, namely information about the

featural composition of the segment. This means, among other things,

that when we compute the interpretation of adjacent [m] and [s], some

of the interval structures that will fit this representation will also fit the

representation [mps]. The whole range of model structures will of course

distinguish between these two, but there will be structures that are models

of both, which is the intended effect.

It is trivial to narrow down the above definition by requiring iden-

tically 0 phases and lags for subordinate tiers, and regular (say 80msec)

intervals for timing units – this will yield the interpretation presented

informally in 2.4.4. But this would have the undesirable side effect of

creating, among other things, a strict distinction between [ms] and [mps].

Rather than insisting on some arbitrary phasepoint/lag structure, the for-

malization presented above gets exactly as much out of the interpretation

as we put in the representation. In order to give more content to the

interpretation, we will have to estimate the random variables that were

left free here. As we shall see in chapter 5, this can be done by matching

temporally fully specified interval structure tokens to interval structures

with parameterized random variables.
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4.3 The interpretation of large-scale structure

In the previous section we have discussed the interpretation of single

segments or a few adjacent segments. Here we turn to the large-scale

structural properties of speech, to phenomena that affect a large, in prin-

ciple unbounded number of segments. Since it is well known that global

effects, such as the gradual declination of F contours over larger do-

mains, can be described as the cumulative result of local effects, such

as adjustment of pitch range across adjacent units (Liberman and Pierre-

humbert 1984), the important distinction is not so much between smaller

and larger domains, as between convex and non-convex ones. In the

previous section we restricted our attention to intervals (convex tempo-

ral domains) – here we will investigate whether the use of non-convex

domains is also necessary for interpreting autosegmental representations.

Let us first briefly survey the range of phenomena that can be called

non-convex. Reduplication rules (see 2.2.4 and 2.5.3 above) often pro-

duce non-contiguous but otherwise homogeneous domains such as a re-

peated vowel, but such examples can always be reanalyzed as being com-

posed of two independent domains, each by itself convex. Echo phenom-

ena, such as the “pundit’s pronunciation” discussed in 4.2 above, provide

better examples, but it is debatable whether they belong in (postlexical)

phonology proper. The most important phonological cases come under

the heading of harmony systems. Vowel harmony was illustrated in 2.2.3

above by the case of Hungarian , but harmony phenomena are in no way

restricted to vowels – we find a wide range of harmony systems affecting

consonants in various ways, ranging from nasal harmony (e.g. Guarańı,

see Poser 1982) to pharyngealization harmony (see Hoberman 1987).

Although in rare cases all segment types are affected by the harmony

process (so that the domain created ends up being convex), typically we

We should note here that vowel harmony is by no means restricted to Hungarian or to

Uralic. Many major language families from Indo-European to Niger-Kordofanian contain

at least some languages with vowel harmony such as Montañes Spanish (see McCarthy

1984) or Akan (see Clements 1981).
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find two classes of segments: harmonizing and neutral. While harmo-

nizing segments share the same value for a feature or sets of features,

neutral segments will not share at least one of the values. Since the

harmonizing segments (typically, vowels) and the neutral segments (typ-

ically, consonants) appear interdigitated, harmony phenomena create a

large variety of non-convex domains. In this section, I will first overview

the commonly used strategies for dealing with such domains: in 4.3.1

underspecification, and in 4.3.2 the use of hidden variables, and argue

that both of these involve a non-monotonic element. The interpretation

function is then defined in 4.3.3 so as to accommodate both of these

strategies.

4.3.1 Underspecification

Theories of underspecification come in several flavors (see Archangeli

and Pulleyblank 1986, Steriade 1987) but the key idea is common to all

varieties. In addition to segments taking positive and negative values for

features, we also permit them to take no value at all – in such cases we

call the segment underspecified for the feature in question. So far we

have used such segments as archiphonemes, i.e. as a disjunction of the

two fully specified segments that would be created by adding the positive

or the negative feature value. But this concept, what we might call two-

sided underspecification, does not really capture the way underspecified

segments are actually used in phonology.

One important usage, called trivial underspecification in Steriade

1987, concerns the cases where a segment never acquires any value of

the feature; Steriade’s example is labial segments, which arguably never

get specified for [anterior], since the tongue plays no role in the formation

of labials. While this kind of justification for underspecification is not

unappealing, from the perspective of the formalism developed in 4.1

above such cases must be viewed as cases of 3-valued features. To

use Steriade’s example, [anterior] divides the set of segments into three

classes: those in which the tongue forms a constriction after the soft
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palate are [+anterior], those in which it forms a constriction at the soft

palate are [–anterior], and those in which it plays no role are [0anterior].

Trivial underspecification might turn out to be a useful tool in phonology,

but most practicing phonologists tend to avoid three-valued features and

would reclassify the 0-valued segments as belonging to either the + or

the – class.

Another important usage, in fact the one I take to be central for all

theories of underspecification, will be called one-sided underspecifica-

tion. This means that the 0 feature value is treated as standing for only one

value, a value that will be assigned by a later rule. In a typical harmony

system, neutral segments will neither undergo nor block the spreading of

either value of the harmonic feature – they are “transparent” in the sense

that harmony works as if these segments were not present at all. Some-

what surprisingly, it is often the case that such neutral segments are, on

the surface, specified for a definite value for the harmonic feature. Given

the No Crossing Constraint of autosegmental phonology, we would ex-

pect such segments to block the spreading of the harmonic feature, but in

a large class of cases they in fact do not block it. If we can maintain that

at the point in the derivation where harmony applies, neutral segments

are underspecified for the harmonizing feature, this transparent behavior

makes sense. There is no association line to block the spreading and no

floating feature to complicate it.

The intuitive picture behind this analysis is an extremely appealing

one. The idea is that the domain is convex at the time when the harmony

rule applies, and this convex domain gets broken up only at a later,

possibly very late stage of the derivation. But there is a price to be paid

for this idea – we are irrevocably committed to a procedural conception of

the derivation, in which there can be earlier and later stages. To see that

the commitment is in fact irrevocable, consider the harmonic spreading of

the feature opposite to the surface specification of the neutral segments.

In the case of [anterior], most phonologists would unhesitatingly put the labials in

the [+anterior] class, since the dominant constriction, though not formed by the tongue, is

obviously in the anterior region.
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At the point where the harmony rule applies it spreads the wrong value

on the neutral segments, for if it did not, the domain would not in fact be

convex. Since the value at this stage is not what appears on the surface,

there must be some later (default) rule that yields the correct surface

value. This is, by definition, a feature changing (i.e. nonmonotonic) rule.

While the nonmonotonic element cannot be entirely eliminated, it

can be pushed into the derivational morphology by a judicious selec-

tion of one-sided and two-sided underspecification. As Vágó (1976)

shows, the same morphemes (case markers) can serve as suffixes and as

stems in Hungarian. If we treat the suffixes as containing archiphonemes

(two-sided underspecification), their harmonizing behavior in the inflec-

tional morphology can be explained, but the feature specifications with

which these morphemes surface as stems must be deleted to get this

effect. However, such nonmonotonic effects are widespread in deriva-

tional morphology at any rate, both in truncation (stray erasure) and in

category-changing suffixation.

4.3.2 Hidden variables

The alternative approach, which I will call the hidden variable model,

is based on an even more radical split between the surface value of a

feature and the behavior of the segment. Rather than trying to bring the 0

(underspecified) value into play, it employs a separate feature, the hidden

variable, to encode behavior that contradicts the surface specification.

Harmonic spread does not affect each segment equally. The ones that

get affected are distinguished from the ones that do not by the hidden

variable. The idea here is that the domain is in fact not convex – rather,

it is the harmonic projection (see 1.3 above) of the domain which is

convex. The hidden variable or, in phonological parlance, diacritically

used feature, comes into play because the projection process itself cannot

be governed by the harmonic feature. There are segments, namely the

neutral segments, which should not appear in the projection in spite of

As pointed out by Kiparsky (pc), who attributes the idea to Harry van der Hulst.
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the fact that they can carry the harmonic feature.

