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Abstract

Academic cloud infrastructures are constructed and maintained so they minimally constrain their users. Since they
are free and do not limit usage patterns, academics developed such behavior that jeopardizes fair and flexible resource
provisioning. For efficiency, related work either explicitly limits user access to resources, or introduce automatic rationing
techniques. Surprisingly, the root cause (i.e., the user behavior) is disregarded by these approaches. This article compares
academic cloud user behavior to its commercial equivalent. We deduce, that academics should behave like commercial
cloud users to relieve resource provisioning. To encourage commercial like behavior, we propose an architectural extension
to existing academic infrastructure clouds. First, every user’s energy consumption and efficiency is monitored. Then,
energy efficiency based leader boards are used to ignite competition between academics and reveal their worst practices.
Leader boards are not sufficient to completely change user behavior. Thus, we introduce engaging options that encourage
academics to delay resource requests and prefer resources more suitable for the infrastructure’s internal provisioning.
Finally, we evaluate our extensions via a simulation using real life academic resource request traces. We show a potential
resource utilization reduction (by the factor of at most 2.6) while maintaining the unlimited nature of academic clouds.
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1. Introduction

Academic computing infrastructures are built and main-
tained in order to support scientific users in their research
endeavors. Introducing limitations on the hardware usage
in any ways would defeat the very reason for the existence
of these infrastructures. However, the more limitless a sys-
tem is the more responsibility it requires from the scientific
users. For example, they must learn to eliminate their im-
pact on other user’s workings. Therefore, maintainers of
such systems traditionally make the compromise of intro-
ducing such limitations for the users that stop uninten-
tional obstructions on the work of other users [1]. Mean-
while, for future systems, computer science tries to reduce
the amount of limitations and their impact on the scientific
users.

Infrastructure as a service (IaaS) cloud computing sys-
tems [2] are amongst the most recent developments in
this field. These systems offer on demand resource ac-
cess with such flexibility in software configurations [3] that
the users could even utilize highly customized operating
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systems and support environments for their tasks. This
flexibility is achieved through the application of virtual-
ized data centers. Although, the cloud computing concept
has been proposed by commercial companies (e.g., Ama-
zon1, Rackspace2), academic solutions (like Eucalyptus [4],
Nimbus [5] or OpenNebula [6]) started to arise first by im-
itating the behavior of the commercial solutions then by
advancing towards specific academic needs.

Pricing is one of the essential aspects of commercial IaaS
systems [7] that academic solutions did not copy. Thus
academic providers who apply such academic solutions will
appear as offering unlimited resources for free to academic
users. This promise is tempting for the users as it lifts one
of their last remaining limitations. Unfortunately, this set-
ting leads to an unprecedented demand of resources that is
often latent (e.g., users maintaining demand for resources
similarly to pilot jobs in grids [8]).

Academic providers have to fulfill these demands with
the limited physical resources they are operating on. To
meet the demands with the infrastructure’s real capabili-
ties they usually apply two solutions: (i) access rationing,
(ii) under provisioning (N to 1 mapping of virtual to physi-
cal resources). Both approaches were utilized in academic
infrastructures even before the cloud era, but they both

1http://aws.amazon.com/ec2
2http://www.rackspace.com/
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have serious downsides for academic uses. First, access
rationing directly intrudes the freedom of researchers ac-
cess to the infrastructure [9]. For example, when a credit
system is applied for rationing, then the research of users
with no credits could be postponed for indefinite time pe-
riods (i.e., until they acquire some new credits for compu-
tation). Second, providers with under provisioning poli-
cies promise resources that are heavily shared amongst
users [10], therefore these shared resources could vary in
performance over time (the unintentional effects of others
who introduce background load to the shared resource).

Instead of the previously applied solutions, we propose
to direct users towards self-rationing. We derived the
rationing problem from the missing pricing in academic
clouds and argue that it is possible to construct academic
systems that feature similar behavior to commercial clouds
(where the rationing is imposed by the cost of further leas-
ing resources) but still promises unlimited resources and
unprecedented software configurability. We achieve this
behavior with an architecture that exposes energy effi-
ciency metrics to the users. First, our architecture pro-
vides the foundations for various leader boards where aca-
demic users can compete with each other on how energy
efficient they use the acquired computing resources. Sec-
ond, to ignite the rivalry on the leader boards, we recom-
mend providers to allow the specification of energy related
constraints on resource requests. Finally, we introduce the
concept of engaging options (electronic representations of
underused capacities) that allow users to attract others for
particular resources. These options offer a chance to users
to utilize resources from hosts that are already used and
thus these hosts could operate more energy efficiently.

The proposed architecture is built on three fundamental
assumptions: (i) availability of energy readings, (ii) ap-
plication of energy aware virtual machine placement, and
(iii) leader board publicity. First, we require the energy
readings because we propose to publicize the accountable
user consumption either directly or on a transformed way
through leader boards. Second, users should be able to
influence their leader board position, thus particular re-
source requests should have deterministic energy behav-
ior. This behavior should be guaranteed by an energy
efficient virtual machine placement policy at the provider.
Finally, the expected effects of the leader boards and en-
gaging options are really dependent on their publicity, thus
it is expected that they are soon adopted by a significant
percentage of the academic community. For example, the
adoption could be forced by the providers by automatically
enlisting their users in local leader boards.

To test the feasibility of our architecture and its posi-
tive effects on the academic cloud communities, we have
analyzed the behavior of typical academic users. First
we have classified the users by behavior and identified
the ways users could be transformed to behave more self-
constraining while still performing their tasks. Second,
we simulated the possible behavior of the academic users
found in the Grid Workload Archives. Based on our sim-

ulations, we have concluded that there is a high chance
of increasing energy efficiency and reducing resource de-
mand on the provider side while still performing all user
tasks. Our findings show, that the effect of our architec-
ture could decrease the energy footprint of the provider’s
computing infrastructure by a factor of 2.6 at most. We
have also revealed that a few users could particularly re-
duce the demands of the infrastructure, thus we introduced
the concept of the hall of shame (for the list of least ef-
ficient users). This list should be presented alongside the
leader boards in order to put immediate tension on the
misbehaving users by their fellows.

The rest of the paper is structured as follows. First,
we provide an overview on related research topics and the
research issues in Section 2. Next, in Section 3, we reveal
our architecture that could answer the identified research
issues. Afterwards, in Sections 4 and 5, we discuss the
inner workings of the architecture, first starting with the
characteristics of leader boards, their contents and their
relations with the users. Then, we continue with engaging
options and we show their life cycle from the time they are
issued to the time they are used or become invalid. Later,
in Section 6, we analyze the effects of the architecture in
a simulated environment. Finally, Section 7 concludes our
findings and summarizes the architecture’s properties.

2. Related work

Cloud computing is interesting for the scientific com-
munity from the beginning of the transformation of Ama-
zon Web Services towards the Amazon Elastic Compute
Cloud. Early evaluations investigated how scientists can
benefit from this new technological infrastructure com-
pared to Grids [11], especially with respect to storage [12]
and computation [13] costs.

Maximizing the revenue from infrastructure operation
is an important objective of Cloud providers, analyzed in
[14] based on SLA relationships. This work does not take
into account the possible energy savings that may further
help in reducing the costs.

In [15], it is shown that saving power can increase the
revenue of Cloud providers with only slight impact in the
overall performance. Academic clouds are not adapting
such power optimizations promptly, because the persons
responsible for the resource usage are not responsible for
the incurred electricity costs.

Rigid allocation mechanisms such as accounting based
limitations can restrict many cloud and grid computing use
cases and [9] reduce the overall scientific productiveness.
Contrary to credit or accounting based limitations, our
approach motivates the users to optimize their resource
usage through reduced power consumption.

Existing resource management and scheduling systems
such as SLURM [16] and Maui [17] incorporate fairshare
mechanisms enforcing user quotas or data access within
ownership domains which constrain scientists in using such

2



systems. These approaches however do not want to edu-
cate their users on expected user behavior. Therefore, even
if academic clouds apply these resource management sys-
tems, users could still behave on a way that these sched-
ulers could not resolve with their fairshare mechanisms.
For example, incoming virtual machine and job requests
could be so unnecessary large and long running that these
algorithms cannot manage them energy efficiently on their
own without external assistance (e.g., someone/something
suggesting users for more energy efficient request timing
and size that could still fulfill user tasks).

The work in [18] demonstrates that user awareness of
power consumption results in possible savings. In this pa-
per, we also aim at increasing user awareness but pro-
pose to do so by using leader boards. The leader board
is a heavily utilized concept in computing to increase
user involvement and awareness regarding particular top-
ics (through user ranking and competition). Furthermore,
several leader boards not only offer rankings for individ-
uals, but also groups. Group rankings within a leader
board system can be used to start additional competi-
tion between countries, research institutes or other self-
forming user groups (e.g., multinational research groups).
Leader boards became widely known through projects like
SETI@home [19] or the TOP500 supercomputer ranking
[20]. Similarly to these projects we also use the leader
board concept, where we introduce a new ranking based
on energy consumption and efficiency.

[21] evaluated and quantified the impact of user feedback
on power savings as 5% - 15%. To allow feedback on the
power consumption, there is a need for a model that maps
the physical power consumption to the virtual machines.
Such models are provided in [22, 23] and show sufficient ac-
curacy to be employed in our proposed architecture. Mea-
suring the individual power consumption of VMs executed
on a physical machine results in a higher power consump-
tion per VM if the machine is under utilized and the static
idle power is shared [24, 25]. We apply this knowledge in
our approach so we can present academics valuable infor-
mation on how they can improve their energy efficiency
measures.

There is also an interest in saving power in Cloud in-
frastructures by turning off unused virtual machines to
optimize resource use [26, 27]. This case is relevant for
commercial providers, as users are not willing to pay for
the idle times of their virtual machines. Optimized VM
placement can save up to 55% of energy using the ap-
proach in [28]. Combining the savings possible through
awareness of the energy consumption and optimized VM
placement can significantly reduce the power consumption
and further increase the productivity. Unfortunately, these
techniques are only achieving these significant savings if
rational users are utilizing the infrastructure, which is not
the case with current academic users. Thus in order to
fully utilize the effects of these techniques this paper aims
at transforming academic users to behave more rational
(i.e. like the price constrained commercial cloud users).

Engaging options proposed in Section 5 show similar
characteristics as referral programs studied in [29]. By
helping the Cloud provider to better utilize its virtualized
hardware, the energy consumption accounted to the users
accounts can be reduced. Research shows that such pro-
grams can achieve up to 16% better results [29]. Referrals
are often more personal than normal advertisements or
SLAs and, therefore, show a high impact on user behavior
as showed in [30]. Similar impact is possible with our ap-
proach because engaging options from coworkers are more
trustworthy than SLAs from Cloud providers.

3. The architecture

3.1. Behavioral differences amongst cloud users

In response to the unprecedented latent demand from
users, state of the art research focuses on changing the
operation of academic cloud providers so they no longer
appear to provide unlimited resources to their users. Un-
fortunately, this approach does not provide the cure for
the root cause: the misbehavior of the users. This misbe-
havior is caused by the provider’s promise about unlimited
resources, and can be characterized as follows:

• Unnaturally and unnecessarily long infrastructure
leases: E.g., academics frequently maintain their vir-
tual machines even if they don’t use their resources
just to avoid the often long times they have to wait
for the resource and its preparation for their particu-
lar need.

• Academic users also tend to prefer resources with the
highest performance without giving too much consid-
eration on other properties of the acquired resources
(e.g., availability, energy efficiency, effect on other
users).

In contrast, users of commercial cloud systems behave
more rationally, since the prices imposed by commercial
clouds ensure that users will not maintain economically
unsustainable virtual infrastructures. These are the rele-
vant characteristics of commercial users:

• They delay the instantiation of their virtual machines.
For example, until these machines are an absolute ne-
cessity for the further progression of user tasks.

• They try to ensure continuous use of the acquired
VMs (doing as much work as possible during the time
the VM is available).

• They terminate VMs early on (considering the billing
periods – e.g., on Amazon there is no use to termi-
nate a VM before one hour). Thus they immediately
terminate a VM that has no further tasks or it is not
expected to have a task for it in the foreseeable future.
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Table 1: The effects of the various pricing models in commercial clouds
Note: this table is discussed throughout Sections 3–5, thus some of its definitions are put into context later on.

User characteristics
Pricing models offered by commercial providers

Standard Reserved Spot
Delay instantiation Need triggered Limit tasks to reserved VMs Price & need triggered
Ensure continuous use Use the VM regularly Prolonged use is desired Burst VM use until abortion
Early VM termination Terminate if not needed If unjustified, sell reservation

and switch model
Terminate if not needed

Performance compromise Instantiate a smaller VM Bound to a resource type Abrupt VM abortion

• They make a compromise between price and perfor-
mance and allow increased task makespans. For ex-
ample, a smaller priced instance could still be capable
to perform the necessary tasks within the billing pe-
riod of the provider, thus if the tasks are not time
critical, they could take a little longer. Or they would
postpone the execution of a new task until an exist-
ing VM could run them (assuming that serializing the
tasks is more cost effective than having a new VM for
the new task).

Commercial providers (like Amazon) establish such user
characteristics through the following three pricing models:
(i) Standard where the resource usage is paid with a con-
stant hourly price, (ii) Reserved where a upfront payment
reduces the hourly prices and (iii) Spot where the com-
promise of a possible VM abortion potentially lowers the
prices. In Table 1, we show how the aforementioned user
characteristics are achieved by these three pricing mod-
els. The table also reveals the rational user actions one
can observe when a particular pricing model is applied.
Fortunately, all these user actions are possible in current
academic clouds (i.e., these actions can be accomplished
through the usually available IaaS interfaces). Therefore,
if academics would have the incentive to take these actions
then they would bear similar characteristics as commer-
cial users. And commercial like user characteristics would
allow academics clouds to maintain sufficient balance be-
tween their users and resources.

3.2. IaaS extensions to support behavioral change

To encourage such user behavior, we propose to moti-
vate the academics through presenting them the energy
impact of their operations. We propose such architectural
extensions to academic cloud environments that not only
collect and present the energy consumption data to aca-
demic users but also provide them information on how to
increase their efficiency. Figure 1 presents these extensions
to an existing IaaS software stack (shown in the bottom
right corner) and shows their relations to academic users.
As the extensions are aimed at academics, other actors like
system administrators are not shown. In fact, these exten-
sions do not even change the ways the users would interact
with the existing cloud environment, they just add an op-
tional functionality that – if used widely – could lead users
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Figure 1: Overall view of the proposed architecture

towards self-rationing. So the users still utilize their usual
command line interfaces or web portals, but by having ac-
cess to our extensions they are expected to change their
behavior towards these interfaces. These extensions are
built on two cornerstones: (i) leader boards (for dissemi-
nating and comparing how energy efficient are the users)
and (ii) engaging options (to ensure that VM requests are
arriving in groups more suitable for those physical ma-
chines that will host the VMs). The following paragraphs
discuss how these cornerstones are related to user behav-
ior and show their basic properties. Later these two are
further elaborated in the following two sections.