Here the intuitive picture is no less appealing. The idea is that the

domain is not convex (i.e. not a contiguous substring) at any time in the

derivation, but it is convex once a projection of the space is taken. Al-

though the diacritic use of features has been rather forcefully condemned

(see e.g. Kiparsky 1973), it still plays a crucial role in many analyses

(for a recent example, see Hyman 1988). These contradictory tenden-

cies can coexist only because it has not been widely recognized that the

operation of taking a projection introduces abstractness, as there is ma-

terial deleted by the projection. The operation of deleting diacritically

used features is of course generally recognized to be a non-monotonic

operation. This is not the place to sketch the historical developments that

led from Kiparsky’s (1973, originally 1968) Alternation Condition to the

presently accepted view that seeks to explain cases of obligatory neutral-

ization in terms of strict cyclic effects (see Kenstowicz and Kisseberth

1977, Ringen 1980, and in particular Kiparsky 1982). Suffice it to say

that clear cases of obligatory neutralization, such as discussed in Vágó

1980 or Anderson 1981 remain, so that abstractness, though much better

understood, is not entirely eliminated from phonological representations.

An important side-effect of autosegmentalization was that a large

number of cases previously requiring diacritically used features are now

analyzed in terms of floating features and other nonstandard configura-

tions of features and association lines. To give an example, -aspiré

stems in French are now analyzed with an initial empty consonant slot

(Clements and Keyser 1983, Goldsmith 1990) rather than with a diacritic

[+ -aspiré]. Here again the advances in phonological theory led to a

better understanding, but not to the elimination, of abstractness. The

fact that different underlying representations can lead to the same surface

form remains. Since in such cases information present in the underlying

representation is destroyed in the course of the derivation, again we must

conclude that phonology is non-monotonic.

A similar conclusion is reached, primarily on the basis of arguments concerning phono-

logical change, in Bromberger and Halle 1989.
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4.3.3 The interpretation function

The above considerations suggest that our view of phonetic interpretation

needs to be refined in two important respects. First, condition (7.2) must

be abandoned. Underspecification means that not every feature takes

a definite value at all times. To capture this fact, -valued interval

systems must be replaced by -valued ones, in which the extra (0th)

value corresponds to time periods for which the feature in question is

underspecified . Second, we must permit the interpretation function to

be nonmonotonic to the extent that certain features (corresponding to the

hidden variables) become “masked” in certain intervals. For example,

the echo vowel following the visarga (see 4.2 above) is best understood

by assuming that the oral features characterizing the preceding vowel

are retained until after the echo, but are, in effect, masked during the

aspiration. The same masking analysis is suggested by the Öhman 1967

model of vowel to vowel coarticulation (see also Keating 1988).

Therefore the global interpretation function is extended to contain a

set of interval systems encoding hidden variables. The mapping between

phonetic representations and the waveform will depend not only on the

overt features but on the hidden ones as well. With this addition, global

interpretation can be based on local interpretation the following way.

Given an autosegmental representation and an interval structure , the

(global) interpretation function maps on iff:

(11.1) For every root node in , has a part that is the interpretation of

that node (segment) as defined in (10) above.

(11.2) Each non-zero valued interval for every overt feature in is li-

censed by a segment in or by a hidden feature, in an order-preserving

manner.

(11.3) Contour features are mapped on adjacent level-valued intervals,

with possibly 0-valued intervals in between.

Whether a MINDUR condition on such intervals is reasonable remains to be seen.
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These requirements capture the intuitive idea that the interpretation of a

representation is the concatenation, possibly with 0-valued intervals in

between, of the interpretations of the segment-size parts of the repre-

sentation. (11.3) means that whenever a single unit, such as a vowel,

is associated with a series of features on a single tier, such as a HLH

melody, the interpretation is a set of intervals (in the example, H, L, and

H) which can, but need not, be separated by shorter intervals on which

the feature is underspecified. The dual situation, in which a single feature

is spread over several segments, does not require a special provision, as

it is handled by the same synchronization mechanism that was motivated

by microsynchrony in 4.2 above.

With this last definition, the task of formalizing autosegmental phonol-

ogy is completed. We inspectedwhat phonologists do and explicated their

practice in a more rigorous framework built from “logicomathematical”

primitives. This framework enables us to turn autosegmental phono-

logical descriptions of natural languages into rigorously defined, though

not necessarily very effective, algorithms. Even more importantly, this

framework will guide our efforts in chapter 5 to introduce a new, linguis-

tically motivated architecture for Markov modeling of speech.

4.4 Appendix

In section 4.1 we motivated the use of features by their power to express

natural classes and showed that feature geometry is a generalization of

both the SPE and the Pān. inian method of expressing such classes. But

we did not motivate feature geometry itself (beyond the remark that

a geometrical arrangement makes it possible to replace multi-valued

features by class nodes), and we did not investigate its properties in any

detail. The aim of this Appendix is to fill in this gap by showing what

can, and, more importantly, what cannot be expressed by means of rooted

labelnode trees.
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The standard (rolodex) geometry contains no intermediate nodes be-

tween the root and the leaves of the tree. In order to justify the generality

of the feature geometry scheme we need to demonstrate the utility of

such class nodes. McCarthy 1988 lists three main reasons for using class

nodes: processes of assimilation, processes of reduction, and cooccur-

rence restrictions corresponding to autosegmental association, delinking,

and OCP effects, respectively. None of these phenomena can be stated

on natural classes directly. Assimilation involves the natural correspon-

dence of segments in two natural classes, reduction involves the relation

between a natural class and a single segment, and cooccurrence restric-

tions involve the use of a well-formedness condition (Leben’s Obligatory

Contour Principle, see section 2.5.3) in a filtering manner (see section

2.2).

The overall effect of taking these phenomena into account is to define

natural classes of features (see Clements 1987). Since we already have

two methods, that of SPE, and that of Pān. ini, to deal with natural classes,

the question must be asked: why do feature geometry? Why not define

some metafeatures of features or anubandhas, or some metaśivasūtras

of anubandhas or features? The answer provided below is that natural

classes (both natural classes of features and natural classes of segments)

have a particular kind of algebraic structure that makes feature geometry

the appropriate tool to express natural classes. In 4.1 we have already

seen some indications of the fact that natural classes of segments have

some kind of algebraic structure. First we noted in proposition (2) that

compared to the variety of classes that can be formed out of segments,

only a vanishing fraction of classes are actually natural . Second we

noted in proposition (3) that the set of natural classes is basically closed

under intersection. If we are prepared to call singletons and the empty

set natural, the qualifier “basically” can be dropped.

Thus we have reasons to believe that there is some algebraic structure

to natural classes, and that this structure is almost, but not quite, boolean.

The epistemological problem of why sparseness is an indicator of structure lies beyond

the scope of this work.
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is closed under intersection, but not under complementation. Therefore

it makes sense to look for some generalized boolean structure in natural

classes and, as I will argue below, this is exactly what we find. First let

us define, following Ehrenfeucht (pc), the notion of independence: two

sets and on some domain are independent (denoted )

iff none of the sets are empty. Two sets

and are semi-independent (denoted ) iff none of the sets

are empty. Informally, independence means that no

hierarchical inferences can be made. Knowing that some is or is

not a member of gives us no information about its membership in .

Features (or classes of features) are not always (semi)independent.

For instance if we know that a segment is [+low] we can infer that it

is [–high]. But in the structures defined below, natural classes are not

required to be (semi)independent of each other. The only requirement

is that if two natural classes are (semi)independent then the sets formed

from themmust be also natural. Ehrenfeucht defines a set of sets

to be an independent Boolean algebra or IBA iff (i)

; (ii) ; and

(iii) (singleton sets and their complements). A set

of sets is a semi-independent Boolean ring or SIBR iff (i’)

; and (ii’)

(singleton sets).

Can the set of natural classes, perhaps suitably extended by the

empty set and singletons, play the role of the set in the above def-

initions? As we mentioned above, the complement of a natural class

of segments need not be natural. For example, the complement of the

set of mid vowels, being the set of high vowels plus low vowels plus

consonants is anything but natural. Thus is not an IBA. But it is a

SIBR – if two natural classes of segments are neither contained in one

another nor disjoint, their union, intersection, and differences will again

be natural. The same can be said about natural classes of features, at

least if we restrict our attention to classes established on the basis of
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assimilation evidence, for if a group of features assimilates as a unit in

some process , and an overlapping group of features assimilates as a

unit in some process , and the two groups are not distinct, the segments

that fit under both will necessarily show both kinds of assimilation. If,

on the other hand, the two sets of features are disjoint, the definition of

SIBRs does not require that their union act in concert.

Before we make the argument that justifies feature geometry (as

opposed to metafeatures or metaśivasūtras), let us consider a few simple

examples of IBAs and SIBRs. First of all, the systems of sets listed

in clause (iii) and (ii’) of the above definition are obviously IBAs and

SIBRs respectively – let us denote them byA. Second, traditional boolean

algebras are of course IBAs andSIBRs – let us denote thembyB. The third

example (and the first nontrivial one) is the IBA built on GF(2,2), i.e. the

2-dimensional cube with points a=(0,0), b=(0,1), c=(1,0),

d=(1,1), by including all subsets except b,c and a,d . As the

reader can easily verify, this 14-member set of sets is an IBA but not a

SIBR. The key idea is to view these sets from the center of the square,

so to speak, as segments in a cyclically ordered set of points. If all

such segments are included, we get an IBA, and if we break up the circle

and use linear ordering, we get a SIBR. Let us denote the class of such

interval structures by C.

The argument justifying feature geometry can now based on the fact

that all IBAs and SIBRs can be built from the A,B, and C classes of

IBAs and SIBRs introduced above by arranging these in a suitable tree

structure. This fact, which is Ehrenfeucht’s representation theorem of

IBAs and SIBRs, means that any set of natural classes (of anything) can

be described by repeated application of SPE-style feature analysis (B),

Pān. inian type sets of intervals (C), and trivial sets (A) as long as it has

There will always be such segments as long as the processes in question are self-dual,

i.e. involve both the marked and the unmarked value of the feature.

To see that such sets form SIBRs, consider two intervals and . If they are

semi-independent, their intersection is non-empty, so there is a segment such that

and . Therefore, and by similar appeals to the nonemptiness of

and it follows that , and thus , , and are
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the closure properties described above. In other words, feature geometry

is demonstrably sufficient for describing the structure of natural classes.

But is it necessary? To show that it is, we have to find a set of classes

that resists analysis in a purely feature-based or in a purely anubandha-

based framework. Laryngeal features vs. place features vs. [continuant]

vs. [nasal] (that is, the groups of features immediately dominated by

[root] in McCarthy’s analysis) provide exactly such an example. It is

trivial to devise a system of metafeatures that would distinguish these

four classes of features. But metafeatures would predict that some two-

member combination of these four classes, such as [place]+[nasal] or

[place]+[continuant] or [place]+[laryngeal] must itself be a natural class

of features, and there is no evidence in favor of such a view. The same

overgeneration argument can be made about metaśivasūtras. Thus we

see that feature geometry is both necessary and sufficient – it is hard

to imagine how phonological practice could receive stronger theoretical

support.

Finally, we can gain a little more insight by comparing SIBRs to

IBAs and by looking at the feature geometries that were proposed so far

from the perspective of SIBRs. Ehrenfeucht’s representation theorem

implies that the only interesting class of IBAs that are not SIBRs will be

the class of cyclic interval systems. Since such systems are outside the

descriptive power of feature geometry, we should look at what it would

take to find this situation in language. What is needed is a set of features

that can be arranged in a cyclic order in such a manner that we find

(assimilatory, reduction, or cooccurrence) evidence for the grouping of

those features that form arcs of the cycle. Inspecting the set of features

used in linguistics we cannot find such a cycle. Is this an accident? The

theory tells us that it is not, because there is no reason to suppose that

geometrically arranged feature sets are closed under complementation –

the complement of a set of features dominated by a single class node is

also intervals. (The open intervals can be replaced by closed ones because there are only

finitely many points involved.)
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not expected to be dominated by some other class node.

Turning to the extant set of proposals (for a list of these, see section

1.5 above) we notice that the class C is absent from them. At the root

node, all existing proposals have A structure, and at lower nodes, A or B.

Here the lack ofC structures cannot be explained by lack of closure under

complementation, for Pān. inian type sets of intervals are SIBRs which do

not require such closure, and indeed we find a set of natural classes for

which a Pān. inian analysis is more appropriate than the SPE-type, namely

the set of major classes. The relevant linear ordering is provided by

the traditional sonority hierarchy (Grammont 1895, Jespersen 1904). If

major classes are arranged in order of increasing sonority, we need only

one anubandha (at the end) to express sonority-based generalizations

such as the cross-linguistic variety of classes that can appear as syllabic

nuclei. Within generative phonology, the first attempts to replace feature

bundles by tree structures were motivated by the need to express the

sonority hierarchy (Hankamer and Aissen 1974, Carlyle 1985). The

present analysis suggests the theory of feature geometry has the resources

to incorporate such analyses in a slightly modified fashion. Rather than

encoding sonority by dominance in uniformly branching binary trees, it

could be encoded by precedence in n-ary (flat) trees.
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Chapter 5

Structured Markov models

This work grew out of the conviction of the author that the performance

of standard speech recognition systems, though still improving percep-

tibly, is approaching only a local optimum which is quite far from the

actual performance requirements of large vocabulary, speaker indepen-

dent, continuous speech recognition applications, and even farther from

the ultimate goal of matching, and perhaps surpassing, human perfor-

mance. In order to get beyond this local optimum, speech recognition

needs some new concepts, and the most promising source of new concep-

tual machinery is phonological theory. Having studied the key concepts

of autosegmental phonology in some depth in the preceding chapters, we

are now in a position to recapitulate its basic insights in the framework

of structuredMarkov models (sMMs).

It should be said at the outset that no sMM system has yet been built.

The reader looking for a detailed description of a proven system with

manifestly superior recognition performance will be disappointed by this

chapter, where the emphasis is not somuch on how sMMswork, but rather

on why they should be built in the manner proposed here. Clearly, sMM

systems have to go through the same process of gradual improvement as

the standard HMM systems, and a great deal of engineering ingenuity

will be required in this process before they approach their local optimum.
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Since this could very well be a long way from the global optimum we

all search for, instead of making exaggerated claims about the potential

of sMMs, it is best to concentrate on the benefits that will of necessity

accrue from the process of building different sMM systems.

Readers of the previous chapters will be acutely aware of the fact

that autosegmental phonology, far from being a single theory generally

accepted by the linguistic community, is a whole family of specific, often

quite radically different proposals. This chapter presents a method for

building different sMMs that faithfully reflect the structure of the differ-

ent proposals. Comparison of the relative performance of such sMMs

will therefore be valuable for the linguists who must choose between

the different versions of autosegmental theory, even if in absolute terms

recognition rate falls short of the demands posed by practical applica-

tions. There are, furthermore, some good reasons to believe that the

performance of sMMs will in fact surpass that of standard HMM sys-

tems, and if this is so, the speech engineer will also find them to be a

valuable tool.