First, similarly to the account statements of commercial
providers, with our extensions, academic cloud providers
collect the energy consumption accounted to particular ac-
tions of their users. Our architecture ensures that they
publish this data through an Accounting API. Through
this API, trusted third parties are allowed to query the
energy consumption accounted to particular virtual ma-
chines (e.g., a user can query the consumption of its own
VMs). Leader boards are special users of this API who
collect data regarding every registered user. They aggre-
gate energy consumption data for users. Depending on the
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intended user base, each leader board can use their own
method for aggregation. At the end, to each user they
assign a score that is comparable with other scores in the
same leader board. Every board presents a ranking list
for its users (the more energy efficient a user is the higher
his/her ranking is). This list is our major motivational in-
strument as users often compare themselves to their peers
and try to improve their ranking.

Next to the list, leader boards present users with tech-
niques that could increase their score. Recommended tech-
niques reveal how to accomplish similar behavior to the
users of commercial clouds. Table 1 also acts as a sum-
mary for the recommended techniques. So, for example,
academics are expected to terminate their unused virtual
machines. The details of the resulting behavior and scor-
ing are discussed in Section 4. Unfortunately, there are
some user behavior (e.g., price and need triggered VM in-
stantiation or the use of dedicated VMs for repetitive and
prolonged tasks) that the accounting API and the leader
boards cannot impose on academics.

To guide users towards these behavioral patterns we also
introduce the concept of engaging options. These options
are such electronic documents that represent inefficiencies
in the system. If one user is assigned to a physical machine
that’s power efficiency could be increased then he/she re-
ceives some engaging options. The received options then
can be exchanged with other users. Amongst the tech-
niques listed on the leader boards, users will be noted that
if they would share/wait for such options, then they would
have a chance to increase their scores. Thus users will act
similarly as those in commercial clouds: they will wait for
a suitable engaging option to appear before instantiating
their VMs (just like commercial users would behave for
spot pricing). Thus, our architecture extends current IaaS
systems with the management of the entire life-cycle of
engaging options (from their issuing to their dissolution).
Figure 1 refers to this extension as the Engaging Option
Manager. We discuss its properties and behavior in Sec-
tion 5.

4. Towards the behavior of static pricing models

Leader boards are known to have an attractive influence
on most scientists, as can be seen from TOP500 supercom-
puting list [20] or the various volunteer computing solu-
tions like [19]. Especially when ranked in groups [31], rank-
ing can have high influence on all members of the group,
thus they will all try to achieve higher scores. Therefore,
we propose to set up leader boards where users can com-
pete by using cloud resources in a energy efficient way. We
define leader boards as such entities that are independent
from cloud providers but still able to present the account-
ing data (as scores) to their users so they start to challenge
each other. In this section, we first analyze the relevant
characteristics of leader boards. Then we show a way to
motivate academic users through leader boards so they
start to resemble their commercial counterparts.
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Figure 2: Leader boards and our accounting extensions

4.1. An extensible scoring system

The scoring system and its presentation on the leader
board represents a core asset. With improper solutions
the academics will not be motivated to submit to the be-
havioral patterns of commercial users. The major success
of similar leader boards is based on the ability that users
can heavily influence their scores and thus can ignite com-
petition amongst each other. The cornerstone of the score
based motivation is that the leader board should present
the way it transforms the accounting data to the actual
scores. Since users are not expected to know the internal
workings of the cloud systems, the leader board should also
present the behavioral patterns that positively affect user
scores. Users also receive a breakdown on their scores so
they can know how their particular activities affect their
score. With all this information the users will have a bet-
ter chance to influence their scores and they will perform
better in their competitions.

Motivation can be further increased with the forma-
tion of user groups within a leader board [31]. In gen-
eral, groups allow group members to compete with each
other. If groups also receive an overall score based on their
member’s scores, then group members are encouraged to
pursue higher scores together by enabling the competi-
tion of groups based on overall group scores. To reach
higher overall scores, enthusiastic users will try to con-
vince more resistant users to revise their resource usage
patterns. Since group interaction is essential to strengthen
the overall motivation in the system, our leader boards
automatically form groups based on user affiliation and
interest (e.g., groups are created for departments or com-
puter scientists in general). These groups help building up
the initial momentum towards widespread user behavioral
changes, but users are not restricted to them. New groups
can be formed by enthusiasts also.

Since the scoring is such an important motivational fac-
tor for both individuals and groups, our IaaS extensions
provide a foundation for scoring systems. As seen in Fig-
ure 2, this foundation is built around two vital elements:
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(i) an accounting API, (ii) an extensible scoring system.
Our accounting API is responsible to offer details (like
energy, storage usage) about current and past virtual ma-
chines in the academic cloud. While, the extensible scor-
ing system offers ways to transform and aggregate the
data from accounting to stable and motivating scores pre-
sentable through leader boards.

4.1.1. Accounting

The accounting API is the major information source
for the scoring system. Behind the API an accounting
database is set up on which the API offers a simplified
view. This database contains static and dynamic data
from various sources. The static data entries represent the
general properties of the infrastructure that are not of-
fered by other information systems (like the energy char-
acteristics of the available physical machines in the infras-
tructure). While the dynamic entries represent virtual
machine related data recordings (e.g., energy consumed,
storage used, network utilization, physical machine allo-
cation). Most of the data aggregated in the accounting
database is already available or could be collected with
some means from the IaaS provider. For example, when
the IaaS runs its virtual machine placement algorithm, it
can notify interested parties about the VM placement deci-
sions. Alternatively, the virtual machine mappings can be
determined by agents deployed on the physical machines
of the IaaS. Although these agents could report not only
the placement information but other VM related informa-
tion, their impact on energy metering results is undesir-
able. Thus our extension offers hooks to placement algo-
rithms and only falls back to the agents when these hooks
are unusable by the original IaaS system. Unfortunately,
the energy consumption details are unlikely to be available
on the level of the virtual machines. Thus this subsection
is focusing on how these details are collected and calcu-
lated.

In order to collect the necessary data for VM energy
accounting, we first shortly review the life cycle of a vir-
tual machine. There are four major phases in the VM’s
life: (i) prelude (from the request for a VM until the user
can actually do some processing with the VM), (ii) run-
time (while the VM is capable to do the tasks of the
user), (iii) migrating (while the VM is down because it
is moving between physical machines) and (iv) post run-
time (from the user termination request, until there are no
further tasks performed by the IaaS regarding the VM).
All phases, except runtime, represent operations done by
the IaaS because of the VM. To determine the energy con-
sumed because of the existence of the VM, one should
account for all the IaaS components that are involved in
the VM’s life cycle (e.g., IaaS frontend, VM Manager, or
virtual appliance storage subsystem). Thus overall VM
energy consumption could be described as follows:

E(VM) = EPL(VM)+ER(VM)+EM (VM)+EPR(VM)
(1)

Where E(VM ) defines the total energy consumed by the
VM , which is a composition of the energy consumed dur-
ing the lifetime of the VM. Thus, EPL(VM ), ER(VM ),
EM (VM ) and EPR(VM ) represents the VM’s consump-
tion during the prelude, runtime, migration and post run-
time phases respectively. This is the function that our VM
Energy Model component in Figure 2 estimates. The rest
of this subsection is focusing on the behavior of this com-
ponent and how it estimates the energy consumption of a
particular VM.

There has been significant research on the runtime be-
havior of VMs and their energy characteristics [23, 25]. So,
these energy models can be utilized to determine ER(VM ).
Unfortunately, these works do not consider the energy con-
sumption of the other phases in the VM’s life cycle. The
reason they are not considered is because the other en-
ergy consumption values are often not comparable to the
runtime consumption of the VM (e.g., if the VM runs for
several days, then the few minute long VM instantiation
and termination does not increase E(VM ) significantly).
On the other hand, in this article, we are trying to ensure
that users run their VMs for as short time as possible. This
behavior results in a smaller gap between the runtime con-
sumption and the other consumption values. Therefore,
we argue that these values should also be represented in
the accounting.

Per VM consumption of the IaaS. Since EPL(VM ) and
EPR(VM ) are mostly dependent on the IaaS behavior, we
propose to check the consumption of those machines that
are not hosting virtual machines. These machines are there
to support the instantiation, the termination and other
VM management tasks. Although it is not an easy task to
separate consumption dedicated to virtual machines, we
recommend to share the energy consumption of these ma-
chines amongst the VMs that they handled in the period
when the consumption was recorded. If there are no sig-
nificant differences between the user VM requests (e.g., no
significant size difference on their appliances, or no unusual
SLA requirements present that need extra operations on
the IaaS side), then we can assume this share is equal.
If there are significant differences then, we recommend to
first take into account the appliance size as the base of the
share:

EPL(VM ) + EPR(VM ) =
EIaaS · size(VM )∑
vm∈VMS size(vm)

(2)

In this equation, we mark the overall energy consumption
of the non hosting machines as EIaaS . VMS defines the
set of all VMs that coincide with the VM in question.
We refer to the size of the virtual appliance of a virtual
machine as size(VM ). The more virtual machines an IaaS
handles in a given time period, the more constant this part
of the energy consumption becomes.

Next, we also need to define the energy consumption of
VM migration. For the sake of simplicity, we decompose
this consumption in two parts: (i) NM (VM ) the number
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of migrations that take place for a given VM, (ii) Em(VM )
the estimated consumption of a single migration. We as-
sume the cost of a single migration for a particular VM is
constant, and thus we will use the following equation for
the overall cost of migration:

EM (VM ) = NM (VM ) · Em(VM ) (3)

In most cases, when there is no migration during the VM’s
lifetime, this consumption can be neglected. On the other
hand, the longer the runtime of the VM the more likely it
will be accounted for migration energy also.

From the individual user point of view, it is impossi-
ble to influence the consumption of the IaaS, thus users
could see it as a constant consumption that is accounted
to them. In case of infrastructure initiated migrations, the
user has also no chance to directly reduce the consumption
EM (VM ). But the migration related consumption can be
mitigated if the users terminate their VMs as soon as pos-
sible, reducing the chances to be automatically migrated
to some other host. This shows us that with this energy
metric exposed to the academics, they would be tempted
to terminate their VMs when the migration energy cost is
still marginal (this behavior is similar to commercial users
who time VM terminations according to billing periods).
Finally, users only have direct influence on their runtime
consumption. Therefore the following paragraphs are fo-
cusing on what influences their VM’s runtime consumption
and how they can change it.

Runtime VM consumption. Finally, we shortly discuss the
model of runtime energy consumption. Virtual machine
consumption is derived from the physical machine’s con-
sumption based on two components: (i) Eidle(VM ) the
idle or static consumption, (ii) Euse(VM ) the usage re-
lated consumption:

ER(VM ) = Eidle(VM ) + Euse(VM ) (4)

The first component is the result of the physical machine’s
base power draw that is consumed even without any par-
ticular load on the machine. The second component is de-
pendent on the actual use of the resources of the physical
machine. In the followings we discuss how these compo-
nents are considered in our accounting database.

Albeit, related works (e.g., [23, 25]) vary on how they
map the idle consumption of the host to a particular VM,
they all agree that this component is heavily dependent
on the number and kind of virtual machines that share
the physical host. Therefore, the virtual machine place-
ment heavily impacts how the idle component of the VM is
evaluated: by opting for multi-tenancy or by choosing ma-
chines with smaller idle consumption academics could re-
duce the idle component of their VMs. In the first case, the
users willingly share resources and thus reduce the mini-
mum size of the infrastructure that could serve them (di-
rectly increases flexibility). In the second case, academics

could put economical considerations before their perfor-
mance requirements, thus making a performance compro-
mise similar to commercial cloud users (see Table 1 about
user applied bounds to specific resources or smaller priced
resources because of pricing advantages).

To support the usage related consumption calculations,
we collect the instantaneous power draw of the physical
hosts alongside with the usage patterns of the various VMs
on the host. We collect the basic and widely available in-
formation on when a particular VM arrives to the host and
when it leaves from it (e.g., via termination or migration).
We collect the VM placement information via either al-
ready existing IaaS interfaces, or if they are not available
we offer interface extensions on the applied VM Manager.
Unfortunately, some IaaS toolkits do not provide detailed
VM level usage information necessary to evaluate exist-
ing runtime energy models. Therefore, we inject utiliza-
tion collector agents into the physical machines that could
host the VMs. This approach notably raises the idle con-
sumption of the machine (that will be accounted to the
VMs indirectly), however it provides the fine grained VM
consumption metrics needed. So it is important to select
the agents that can provide the necessary input for the
runtime energy models with the smallest possible energy
impact.

4.1.2. Scoring

Requirements. Scoring is the quintessential part of leader
boards. To determine the features and properties of the
necessary scoring system for our extensions, we first iden-
tified the minimum requirements that this scoring sys-
tem should adhere: (i) it should highlight the behav-
ioral differences between academics and commercial cloud
users, (ii) it should provide higher scores to academics
who behave more closely to commercial users (see the ex-
pected behavior in Table 1), (iii) scores should be inde-
pendent from the time the users joined the leader board,
(iv) good user behavior should always provide high scores
independent from the use of the underlying infrastructure,
(v) users should be able to compare their scores to their
past selves (whether they improve or worsen compared
to the expected behavior), (vi) one’s contribution to a
group score should not diminish because of diminishing
resource use, and (vii) scores should be independent from
how many virtual machines for how long the users use.

Next, we investigate the expected scoring behavior in
the scope of the user characteristics presented in Table 1:

Need triggered If the VM is started too early, the VM’s
utilization is minimal before the first tasks arrive.
Scoring should punish this with smaller scores. Conse-
quently, users only instantiate their VMs when there
are no external dependencies that could defer their
computational tasks planned for the VM.

Use the VM regularly If a VM has usage gaps it
should have smaller score than a fully utilized one
in the same situation.
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Terminate if not needed The VM’s score will decrease
if it is not executing tasks for a considerable amount of
time, thus users are inclined to stop their VMs when
there are no tasks in the foreseeable future for the
VM.

Instantiate a smaller VM The achievable score should
be smaller if a not so energy efficient physical machine
hosts the VM. Also, the score should be smaller if the
user would request a VM with such resources that
he/she cannot utilize fully later on. Thus users would
limit the resource requests to the bare minimum that
is sufficient for their tasks so they can maximize the
use of the acquired resources.

Limit tasks to reserved VMs The score should be
better for those who almost continuously use efficient
resources than those who terminate and request VMs
with little time left in between. There are two ma-
jor user scenarios for this behavior: (i) guaranteed
high efficiency VMs for longer tasks, (ii) reducing the
impact of IaaS energy share.

In the first scenario we assume that the user already
has a more energy efficient VM than the VMs he/she
can have in the close future. In such situation, the
user could wait until his/her existing VM finishes its
tasks and then assign new tasks for it. This behav-
ior would render a higher score because of the other
possible VM’s less efficient operation.

In the second scenario, the user has such a short task
that it is not beneficial to create a dedicated VM for
the task (e.g., the energy accounted for the VM would
be dominated by the IaaS’s operations – see Equa-
tions 1 and 2). Instead it is more beneficial to wait
until an already existing VM becomes available.