The main reason why enhanced performance is expected is discussed

in section 5.1, where the known problems of feature-based systems are

enumerated. In section 5.2 we show how the standard concept of Markov

models, in which a single model corresponds to a single segment (in some

context), can be considered to be the model-theoretic interpretation of a

segment-based theory of phonology. Sincemodel-theoretic interpretation

leads naturally to standard Markov models in the segmental case, it is

expected to lead to something even better in the autosegmental case. This

idea is explored in section 5.3, where the model-theoretic interpretation of

autosegmental phonology developed in section 4.3 is used as a blueprint

for sMMs, and the algorithm that leads to different sMMs for different

versions of autosegmental theory is described. Whether sMMs avoid the

problems listed at the beginning of 5.1 is discussed in the concluding

section.
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5.1 Features in Markov models

Let us first consider the problems which plague all feature-oriented re-

search from Jakobson, Fant and Halle 1952 to Glass and Zue 1988. The

major problem is that features lack well-understood acoustic cues. While

certain features, such as voicing, are reasonably easy to detect, others,

such as rounding, resist acoustic characterization. Even where acoustic

cues can be found, it is rarely the case that a simple zero-one decision

can be reached for every point in the signal. And where such a deci-

sion can in fact be made, the cut-points for different features tend not

to coincide so segment boundaries cannot be established. Finally, even

when the featural composition of a segment is known, the superposition

of the acoustic cues corresponding to these features hardly ever yields

the desirable signal. In other words, the context-dependency of segments

is made much worse by the introduction of features, since the acoustic

correlates of features depend not only on the preceding and following

features, but on the simultaneous ones as well.

At first sight these problems seem to be insurmountable. But as the

case of allophonic variation (Church 1983) shows, phenomena that are

detrimental to the performance of one kind of system can sometimes,

in a differently designed system, be actually exploited for performance

enhancement. As I will argue here and in section 5.3 below, features

provide a similar case. The main problem is not with the idea of char-

acterizing segments by means of a decomposition into parallel units, but

rather with the lack of synchronization among the features composing

the bundle. Ideally, we would have a sequence of cut-points demarcating

segments in a neat concatenative fashion, as shown in (1) below:

(1)

mat

If all features are perfectly synchronized, we have an SPE-type decom-

position into features:
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(2)

:::

+nas-nas-nas

+voi+voi-voi

+cons-cons+cons

As is well known from articulatory studies such as Fujimura 1981, in

practicewe often fail tofind synchronous cut-points. The kind of situation

shown in (3) below (where voice onset is slightly delayed, and the end of

the vowel is nasalized) is much more typical than the idealized situation

depicted in (1) or (2).

(3)

:::

+nas-nas

+voi-voi

+cons-cons+cons

As we discussed at the end of section 4.1 above, it is possible to interpret

this situation as a sign of the inherent fuzziness of the notion “segment”.

Whether we commit ourselves to the view that segment boundaries are

fuzzy is immaterial – the lack of perfect synchrony (known in autoseg-

mental phonology as the “failure of the Absolute Slicing Hypothesis”,

see Goldsmith 1976) is real, and poses serious problems for the standard

Markov systems, which are built from segment (triphone) models.

One might object that the longer the units used by the system, the

fewer boundaries there are, so the problem is not as serious as it seems .

But this objection, though not unreasonable in the light of the fact that

many current systems indeed employ demisyllable-, syllable-, word-sized

While in suprasegmental phonology the idea of ‘precompiled’ units recently gained

some currency (Hayes 1990), in segmental phonology the possibility of precompiled units

is rarely admitted. The experience with speech recognition and synthesis systems, however,

points to the conclusion that such units must be recognized e.g. for function words.
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or even longer units, is missing the point. The longer the basic unit, the

harder it becomes to share training data across units. In particular, sys-

tems based on word-sized units, in which the fuzzy segment boundary

problem is reduced to the problem of fuzzy word boundaries (in con-

nected speech), can at best share data across the same words appearing

in different compounds and affixed forms.

A large-vocabulary system, as this term is currently understood, will

have between 10,000 and 200,000 lexical entries, typically around 50,000.

But experience with large corpora shows that a 10,000 word vocabulary

will cover only about 95% of tokens , a figure quite comparable to the

recognition rate of medium-size (1,000 to 10,000 words) systems. For

example, Jelinek, Mercer and Roukos 1990 report that adding the newly

encountered words to the 20,000 lexical entries in the Tangora isolated

word speech recognition system reduces the error rate from 2-3% to 1%.

But the new word types are of course less frequent than the ones already

added, so training data for them will be sparse. This is a serious problem

for a lexicon based on longer units, but if the lexicon is based on smaller

units (such as triphones) new entries can be added without altering the

underlying models, i.e. even in the complete absence of training data.

Thus the overall performance of large vocabulary systems is deter-

mined on themargin. Ahypotheticalfivefold decrease in error rate on the

known vocabulary of say 50,000 words would only bring a 20% decrease

in the overall error rate. 80% of the performance gain will therefore come

from improving the performance of the productive part, i.e. the segment

models. Since we cannot circumvent the problem of fuzzy boundaries by

using longer units (because this would make it harder to share training

data, already scarce, across the models), a new design which exploits

the patterns of desynchronization should be of some interest to speech

engineers. Because the sMM framework presented in section 5.3 is a

For the statistical reasons behind this phenomenon, see Good 1953.

It took the entire 15-year history of HiddenMarkovModels to create one such decrease,

and there is no reason to believe that the next one will happen any faster.
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faithful model of autosegmental phonology, where the fuzziness of seg-

ment boundaries, “the failure of Absolute Slicing” is built into the theory,

we have good reason to expect improved performance on the margin,

where it really matters.

There is another, independent reason to believe that sMMs might do

well. Autosegmental phonology rests not only on the kind of subsegmen-

tal evidence discussed above, but also on a great deal of suprasegmental

evidence coming from the large-scale structure of speech (see section 4.3

above). Since autosegmental phonology deals with large-scale structure

quite successfully, sMMs are also expected to be successful to the extent

that they replicate autosegmentalization. The formalization of autoseg-

mental phonology developed in the previous chapters covers large-scale

structure from unbounded spreading (see section 1.3) to templatic effects

(see section 2.2), and in the light of our discussion of hidden variables

(see section 4.3), sMMs have the resources to cover the same phenom-

ena. However, the treatment of large-scale structure in sMMs will not be

given a prominent role in what follows, because such structure is most

clearly manifested in root and pattern morphology, vowel harmony, and

other phenomena not found in English .

5.2 The segment-based model

In this section we investigate the relation of the typical segment-based

and feature-based models from the perspective of our model-theoretic

formalization of phonology. While this perspective is useful inasmuch

as it leads to the proportion “standard (SPE) phonology is to standard

(left-to-right) HMMs as autosegmental phonology is to sMMs”, in what

follows the language of model-theoretic semantics is largely abandoned

in favor of the language of statistics which is expected to be more familiar

In speech engineering, where 90% of the work deals with English, there is a strong

tendency to ignore large-scale structure entirely. It is probably no accident that the only

domain where autosegmental phonology had a significant impact on speech engineering is

intonation (Pierrehumbert 1980,Pierrehumbert 1981), the only domain in English for which

large-scale structure is evidently important.
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to the speech engineer . Our starting point will be the segment-based

interpretation defined in section 3.5, which maps autosegmental repre-

sentations onto strings of left-to-right Markov models so that a separate

Markov model corresponds to each segment (root node) in the repre-

sentation. While in chapter 3 this interpretation was introduced only in

order to describe the duration of the segments in the representation, the

mechanism of course extends to the content of the segments. In what fol-

lows spectral parameters, amplitude, and possibly low order derivatives

of these will all be lumped together as content. This is not to deny the

practical importance of the mode of signal processing chosen, but rather

to emphasize that our considerations are independent of the details of the

signal processing “front end”.