Prolonged use is desired When the user expects to
run tasks for an extensive time period, and these tasks
mostly fill this time period (i.e., there are no big gaps
in between), then acquiring the most energy efficient
VM possible for these tasks should result in better
scores than asking for VMs on demand.

If unjustified sell the reservation and switch model
When the users badly estimate the amount (or length)
of tasks in the previous scenario, they should imme-
diately terminate the acquired VMs and reconsider
the VM usage scenario. Otherwise they should end
up with smaller scores.

Bound to the resource type If the user acquired one
of the most energy efficient VMs possible for pro-
longed use, then it is beneficial to mostly utilize this
VM for its computations, unless there is some ur-
gency. The scores will be higher for the user even if
he/she delays some of his/her computations because
if those computations would run on other VMs they

would receive less points caused by their inferior en-
ergy efficiency.

Burst VM use until abortion VMs are not aborted
automatically in academic clouds, but otherwise this
case can be derived from to the behavior titled “Use
VM regularly”.

The behavioral patterns “Price & need triggered” and
“Abrupt VM abortion” are not possible to reach with scor-
ing only, thus we propose the use of engaging options (de-
tailed in Section 5) to achieve this behavior.

The remainder of this section shows the basic proper-
ties of our extensible scoring system (seen in Figure 2).
This scoring will already aim at supporting the expected
behavioral changes of academics. However, in Section 4.2,
we show how various leader boards could already extend
this basic functionality for advanced leader board setups.

The score of an individual virtual machine. Based on the
requirements above, we aim at first defining a score for an
individual virtual machine. Then we will provide a way
to aggregate these scores so they allow the comparison of
users.

For virtual machine level scoring, we borrow the concept
of energy conversion efficiency (η) from physics. This con-
cept shows the relation of the energy invested in to a trans-
formation process and the actual useful energy after the
process. In our application, we would like to convert aca-
demics to behave more like commercial users. Thus, the
energy invested will be represented with the actual energy
consumed by a virtual machine (E(VM ) – see Equation 1
for details) of an academic user. While the useful energy
will be represented by the energy that would have been
consumed by a virtual machine (E∗(VM )) utilized by a
price constrained rational user. In both cases, we assume
that the same tasks are executed in both virtual machines.
Also, we assume that the price constrained (or commercial
like user) would utilize a fully equivalent hypothetical in-
frastructure (in terms of physical machines, actual running
other virtual machines, and other IaaS components). Thus
the only difference between the academic infrastructure
and the hypothetical one is that the hypothetical would
offer functionalities that are needed to accomplish com-
mercial pricing models. This definition renders our base –
or virtual machine level – score (S(VM )) as the following:

S(VM ) =
E∗(VM )

E(VM )
(5)

The calculation of the rational user’s energy consumption
should be set up according to the needs of the particu-
lar leader board. When a new leader board is set up, the
way this estimate is made should be given by the leader
board’s owner. Although, we offer a basic definition with
the leader boards, this definition cannot take into consid-
eration all circumstances in the particular situation (e.g.,
it is not known in advance what information is going to be
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available through the accounting API as collecting some of
the data might be tedious work for the actual provider).
Our scoring is extensible as it allows the leader board own-
ers to set up their own base score (and only utilizing the
score aggregating facilities of the leader boards). There-
fore either the following definition has to be adopted for
the use of the new leader board (with an option to choose
only the energy model for the VM), or a brand new for-
mula has to be developed. We define the rational user’s
energy consumption as the minimum consumption possi-
ble of a virtual machine with the same tasks on the same
physical host (assuming that the physical machine’s every
other resource is fully utilized).

For every user, his/her own virtual machines’ individual
scores are presented. This means that a general leader
board has an overall view (to compare users with each
other), and a user specific one, that reveals the competition
between the virtual machines of a particular user. On this
user specific leader board (which is only offered to the user
who owns the VMs), the best and the worst scored virtual
machines are prominently highlighted. To allow the users
to learn from their past bad practices, this leader board
gives a reasoning for the worst scores, e.g.: (i) VM was on
a not so efficient machine, (ii) the VM was left running
on a machine that was not fully utilized by other users
– shows the need for multi-tenancy –, (iii) the VM was
placed on a machine with further resources (i.e., the VM
was not occupying all the remaining resources of a physical
machine) but other users did not arrive to utilize them
early enough (the VM was terminated before other users
come).

User level scoring. Although, this virtual machine level
score fulfills most of our requirements already, it is not the
individual virtual machines that we would like to enter
into a competition but their users. Thus there is a need
for an overall score. The overall score – S(U) – should keep
the properties of our virtual machine level scoring, while
it should present the overall conversion of an academic.
For this score, we propose to weight virtual machine level
scores with the execution time – t(VM ) – of the particular
virtual machines:

S(U) =

∑
∀VM of U S(VM ) · t(VM )∑

∀VM of U t(VM )
(6)

4.2. Infrastructure independent scoring

Our overall score is already offering a great detail for
the user, however it suffers from issues with comparabil-
ity when it would be applied across cloud infrastructures.
Therefore, in the following section we detail a second level
of scoring (building on top of our extensible scoring seen
in Figure 2). This second level builds on our overall score,
but improves its comparability by transforming the score
to a new one that is more suitable for a particular situa-
tion. Below we list the various cases when there is a need
to adjust scoring.

4.2.1. Provider leader boards

If an academic cloud provider frequently faces resource
provisioning issues (e.g., unexpected jumps in demand, or-
phaned VMs, VMs with little or no utilization of extensive
periods of time), then the adoption of our extensions could
offer remedy without investments in newer hardware. In
such case leader boards are maintained internally by the
cloud provider (one provider offers a single leader board for
all its users) as shown in Figure 3a. In this leader board
the users are automatically registered. Then, the provider
should prominently advertise its existence so users will not
miss the fact that they are ranked. This advertisement al-
lows the early adoption of the system and ensures that
scoring conscious users build up a critical mass. As a re-
sult, users at the provider start to have a chance to com-
pete with each other and become more and more power
aware. As an advantage, this not only helps the provider to
better serve its user community but also increases user sat-
isfaction (as seemingly more resources are available when
more users adopt our self-rationing scheme). This ap-
proach however needs a substantial amount of users who
are willing to join the competition early. Therefore, these
provider level leader boards are unusable when there are
only a few users served by the provider.

The rest of the leader boards are external to the
providers (they have no influence neither on their scoring
nor on their maintenance).

4.2.2. Collaborative leader boards

If there are some enthusiasts who would like to com-
pete despite they are served by different cloud providers,
then they should set up a collaborative leader board on
their own (see Figure 3b). However, the different prop-
erties of the various clouds (e.g., different machines with
different power consumption profiles) would not allow di-
rect comparison of the participant’s scores. Therefore, a
collaborative leader board should apply a relative scoring
system, e.g.: (i) scores could be calculated based on ranks
at the different clouds if there are provider leader boards,
or (ii) users should be ranked based on how close they
are to the maximally achievable energy efficiency at their
provider. These kind of leader boards even allow the inclu-
sion of providers with few users because the participants on
the collaborative leader boards are enthusiasts and known
to be more active than regular users would be. Unfortu-
nately, these leader boards are of limited use because of
the expertise needed to set up such a leader board.