Like the duration, the content of a single segment token is determin-

istically given as a sequence of parameter vectors produced by the front

end. And like the duration, the content of a phonological representa-

tion is defined as the statistical ensemble of the deterministic values for

those tokens that fit the representation. Duration, as an ensemble, can

be expressed in a single random variable, but content requires a more

sophisticated data structure. While duration requires only a single real

parameter, content must be viewed as an n-dimensional vector of real

numbers , and this complicates the data structure to some extent. A

more serious complication, not amenable to a vector quantization solu-

tion, is that the number of parameter vectors in the content sequence is

itself random, being determined by the duration.

As is well known, HMMs provide an effective method for generating

random length sequences of parameter vectors. On any run, the model

will go through a sequence of states and emit, in each state, a vector

according to the output distribution characterizing the state in question.

But there are other possibilities, for example defining shorter (longer)

In particular, the term ‘model’ will be used to abbreviate ‘Markov model’. In the

few cases where the model-theoretic meaning is intended, the more explicit phrase ‘model

structure’ will be used.

Except for discrete density systems.
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sequences of vectors by downsampling (upsampling) a fixed-length tem-

plate (Ostendorf and Ruocos 1989), so choosing Markov models for the

purpose of capturing the content of phonological representations has to

be justified by showing that the statistical structure embodied in Markov

models is flexible enough to model the actual distribution of content.

As far as the length of the sequences is concerned, in section 3.5 we al-

ready demonstrated that the statistical structure of inputmodels is flexible

enough to model any distribution that might arise. But as we shall see

shortly, no similar “completeness” result can be established for content,

not even for the simplest case of sequences of length one.

The problem, hardly ever discussed in the speech engineering liter-

ature, is that there is no guarantee that Markov models will continually

improve as the population of phones becomes more and more narrowly

circumscribed. Intuitively it seems obvious that dividing the population

of, say, phones into word-initial, word-internal, and word-final -s and

training separately for the three classes will improve the overall fit (as

long as we have enough training data for each of the resulting classes),

since we have three times more parameters to fit. But in fact this need not

be true at all, as the following simple construction shows. Let us suppose

that we use gaussians in the output and we model the following ensemble

of sequences of length one: ; ;

. Since this is a binomial distribution, we can fit

a very close gaussian. Now if we divide the population to three parts,

the first being , the second being , and the third being

(keeping the probabilities as they were), all three will have bimodal dis-

tributions so the gaussian approximation will be so bad that the overall

error is in fact increased .

In this example, the result of dividing the population into more nar-

rowly circumscribed groups and modeling each turns out to be worse

than the result of using just one broad model. It is tempting to object to

Similar examples can be created for all major families of distributions that one might

consider, instead of gaussians, for output. Only discrete density systems that use full

histograms instead of parametrized distributions in the output are immune to this problem.



5. Structured Markov Models 175

the contrived nature of the example, but of course there is no guarantee

that the actual subdivision process, which is usually carried out on the

basis of expert knowledge about relevant contexts, will fare any better .

In fact, as we turn to more realistic examples that involve sequences

of content vectors of different length, vectors corresponding to different

phases of the training tokens will be, to a certain extent, averaged to-

gether. Because of this, it is by no means obvious that the distribution of

sequences of vectors generated by Markov models will successfully ap-

proximate the characteristics of the population distribution. The fact that

significant improvements can be realized from dividing segments into

successive microsegments (see Deng, Lennig and Mermelstein 1990) in-

dicates that the segment-based markovian scheme is actually vulnerable

to this “warp-averaging” effect. In contrast, the feature-based system

introduced in 5.3 is immune to this problem for the majority of features,

namely the ones that do not form contours.

In spite of such theoretical misgivings, Markov models work quite

well in practice. Though linguists generally ignore finite automata ever

since Chomsky 1957 demonstrated the inadequacy of deterministic finite

automata for syntax, and Miller and Chomsky 1963 made the point that

probabilistic finite automata do not scale up (again for syntax), the perfor-

mance of state of the art speech recognition systems like Sphinx (Lee et

al. 1990b), syntactic taggers (Church 1988), and even machine translation

systems (Brown et al. 1990) is good enough tomake one believe that finite

automata, much like context-free grammars in syntax, were dismissed too

rashly. In particular, the markovian interpretation of segments, which is

the conceptual model implicit in most working speech recognition sys-

tems, should be contrasted with the model of speech recognition inspired

by the traditional organization of generative phonology:

Even under approaches that strive to eliminate expert knowledge as in Lee et al. 1990a

or Bahl et al. 1991, the best that can be guaranteed is that no division that would make

matters worse (as in the above example) will be actually performed. But there is no

guarantee that the population distributions can be approximated with arbitrary precision.
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(4)

raw speech signal

Signal Processing

coded speech signal

Segmentation

segmented (coded) signal

Classification

surface phonetic representations

Identification

surface phonological representation

Reverse Morphophonemics

lexical entries

Parser

sentence

In what follows, I will call this model, exemplified by such systems as

HWIM (Woods et al. 1976), the Segmentation – Classification – Identifi-

cation or S-C-I model. Compared to (4), the model used by the majority

of speech engineers is strikingly simple:

(5)

raw speech signal

Signal Processing

coded speech signal

Hidden Markov Model

sentence

The simplicity of this model is very strongly motivated by the diffi-

culties with creating explicit Segmentation, Classification, and Identifica-

tion algorithms. As Makhoul and Schwartz (1986) emphasize, linguists

do not have a sufficiently detailed knowledge of context effects and the

micro-synchrony of features to create good algorithms, while statistical
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models can be optimized to capture regularities in the data by general-

purpose algorithms (e.g. Baum et al. 1970) that do not require such

detailed advance knowledge about the domain.

In the S-C-I model decisions must be made at each stage, and errors

introduced at some early stage have a devastating effect on the perfor-

mance of later stages. In contrast, standard HMM systems combine the

structural representations of segments (triphones), the structural repre-

sentations of words (built from triphones or from larger units), and the

structural representation of sentences (finite state parses) into a single

language model on which optimization and search can be performed

globally. This way decisions can be delayed until the moment of lexical

choice or, if a finite state syntax is used, even further. Thus one is led to

the conclusion that if feature-based systems are to be competitive with

the segment-based systems dominating the field of speech recognition,

they must be both trainable and able to make delayed decisions.

5.3 The feature-based model

For a book that promotes the use of phonological features in speech

recognition it is something of an embarrassment to admit that there is

no generally agreed upon version of feature theory to promote. Unfortu-

nately, there is no firm consensus among phonologists about the number

of features present in the universal system of features, about the precise

nature of these features (are they all binary?), about the feature analysis

of particular phonemes in particular languages, or about the geometry

(see section 4.1 above) in which the features are arranged . This is one

of the areas where the abstract method of the work (see section 0.3)

has real advantages. Given an arbitrary inventory of features arranged

in an arbitrary geometry, we can construct a structured Markov model

reflecting the inventory and the geometry in every detail by a simple

recursive procedure traversing the tree that encodes the geometry in a

The reader interested in the actual range of opinions about thesematters should compare

the papers collected in Itô et al. 1991 with one another.
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bottom up fashion. This way we can evaluate different hypotheses about

feature inventories and geometries on the basis of the performance of the

corresponding sMMs.

In order to present the crucial steps of this construction, we will draw

on our understanding of autosegmental phonology, as summarized in the

concepts of model structures and model-theoretic interpretation devel-

oped in the previous chapter. In 5.3.1 we describe the markovian analog

of interval structures (see section 4.2), which are small ergodic models

called feature models – these are the basic building blocks of sMMs. In

5.3.2we take the two basicmodes of combining smaller interval structures

into larger ones, free alignment and alignment according to an interval

structure (see section 4.2), and describe the markovian analog of these

constructions called direct product and cascading. The class of sMMs

obtained from the feature models by recursive application of the direct

product and the cascading constructions is somewhat similar to the class

of Multi-Layer Perceptrons (MLPs). The relationship between the two

is the subject of 5.3.3. The procedure of translating different versions

of feature geometry into sMMs is explained in 5.3.4 using Clements’

(1985) original proposal. Finally in 5.3.5 we reverse the direction of the

translation and show how knowledge about the acoustic domain can be

expressed in feature geometrical terms.