4.2.3. Federation wide leader boards

In case a cloud federation aims at reducing its over-
all energy footprint it could operate a federation level
leader board (as revealed in Figure 3c). These boards
could present the absolute scores similar to provider leader
boards (absolute scores will not hide the differences be-
tween the energy efficient behavior of the various providers
in the federation). As a result, they could influence users
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to choose more energy efficient cloud providers participat-
ing in the federation. It is important to note that these
leader boards lose their importance if there is no chance for
the users to move between providers as they prefer. Ad-
vantages of the federation wide leader boards: (i) allow the
individual providers to concentrate on their infrastructure
(they don’t need to set up a provider leader board for their
own users) and (ii) a larger set of users are aggregated on
the federation level thus there are more chances to increase
multi-tenancy on the physical machines. Regrettably, such
an installation could result in over usage of the most effi-
cient provider in a federation as it drives users away from
the less efficient offerings. On the positive side, this case
could highlight the omitted provider the time to update
its infrastructure to a more efficient solution. However,
the complete resolution of this possible unbalance remains
future work.

4.2.4. Leader board aggregations

It is also possible that third parties set up aggregat-
ing leader boards based on various provider or federation

wide leader boards (see Figure 3d). These kind of leader
boards introduce new issues like: (i) user merging (e.g.,
there should be an automatic or semi-automatic way to
identify identical users using different accounts on mul-
tiple providers), (ii) score alignment (the various leader
boards could use different scoring systems thus they should
be transformed and presented on a unified way). This
could allow global leader boards covering even unrelated
providers (i.e., those that are not part of the same fed-
eration). Consequently, it would be possible to set up a
global ranking resulting in the maximum level of competi-
tion possible. The operational and management issues of
this kind of leader boards are out of scope of this paper
and will be addressed in future work.

5. Approaching spot pricing like behavior

Although leader boards already achieve significant be-
havioral changes, there are several user characteristics that
they cannot support. Their support is impossible, be-
cause leader boards cannot reveal the temporal behavior
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of the infrastructure (e.g., letting users know that there is
a chance of multi-tenancy at a particular moment). There-
fore, first, we analyzed the behavioral patterns of Table 1,
then we identified those cases where academics could have
a chance to achieve higher scores if they would have some
insight on the behavior of others or the inner workings of
the infrastructure. In the following, we list these cases
and also provide discussion on how academics could reach
higher scores in these cases:

Instantiate a smaller VM If an academic has a com-
putational task then he/she has to formulate the re-
source requirements for it. Very few academics know
their resource demands precisely, thus showing them
the possible scoring changes a resource requirement
would result in could really help their decisions. E.g.,
if the academic would know that utilizing lesser re-
sources would result in bigger scores, then the ex-
pected future score could push the academic to a com-
promise on resource requests.

Limit tasks to reserved VMs In this case, an aca-
demic already has several virtual machines that yield
high scores. When a new computational task arises for
such academic, he/she should be tempted to maintain
his/her high scores. Thus the academic has to decide
to either postpone the task or utilize a new VM for
it. This decision is however dependent on what kind
of resources can be acquired for the task. The user
thus decides whether acquiring a resource right now
would hinder his/her score or would strengthen it. If
the new VM would strengthen the score then the task
will be executed in this new VM, otherwise the task
will be postponed until the already available VMs of
the user can process it.

Price & need triggered If the user’s task is not urgent,
then one could limit the execution of the task only on
resources which would generate higher scores. How-
ever, one would need to know when such higher scor-
ing resources are available, otherwise its VM requests
would end up on resources that negatively affect the
user’s scores.

Abrupt VM abortion Because of shared physical ma-
chines, the score of the user’s VM will be heavily de-
pendent on those who share the same machine. E.g.,
if a VM is terminated then the remaining VMs on
the same host will start to receive lesser scores. Thus
these users have three basic options: (i) ensure the
utilization of the currently not utilized resources (e.g.,
by requesting a VM on their own or attracting oth-
ers), (ii) checkpoint and terminate their own VM then
use the previous – price & need triggered – case to de-
termine when to resume, or (iii) migrate their VM to
another machine that could result higher scores.

Based on these cases, we identified the need for a mecha-
nism that allows users to know the state of the underlying
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Figure 4: Architectural extensions towards engaging op-
tions

infrastructure. The remainder of this section introduces
the concept of engaging options that acts as the founda-
tion for such mechanism.

5.1. The definition of engaging options

We define an engaging option as an electronic document
that represents a non binding, non exclusive, on the other
hand time limited offer to utilize a particular set of re-
sources on a physical machine. This document (e.g., an
XML file) contains the following items: (i) the descriptor
of the resources represented by the offer (e.g., 1 CPU, 500
MB of memory or a single micro instance etc.), (ii) the
unique identifier of the physical host where the resources
are available, (iii) expected maximum energy footprint of
the resource, (iv) the issue date, (v) the maximum length
of validity (e.g., until two hours from the issue date),
(vi) access details to the provider that offers the resources
(e.g., a URL to the provider’s IaaS frontend or a textual
description on how to get access) and (vii) a signature of
the issuer (i.e., to show that the document is authentic).

Engaging options allow users to know when and in which
infrastructure there is an underutilized physical machine
available. Thus users are no longer deemed to request
VMs at arbitrary moments. Instead, they can utilize en-
gaging options (if available and valid) to approach their
providers and receive their VMs on a shared machine. In
other words, the engaging option is a mechanism to attract
users at the right time to the right machine (so the virtual
machine manager of the IaaS system will be able to utilize
the underlying physical machines more efficiently – while
their users will end up with higher scores on the leader
boards).

Next, according to Figure 4, we detail (i) how an IaaS
system would operate with engaging options, and (ii) how
academics are expected to behave after the introduction
of the concept, especially in the scope of the behavioral
patterns identified in Table 1.
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5.2. Issuing engaging options

Within the engaging option manager (see Figure 4), the
engaging option issue policy is the main entity that is re-
sponsible to decide when, to whom, how many and with
what length of validity should the system emit engaging
options. The issue policy is customizable by the provider
who applies it (e.g., it can define a new function that de-
termines the length of validity). When the issue policy
decides on all aspects of a new engaging option, then it
passes this information to the engaging option issuer. The
issuer then prepares the electronic document of the option
in the user desired output format and hands it over to the
user. This issuing process is exemplified in Figure 5, in
which we present the IaaS behavior during the creation of
a new virtual machine. Since it is the issue policy that
is responsible for the decisions, we are going to detail its
behavior in the following paragraphs.

First of all, the policy decides when to issue an option.
Whenever a virtual machine arrives to or leaves from a
physical machine the policy will try to emit new engaging
options for the abundant capacities. There are three stop
conditions that can halt the issuing process: (i) the physi-
cal machine is fully utilized – the last VM that has arrived
occupied all previously available resources –, (ii) the phys-
ical machine hosts no VMs – the latest VM that has left
was the last one –, and (iii) the expected length of validity
for the option is too short – i.e., under the useful runtime
of a VM.

Next, the policy identifies those users who should re-
ceive options. If the options are issued because of a new
VM, then the requestor of the VM will receive the options.
Otherwise, the options will be sent to those who still have
virtual machines running on aforementioned physical ma-

chine. In both cases, the system ensures that one par-
ticular user would never have more engaging options at
his/her possession than the currently available resources
would necessitate. This last requirement significantly lim-
its the number of possible engaging options in circulation,
but avoids flooding the users with unnecessary options.

Afterwards, the policy decides how many options should
be issued. Basically, the policy will try to issue engaging
options for all available resources of a physical machine. To
avoid facing a bin packing problem (because of mismatches
in abundant capacities and various sized engaging options)
and to ensure that the issued options fit every user’s need,
the issued options should be of the smallest possible gran-
ularity. Therefore, the issuer is instructed to create an op-
tion per processor core or per smallest VM instance type
possible on the physical machine. Figure 5 presents this
operation as a request to the function Issue(load), where
the load represents the amount of smallest granularity op-
tions needed.