5.3.1 Feature models

The basic building block of our model structures for autosegmental

phonology was the interval system (see section 4.2 above). Here an

-valued interval system will be replaced by a Markov model with

(hidden) states. These feature models are in state whenever the feature

has the th value, somewhat like in acoustic/phonetic decoder of Levin-

son et al. 1989. Here the basic model has one state per feature value,

rather than one state per phoneme, but there is a conceptual similarity

inasmuch as the hidden states correspond to linguistically meaningful

concepts, and there is considerable formal similarity inasmuch as both
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models are ergodic (as opposed to the standard left-to-right assumption,

see section 3.4 above). An important difference between the basic fea-

ture model and the acoustic/phonetic decoder is that in feature models the

duration is not controlled explicitly. Given that features tend to persist

for intervals longer than the duration of a single segment, the transition

probabilities are set so as to encourage the feature model staying in one

state, i.e. high in the diagonal of the transition matrix and low every-

where else . Naturally, a single feature model will not be sufficient to

determine the identity of segments (or larger units) – for this we will need

several feature models, trained on different features, to run in parallel.

The training of feature models requires pre-segmented and labeled

data. If we have a corpus of pre-segmented, labeled utterances, we can

simply divide the segments into as many groups as there are feature

values, and use the averaged contents of each group as an estimate of

the output distribution of the corresponding state. For example, if the

feature model to be trained is [coronal], there will be one group of

segments that are linguistically classified as [+coronal], and these are

used to estimate the output distribution of the + state of the model,

and similarly for the – state. Those segments which are predicted by

phonology to be underspecified for [coronal] are used to estimate the

output distribution for the 0th state. In practice, task-specific algorithms

such as the competitive training proposed by Young (1990) are expected

to be much more effective than the crude training method proposed

above. Here and below the point is not so much to advocate the use

of averaging algorithms over more task-specific algorithms, as it is to

demonstrate the theoretical possibility of devising training algorithms for

models incorporating features.

If we interpret, as suggested in section 4.3 above, the 0th state as the state where no

feature value can be reliably established, transition probabilities into this state should be set

low and out of it high so as to encourage the model to make decisions.
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5.3.2 Building structured models

The model structures for autosegmental phonology, interval structures,

were built in chapter 4 from interval systems by means of two construc-

tions called freely aligned and aligned according to an interval structure

– let us take each in turn. Markov models, being finite automata, lend

themselves naturally to a direct product construction. If the multipli-

cands have state sets , the product model will have states in the

cartesian product of the sets . The transition probabilities of

the product model are given by the product of the transition probabilities

in the components, and the output distribution of a product state will be

the mixture of the outputs of the component states. Since the output dis-

tributions for any feature model are expected to cover almost the whole

space, the mixtures, in the case of full covariance gaussians, are expected

to look much like the intersections of the high probability regions of the

component distributions.

The idea of direct product decomposition has been successfully ap-

plied in the Markov modeling of speech contaminated with noise (Varga

and Moore 1990). The direct product construction is quite suitable for

this case, as there is no reason to believe that the speech and the noise

are in any way synchronized. In the case of features, however, we expect

a great deal of synchronization. For instance, whenever voicing begins

or ends, at least one major category feature is likely to shift since clus-

ters of segments sharing the same major category tend to assimilate to

one member (usually the first or the last, depending on the language) of

the cluster in voicing. Thus we need a markovian version of alignment

according to an interval structure. We will call this cascading.

In order to present the key idea of cascading, it will be conve-

nient to think of Markov models as transducers that produce, for any

sequence of parameter vectors, an optimal sequence of states (which can

be computed by the Viterbi algorithm). If we have Markov models,

corresponding to the interval structures
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which we wish to make the direct product of, plus a model cor-

responding to the interval system governing the alignment, arrange these

in a two level scheme as follows:

(6)

...

In the cascade arrangement, the models , , ...

on the lower level run in parallel. They are presented with the same

parameter vectors frame by frame. Their maximum likelihood states,

taken jointly, form a new “metaparameter” vector for each frame, and the

output distributions of the top level machine will be estimated

(by some version of the Baum-Welch algorithm, see e.g. Dempster, Laird

and Rubin 1977) so as to maximize the likelihood of these metaparameter

sequences. Although the top-level models could be word models or

even larger, the linguistic theory behind this scheme is more faithfully

replicated by taking these models to be class nodes (see sections 1.5 and

4.2). The aim of alignment, as defined by (9.3) in section 4.2, was to

control (synchronize) the temporal behavior of the lower level models

according to some interval system (the top level model).

Association lines are synchronization signals that enforce temporal

overlap between two intervals (features) contained in different interval

systems (tiers). In a markovian framework this means that certain states

in the lower machines, namely those that correspond to the associated

feature values, will appear with joint probability 1 in the output distribu-

tion associated with the state corresponding to the segment that shows the

association . The full range of interval structures thus can be embodied

in a markovian framework by using the direct product and the cascade

The phasepoint/lag mechanism described in section 4.2 will thus come into play only

to the extent that increased phonetic knowledge makes it possible to replace markovian

feature, class, and segment models by semi-markov models in the sense of Russell and

Moore 1985. How such knowledge can be gained using sMMs is discussed in 5.3.5 below.
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constructions recursively, so the class of structured Markov Models

(sMMs) is defined as the smallest set which includes feature models and

is closed under direct product and cascading .

5.3.3 Structured Markov Models and Multi-Layer Per-

ceptrons

Before turning to examples of more complex feature geometries, let us

first compare the simplest arrangement given in (6), which corresponds

to the “rolodex” geometry of features discussed in section 4.1 above, to

the model recently investigated in Meng and Zue 1991. The HMMs at

the bottom level can be thought of as feature detectors, and the HMM

at the top acts as a segment recognizer. Thus the main difference from

the Meng and Zue model is the consistent application of the Markov

paradigm. Meng and Zue use expertise-based feature detectors at the

lower level and a neural net classifier at the top level, while here we see

HMMs at both levels. The theoretical advantage stemming from using

trainable models for features was discussed above – in practice it remains

to be seen whether trained feature detectors will actually provide better

results than expertise based detectors of the kind used in the FEATURE

system developed at CMU (Cole et al. 1983, Cole et al. 1986).

At the top level, using an HMM, rather than a neural classifier, is also

expected to be beneficial inasmuch as (semi)Markov models have a clear

temporal structure absent from the kind of (non-recurrent) neural nets

employed by Meng and Zue. Autosegmental phonology was developed

because of the failure of the Absolute Slicing Hypothesis – features

do not change their values simultaneously. Although phonologists or

phoneticians do not have a full understanding of the way the changes in

While the class of sMMs so defined is infinite, both the branching factor (number

of features dominated by a class node), the depth (length of chains of class nodes), and

the breadth (number of leaves) can be rather sharply delimited on the basis of the feature

geometry trees proposed so far. Since sMM training is roughly the same order of complexity

as standard HMM training, it is tempting to speculate that with improved hardware an

exhaustive search could be performed on the class delimited by a branching factor 10,

depth 5, and breadth 25.
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one feature lag behind the changes in another one, at this point they are

very much aware of the fact that such time lags are the rule rather than

the exception. Thus we expect that a great deal of regularity is present

in the patterns in the time lags, i.e. that the dynamics of the feature

configuration will aid the recognition.

Is this arrangement very different from a two-layer perceptron, and,

in general, are the more complex recursive structures to be discussed

below very different from Multi-Layer Perceptrons (MLPs)? From a

broad theoretical perspective they are not very different, because every

Markov model can be implemented as a recurrent neural network (see

Bridle 1990). The similarity between sMMs and MLPs can in fact be

increased by taking the probability scores of the lower level HMMs being

in the various states, rather than the index of the maximum likelihood

states, as parameter vectors for the HMM on the top level. By doing this,

we get classifiers producing continuous scores, rather than discrete on/off

input units, at the first layer that provides the input for the hidden units

(class nodes) in later layers.

In a more narrow practical sense, however, there are considerable

differences between MLPs and sMMs. The primary difference is that

MLPs are trained with hill-climbing methods which, at the present state

of computing hardware, do not scale up from very small vocabulary (typ-

ically digit recognition tasks) to the large vocabularies required for more

demanding applications. In contrast sMMs are trained in two passes .

The first pass is bootstrapped on standard HMM-based segmentation, and

only the second pass uses hill-climbing, which reduces the problem to

manageable proportions. A conceptually secondary, but for applications

nonetheless very important difference is that the generic architecture of

MLPs is replaced in sMMs by a task-specific architecture dictated by

phonological theory.

In the general case to be discussed below, the number of passes is determined by the

depth of the feature geometry tree.
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5.3.4 Expressing feature geometry in structuredMarkov

models

Let us now turn to the procedure that translates various proposals about

feature geometry to the corresponding structured Markov model. Since

the input to this procedure is to be found in scholarly papers rather than in

the mathematical objects (trees) that were used in section 4.1 and 4.4 for

the formal analysis of feature geometry, we will present the translation

procedure using the original proposal of Clements (1985), shown in (7)

below, as our example.

(7)

rt

sl l

sg cg voipm

n cn st co an di

rt = root sl = supralaryngeal l = laryngeal

m = manner p = place

sg = spread glottis cg = constricted glottis voi = voice

n = nasal cn = continuant st = strident

co = coronal an = anterior di = distributed

At first sight, we need nine feature models at the lowest level, three

corresponding to manner features, three to place features, and three to

laryngeal features. In fact, wewill need only six: three formanner, one for

place, and two for laryngeal features. As the example of Intrusive Stop

Formation discussed in section 4.2 shows, manner features are indeed

capable of desynchronization, so in order to describe these we need

three independent HMMs, namely , , and ,

It is obvious from Clements’ discussion that there are other features, e.g. vowel

features or those describing tonal distinctions, that should be added to the geometry at the

appropriate places. I will follow Clements in ignoring these.
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aligned according to a fourth one, namely (see figure (8A)

below). However, the place features do not obviously show the same

desynchronization effect, so we describe the whole subtree rooted in the

place node with a single (8-valued) . In languages where fewer

place contrasts are present the model will have fewer states (see figure

(8B) below). Finally, the subtree rooted in the laryngeal class node will

of necessity give rise to fewer than 8 combinations, since [+sg] and [+cg]

cannot cooccur. To simplify the discussion here and in what follows,

I will assume that the remaining 3 values are sufficient for describing

glottal stricture. Under this assumption, we can model the laryngeal

subtree by the direct product of a 3-valued model, corresponding to the 3

combinations permitted by [sg] and [cg] together, and a 2-valued model,

corresponding to the voiced/unvoiced distinction (see figure (8C) below).

(8A) (8C)

(8B)

In the type notation introduced in section 4.2, (8A) is given by [(2,2,2),m],

(8B) by (p), and (8C) by (3,2) if no 0th states are employed – is the

number of possible manners of articulation, and is the number of

possible places of articulation. If we use 0th states, (8A) is of type

[(3,3,3),m+1], (8B) is of type (p+1), and (8C) is of type (4,3). Thus at the

lowest level all three major types of interval structures (as summarized

in (9) of section 4.2 above) are attested. Manner gives rise to direct

product aligned according to an interval system as in (8A), place gives

rise to a multi-valued interval system as in (8B), and laryngeal gives rise

to freely aligned direct product as in (8C). In particular, the distinction

between multi-valued interval systems, in which every interval is subject

to a MINDUR restriction, and freely aligned direct product, where no

such restriction is present, is exemplified by place vs. laryngeal. In the
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ccr (coarsest common refinement, see section 4.2) of place features every

interval corresponds to a place description of some segment, soMINDUR

is the overall segmental MINDUR which is about 20 milliseconds .

But in the ccr of laryngeal features the lack of synchrony between the

spreading/constriction of the glottis and the onset or offset of voicing can

lead to arbitrarily small intervals (cf. Fig. 6 in Ladefoged 1971), which

can only be captured by the freely aligned direct product construction.

Let us denote the three sMMs constructed so far by (8A),

(8B), and (8C). Of these, the place model and

the laryngeal model are ordinary HMMs. is a p(+1)

state ergodic model, and , though the direct product of smaller

HMMs, is still a standard HMM that will, in any single move, output a

parameter vector according to the output distribution of its present state,

and move into a new state according to the transition probabilities from

its present state. But the operation of is more complex. In

a single move (corresponding to a single frame) all three lower level

HMMs in it will move to a new (possibly the same) state and the record

of these moves constitutes a “metaparameter” vector which plays the

same role in the output distributions of the top level HMM of

(namely ) as the ordinary parameter vectors, derived from the

speech signal, play in the output distributions of the lower level HMMs

– they make up the statistical ensembles captured in the model. For

example, if the manners of articulation permitted in the language are

stop, fricative, approximant (including vowels), and trill, will

have four ergodic states (ignoring the 0th state), and will have to move

into one of these based on the transition pattern of the lower HMMs (that

is, without the benefit of direct information about the signal).

Thus, at the lowest level we have the three sMMs shown in (8)

above. At the next level the manner model and the place model

are put together into the supralaryngeal model , and at the

highest (third) level the laryngeal model is put together with the

See fn. 5 to section 3.1.
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supralaryngeal model to form the root model which is a phone

(or phone in context) model. Since manner and place are completely

independent, we use the freely aligned direct product construction to

create an state supralaryngeal model

for each archiphonememodulo laryngeal distinctions (see section 4.2, and

the discussion of sāvarn. ya in section 4.1 above). But the laryngeal and

supralaryngeal class nodes are not completely independent (the freeness

of voice onset is already handled by the laryngeal class node) so at the

top (root) level we again use cascading (alignment according to timing

units). The result is shown in (9) below:

(9)

As can be seen from (9), the root (phone) models structured according

to Clements’ geometry receive information from the signal most directly

through the laryngeal sub-sMM. In other words, the system is really

driven by voicing decisions, which can change the state of the laryngeal

model directly, while place and manner decisions are both based on the

joint effects of lower feature models.

While the example makes clear that translating proposals about fea-

ture geometry into sMMs is not entirely mechanical, it only requires

expert knowledge about the various proposals to the extent that the MIN-

DUR condition and the possibility of desynchronization at each class

node has to be ascertained by the translator, since this will determine the

choice between direct product, cascading, and (at the lowest level) mul-

tivalued features. If proposals about feature geometry came annotated

with this information, the procedure would be quite mechanical.
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5.3.5 Acoustic feature geometry

In phonology, feature geometry is used to express knowledge about the

inventory of cooccurrence restrictions and assimilation and reduction

processes to be found in the languages of the world. It would not

be totally surprising if a theory based entirely on this kind of purely

grammatical evidence would fail to make realistic predictions about the

acoustic phonetic aspect of speech. After all, the relationship between

phonological processes (such as assimilation) and their phonetic basis

(such as coarticulation) is rather tenuous (see Anderson 1981). For ex-

ample, our sMM translation of the original version of the theory due to

Clements (1985) implies that the primary indicator of phonemic identity

is laryngeal activity – certainly an interesting hypothesis, but perhaps not

the most plausible one.

Now that we have a method of expressing hypotheses about feature

geometry in a markovian setting, it becomes feasible to translate in the

other direction. Given some knowledge about the acoustic domain, we

can devise sMMs (and thus indirectly feature geometries) that capture

this knowledge. For instance, if we know that the intervals most easily

distinguishable in the acoustic signal are silence vs. vowels vs. fricatives

vs. stop bursts vs. stop aspiration, we can describe these by a new set

of major class features to be placed at the top of the feature geometry.