When there are multiple users for a physical machine,
the issue policy often emits as many engaging options for a
particular resource as many users are. This approach not
only allows wider visibility of the issued engaging options,
but as a consequence it also increases the chances to fill
the not so energy efficiently used resources. The visibility
improves because it is not guaranteed that any particular
user shares the engaging options he/she receives, but the
more users receive them the more likely that the options
are going to be shared. This is particularly useful when
a new VM from a new user arrives to a host for which
the system already issued some engaging options. If this
new user was not attracted by a previously issued engag-
ing option then we can assume the previous options did
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not reach a wide enough community. As a result, the new
user’s community can be also targeted by issuing new en-
gaging options (in parallel to the already issued ones) for
the remaining capacities of the host.

Finally, the issue policy defines the length of validity of
the options before they are sent to the users. Similarly to
the virtual machines on the host, issued engaging options
should also have a limited length of validity (i.e., it is not
desired that one is attracted to a host when others already
terminated their VMs). The length of validity of the en-
gaging option is an important factor to the liveliness of the
community. If it is too short, then fellow users might not
be able to notice it. If it is too long then the VM place-
ment algorithm of the provider might already have taken
the resources that the engaging option represents. Con-
ceptually, the engaging options should be valid as long as
there is still one running VM on the host. Unfortunately,
during issue time, the future execution time of the origi-
nal VMs are unknown, thus the engaging options should
be issued according to provider policies (e.g., the length
of validity could be set as the median run time of its past
VMs).

5.3. Attracting academic users

In this subsection, we assume that a user has just re-
ceived one or more engaging options. With the options,
the user is now informed about the level of inefficiencies
on the physical machine its VM is scheduled on. Although
the options are issued so the user would have the incentive
to refer others to the same physical machine, in two cases
it is not beneficial for the user to advertise the received
options. These are the following cases: (i) plans for ad-
ditional VMs in the near future, (ii) expected short VM
lifetime on the host.

In the first case, the user already has plans to execute
additional VMs, and therefore it is recommended to use
the received engaging options for his/her next virtual ma-
chine requests. This strategy allows immediate energy ef-
ficiency increases for the user because the next VMs are
provisioned on the same physical machine. In the second
case, the user either has a task that will run on its new
VM for a relatively short amount of time or expects to find
a physical machine where the VM can be migrated soon.
Therefore, if such engaging options would be advertised,
their benefits would be negligible or even nonexistent for
other users (one would attract users to a resource which
he/she does not plan to use in parallel to the attracted
users).

In any other cases, the received engaging options would
better serve their original owners if they are shared. The
user has two basic options: (i) sharing manually and
(ii) sharing on a marketplace. Manual sharing involves
direct interaction between academics (i.e., one sends the
options to his/her fellows) and thus strengthening the com-
munities formed around leader boards. On the other hand,
manual engaging option circulation is a tedious task as
it needs significant work from the sender (selecting and
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Figure 6: Using an engaging option to create a VM

sending to those who might plan using a VM within a few
minutes/hours) and the receiver also (filtering the already
expired options). To remove the burden of engaging option
handling from users we introduce the concept of engaging
option marketplaces (see Figure 4).

An engaging option marketplace is a component that
allows users to promote their engaging options to other
users. Users can add new engaging options while others
can query, acquire (and remove) them from a browsable
index. In a marketplace, users browse the advertised en-
gaging options so they can find resources that meet their
requirements (regarding specific energy efficiency measures
or resource models). The wider the community a mar-
ketplace reaches is the better options it can offer to its
users. Therefore, it is expected that marketplaces are of-
fered alongside leader boards. Thus, those users who al-
ready use leader boards can also exploit the offers on mar-
ketplaces to increase their score.

Finally, marketplaces can be operated independently
from an the IaaS provider revealing the usefulness of en-
gaging options across cloud federations. For example, we
envision federation wide engaging option marketplaces.
With these large marketplaces, it becomes possible to
guide those users who are hesitant about their choice of
infrastructure (e.g., one can decide to use a particular in-
frastructure for its computations when he/she sees a con-
vincing engaging option from that infrastructure).

13



5.4. Utilizing the acquired options

5.4.1. Basic use of engaging options

To make sure of the highest scores possible on the leader
boards, users with immediate computing needs would ac-
quire engaging options (representing highly energy efficient
resources) either from their fellow academics or from mar-
ketplaces. When requesting a virtual machine from the
provider, users would also present the acquired engaging
options (see Figure 6). If multiple engaging options are
used for a single virtual machine request, then users must
ensure that the presented options have identical identifier
for the hosting machine (otherwise their VM request can-
not be fulfilled). At the provider, this will result in a VM
request composed from all the resources represented by
the specified engaging options. As engaging options are
non binding and non exclusive, it might happen that the
requested resources are already taken by someone. There-
fore, before creating an actual VM for the user, the IaaS
must check the validity of the engaging options it was ap-
proached with.

There could be three reasons behind an invalid engaging
option: (i) expiration (the option is older than its length
of validity), (ii) independent VM placement (some user al-
ready acquired the resources in question despite not hav-
ing the relevant engaging option) , and (iii) concurrent
engaging option use (some user also acquired and used an
engaging option that represent the same resource). To re-
duce the chances of invalid engaging options, users can
approach the providers and check if an engaging option
still refers to available resources. If, in spite of this check,
an engaging option is invalid, the provider tries to replace
it with a similar one that has the same amount of resources
and the same or better energy characteristics (but might
be located on other physical machine). If there is no valid
engaging option after these steps, then the VM request is
cancelled.

Therefore, the provider now can safely assume that there
will be enough resources for the virtual machine at a host
which already runs some VMs (from those users who the
engaging options were originally issued for). Consequently,
in its next step, the provider will create the new user’s vir-
tual machine on the host referred by the engaging options
presented in the VM request. Because of the placement
of this new virtual machine, the energy consumption ac-
counted to the other VMs will be reduced in their remain-
ing lifetime (thus engaging options positively impact the
scores of those who shared them).

5.4.2. Automated use of engaging options

While engaging options are already a powerful tool for
users who compete for higher scores in the leader boards,
automating their usage is still a must. This enables their
inclusion in such scenarios where academics use automated
experiments like workflows. We have identified a semi au-
tomatic (which looks for a specific engaging option and
ensures its validity but leaves the VM creation to the user)

and a fully automatic (which automates the VM creation
process) approach that supports these scenarios. Both of
these scenarios are built on our last component from Fig-
ure 4: the engaging option broker.

In the semi automatic approach, the broker is ap-
proached by a user who would like to have a virtual ma-
chine with a particular resource set and energy properties.
The broker monitors the marketplaces for the user and
whenever an suitable engaging option appears, it auto-
matically checks its validity at the provider. Next, if this
option is found valid, then the broker will immediately
forward it to the user. This requires the user to create
the VM on its own. Despite looking like a disadvantage,
this is beneficial for the user if he/she cannot automate the
preparation of his experimental environment in the virtual
machine. With the returned engaging option the user can
start the VM whenever he/she is ready for the prepara-
tion task. Since there is a manual operation at the end of
this process, the user must specify the expected length of
the task in the VM and the expected time when he/she
will be able to utilize the resources first. With these two
details, the broker delays the marketplace monitoring pro-
cess until the chance of utilizing a successfully identified
and validated engaging option is high.

In the automatic approach, the broker is approached by
a similar user as before. The only difference that this time
the user is capable to automate the preparation of the ex-
periment in a newly created virtual machine. Since the
requested virtual machine can operate automatically (i.e.,
it starts processing user tasks without human interven-
tion and terminates if there are no more tasks), the broker
will start monitoring the marketplaces immediately after
receiving the user request. When there is a suitable valid
engaging option, the broker will even instantiate the neces-
sary VM for the user. With this procedure, academics will
exercise the same behavior as those commercial users who
apply price & need triggered virtual machine instantiation
strategy in case of spot pricing models (see Table 1).