Further, if we know that changes in voicing and nasality will largely be

synchronized with these intervals, this suggests cascading i.e. subordina-

tion of these features to the major class node, leading to the sMM shown

in (10) below:

(10)

As can be seen from (10), the top level model receives

information about voicing, nasality, and directly from the signal. Since
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voicing and nasality decisions are relatively easy to make,

and should be two state models (with no 0th state). But

the model at the top should probably contain a 0th state in

addition to the five given by silence, vowels, fricatives, stop bursts, and

stop aspiration, since the endpoints of these intervals are not always easy

to find. Only a minimum of synchronization should be enforced. Silence

and aspiration must be unvoiced (and perhaps oral), and vowels must be

voiced .

Since the design in (10) is rather speculative, it is perhaps worth

emphasizing that the method can be, and indeed should be, applied to

acoustic knowledge embodied in the parameters of Markov models. This

approach was pioneered in the HMM setting by Poritz 1982 who trained

a small (5 state) ergodic model and characterized the resulting output

distributions as “strong voicing vs. silence vs. nasal, liquid vs. stop

burst, post silence vs. frication”. Training an sMM such as (10) in which

voicing and nasality are decoupled from the major class features would

probably lead to a sharper characterization of the resulting major classes

and would pave the way to more realistic acoustic feature models.

5.3.6 Subsequent work

A key issue in the design of sMMs is to decide which models have direct

access to the signal and which rely only on the states of other models.

Brugnara et al. 1992 developed an asymmetrical arrangement in which

one model, the “master”, accesses the signal, and a second model, the

“slave”, has its parameters conditioned both on the signal and the state of

the master. The master can be a simple ergodic feature model (they use

nasality as an example) and the slave, a vowel model with the standard

left-to-right topology.

In our terms,master-slavemodels are a special case of (freely aligned)

direct products. Though Brugnara et al. (1992) note the direct product

This does not mean that vowels must be voiced throughout, only that the detection of

an unvoiced frame by forces out of the vowel state.
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decomposition, their model is conceptualized very differently from the

view presented here. First, they perform training over unsegmented data.

From our perspective this is a limitation (such training is only possible

in the freely aligned case), but it must be said that the case for preferring

training methods based on unsegmented data is very strong. Second, they

envision the same master conditioning several slaves, while in the sMMs

sketched above several masters would simultaneously condition a single

slave. While the fundamental idea of reducing the number of parameters

to be estimated by structuring the parameter space itself is the same, the

relative effectiveness of the two approaches can be quite different, and

at this point it would make little sense to speculate about the outcome of

such a comparison.

The ongoing project first described in Deng and Erler 1992 has long-term

goals very similar to the ones described earlier in this chapter. As the

authors put it (p. 3059):

it is in our long-term interest to verify the validity and useful-

ness of particular feature representations and to eventually

arrive at an optimal feature representation (...). In contrast

to other proposed methods for feature representations where

features are mapped to phonetic outputs or are extracted

directly from the speech signal in a deterministic manner

(Meng and Zue 1991, Howitt 1990), our new method treats

the feature representation as the underlying process that is

not directly observable.

The model is implemented in a way that uses neither direct product

nor cascade decomposition. Features are taken to be n-ary (with no

underspecification), and each combination of different values for different

features is made to correspond to a state in a standard HMM. These states

are interpreted as transitional microsegments as opposed to the target

microsegments used in the earlier model (Deng, Lennig and Mermelstein

1990). Word models are built from sequences of target microsegments
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with carefully selected transitional microsegments interdigitated. As the

authors note, the new design makes it possible to share training data not

only for target but also for transitional microsegments.

In our terms, the only variety of interval structures that fit into this

model are interval systems with their attendant MINDUR condition (see

(7.3) in section 4.2). Therefore, the warp-averaging problem discussed

in section 5.2 above is still present, since different feature lags below

the temporal resolution of the system (which is determined by the frame

rate) are still averaged together. In the absence of experimental data it

would be futile to speculate about the impact of warp-averaging on the

performance of the system, but, if training data is available in abundance,

the size of the effect can be estimated by increasing the frame rate while

keeping the architecture constant .

5.4 Conclusions

How do the structured Markov models presented in the previous section

avoid the problems with features that we started out with? The fact

that features lack reliable acoustic cues is a fact about our conscious

knowledge of the matter, not about the objective reality of the situation.

Absence of evidence is not evidence of absence. Training for features,

though requiring pre-segmented and labeled data, is certainly feasible,

and promises to be an efficient way of gathering data about such cues.

The issue of zero-one decisions is reflected in the transition probabilities

of the models, which were set externally (i.e. not by training) in the

manner described in 5.3. Finally, the lack of additivity in different cues

for different features is remedied by the cascading mechanism which is

at the heart of the system. Since at the leaves of the tree, each feature

model receives the same sequence of content vectors, there is no need

to selectively pre-emphasize some aspect of the signal to bring out one

feature at the expense of the others.

But with contravariant changes in the number of states, see 3.4.1 above.
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The power of the system comes not only from its trainability, but

also from the delayed decision-making mechanism built into it. Let us

suppose, for the sake of the argument, that the machines at the leaves

cannot be trained for better performance than the expertise-based feature

detectors, so that the decision on any individual feature is only 60-70%

reliable. The machines at class nodes can still be more reliable, since

their decisions are based on the combined effects of the subordinate

machines, so that restrictions on the dynamic cooccurrence of features

can be exploited. This way, the higher a class node, the more reliable the

decision made by it, so that at the top (root) level decisions might turn out

to be more reliable than the decisions made by segment models. Finally,

above the segment level, decisions can benefit from the knowledge of

lexicon and syntax, if such knowledge is available, just as in standard

systems.

Needless to say, the considerable theoretical support sMMs receive

from autosegmental phonology is no guarantee of success. sMMs can still

fail, both as instruments of comparing linguistic theories and as speech

recognition devices. They will probably fail to provide consistent results

across languages, meaning that they will have to be used with a great

deal of caution in evaluating theories based on typological evidence, but

if they fail to provide consistent results even for a single language, they

cannot be used for the intended purpose of comparing and evaluating

phonological hypotheses at all. Failure in speech recognition is an even

simpler matter. If sMMs are outperformed by ordinary HMMs, they have

failed. But here a word of caution is in order: performance evaluation

should be based on open vocabulary, not on closed vocabulary tasks.

Human “speech recognizers” operate very efficiently at the margin

where no lexical or syntactic knowledge is available. They are capable

of recognizing words such as proper names that they have seen but never

heard before, and of acquiring, and even transcribing, words they have

never heard or seen before. Inasmuch as this capability is an important, in

fact necessary, component of language acquisition, no system that lacks
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this capability can be an adequate model of human linguistic competence.

Even more strongly, among two systems, ceteris paribus, the one that

displays this capability to a larger extent is the better model of human

linguistic ability. Thus I would like to conclude that the criteria of

adequacy employed by the linguist and the speech engineer are not at all

incompatible.

Speech engineers, having made 95% of the progress that can be

made on closed vocabulary systems, will of sheer necessity be more and

more sympathetic to the view that the performance of their systems is

determined at the margin, not at the center, of the vocabulary. Linguists,

who insist that their enterprise is a scientific one, will have to become

comfortable with the idea that of two models, other factors being equal,

the one that does better, is better. It seems to me that there is no reason

to be afraid of a straight comparison. While it is true that the linearly

structured, statistical models of the speech engineers presently do better

than the sequentially structured, expertise-based models built by linguists

or linguistically minded speech engineers, the gap is not as wide as it

might appear from evaluations based on closed vocabulary, and with the

introduction of the kind of hybrid feature-based systems proposed here,

it might be closed within a few years.
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