6. Evaluation

In this section, we reveal our analysis on how scientific
infrastructures are impacted while academic user behavior
is transformed to a more commercial like behavior. For our
analysis, the behavior of scientific users is really important.
Thus we briefly turn our attention on the infrastructure’s
general properties, then we discuss the simulated user be-
havior on the system.

In all of our simulations, we assume an unlimited cloud
infrastructure that offers a single VM type (with one core)
and a single kind of physical machine with 8 cores. We ap-
plied a simple VM placement policy: new VMs are placed
on the first physical machine with available cores. If there
are no physical machines with free capacities then a new
physical machine is switched on and the new VM is placed
on that physical machine. If a physical machine does not
host a single VM then it is switched off. We also assumed

14



Overall Users/cluster Tasks/cluster
Workload No. of clusters Min Max Median Min Max Median
Grid5000 11593 (42) 1 (2) 98 (=) 2 (13) 1 (1004) 5025 (=) 47 (1504)

LCG 186 (73) 4 (17) 54 (=) 24 (28) 40 (1000) 4378 (=) 815 (1510)
AuverGrid 4380 (71) 1 (12) 94 (=) 2 (47) 1 (1003) 15058 (=) 5 (2181)

DAS2 7905 (35) 1 (=) 30 (24) 4 (6) 1 (1009) 3737 (=) 108 (1210)
SHARCNET 4692 (204) 1 (=) 92 (=) 2 (30) 1 (1004) 29700 (=) 5 (2190)

Table 2: Overview of the clustering results for the different workloads – numbers in parentheses reveal the details on
clusters with over 1000 jobs, later on we only use these clusters for the statistical analysis

that amongst the switched on physical machines only one
has less VMs than cores. When this is not the case we
assumed that the IaaS automatically migrates VMs from
less crowded to more crowded physical machines to mini-
mize the count of necessary physical machines switched on.
With these infrastructural assumptions we ensure that the
momentary resource utilization will not experience large
variance because of the internals of the simulated IaaS sys-
tem. The elimination of this variance is important because
otherwise it would be impossible to tell whether resource
utilization reductions are caused by internal IaaS opera-
tions or by the behavioral changes we intend to simulate
for the users.

To simulate user behavior, we have turned our attention
towards workload traces offered by the scientific commu-
nity. We have looked for traces that fulfill the following
three criteria: (i) represent extensive durations because
the usage patterns for particular users become more clear
in the long term, (ii) focus on a large user base so we
will have a chance to see the behavior of a multitude of
users and (iii) offer a description which clearly associates
activities and users. After employing these criteria, we
have selected the grid workload archive (GWA – [32]) as a
good representative for the behavior of our expected users
(unfortunately our last criteria eliminates the possibility
of using some of the well known traces like PlanetLab).
Although, this archive is not cloud oriented, we assumed
that the frequency of the user tasks and the user’s overall
behavior regarding the use of the infrastructure is inde-
pendent from the underlying technologies. In the following
subsections we first present how we processed the scientific
workload in GWA for our analysis. Then we present an in
depth overview on the expected impacts of our architec-
ture on the resource utilization of academic clouds.

6.1. Trace processing methods

Before our analysis, we have processed the traces so we
can simulate both commercial and academic user charac-
teristics (in terms on how and when they would instantiate
virtual machines for their tasks). Throughout the simula-
tion, we have focused our attention to three of the main
user characteristics listed in Table 1: (i) delay instantia-
tion, (ii) early VM termination and (iii) ensure continuous
use. In our simulations, we did not analyze the perfor-
mance compromise characteristic because of our assump-

tions on the simulated infrastructure (i.e., there is only
one VM type usable), and because of the exact resource
utilization pattern of the user tasks are not specified in
the traces (thus one cannot tell if a smaller VM would be
sufficient for the user).

As our first trace processing step, we have analyzed the
tasks and identified those that have the highest chance
to be delayed and grouped together in a virtual machine
(so that the tasks can be grouped like a commercial user
would group them). We assumed that no particular user
would delay its tasks for an indefinite amount of time.
Therefore, after some time, even the most scoring con-
scious users would run their tasks on resources (or new
VMs) that would negatively impact their score. The more
commercial like the user is the more he/she is willing to
delay his/her tasks hoping for a more energy efficient (thus
better scoring) resource opening. To identify those tasks
that together could lead to the minimum amount of VM
instantiations, we have processed the traces with a data
mining algorithm called K-Means. Based on submission
time proximity, this algorithm clusters those tasks together
that are the least likely to cause impatience in users (we as-
sumed that a user becomes impatient when he/she would
have to wait for more than two hours for a more energy
efficient resource). Table 2 shows details about the five
selected workload traces and their clustered tasks. From
the formed clusters, we have selected those that could sta-
tistically represent an entire trace and we only kept those
for further analysis (the properties of these clusters are
revealed in parentheses). These clusters all contain over
1000 tasks. In the rest of the paper, we only focused our
analysis on these clusters.

As the next processing step, for each cluster we have
run a user simulator which assigned the user’s tasks in the
cluster to virtual machines (ensuring that users can only
assign tasks to their own VMs). Based on the commercial
user characteristics, we have identified three assignment
approaches: (i) act as a non-transformed academic user,
(ii) employ early VM termination if possible, (iii) delay
tasks until they would form a continuous block and create
a VM for them. In the next paragraphs, we detail these
three options.

With the first approach, we simulated the academic
users before their transformation: we assumed users would
create a VM as soon as there is a task to be executed and
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the user does not have a VM that could execute it immedi-
ately. This could lead to several VMs in parallel depending
on the number of tasks that must be executed in a partic-
ular instance of time. When a task finishes in a particular
VM, the user could choose to terminate the VM. This is
only done when the remaining tasks of the cluster have a
parallelism less than the amount of virtual machines the
user currently has. For example, when the trace has three
simultaneous tasks for a while, the user would have three
VMs, but immediately when there is no more chance to
have three simultaneous tasks within the the cluster, the
user would terminate one of his/her VMs.

The second approach partially simulates commercial
like behavior: the users terminate their VMs as soon
as feasible. The simulation of this approach only differs
marginally from the previous solution. We set up an ini-
tial set of virtual machines utilizing that approach. Then
we split these VMs by repeating the following procedure
until there are no new VMs formed: (i) we identify the
longest gap between the tasks of the original VM, (ii) if
the length of this gap is over a threshold then we remove
the original VM from the set of necessary VMs and add
two new ones (one that includes all tasks before the gap,
one for the rest). We define this threshold as the shortest
time period for which two new VMs would render bigger
overall score for the user than the original one (because of
the impact of Equation 2 on the score of VMs with too
short lifetimes).

Then, our last approach provides our most sophisticated
approximation of the commercial like behavior. Here we
assume users would postpone their tasks so they form a
continuous block (one task immediately starts after the
previous has finished). To ensure that we can postpone
tasks indefinitely within the clusters, we assume that there
are no dependencies between user tasks (this information
is not included in the available traces). Thus we first delay
the tasks as much as possible, then we apply the second
approach to define the shortest lifetime VMs. This combi-
nation of task delays and early VM termination will result
in VMs that are in continuous use for their entire lifetime.

6.2. Analysis

To prove our architecture’s effectiveness, we have set
up a simulation environment where every selected cluster
from the GWA traces can be evaluated. A single exper-
iment was done in the following phases: first we allowed
the specification of user behavior (e.g., non-transformed
academic, commercial like), then based on this behavior
we determined the necessary VMs and their properties
(request and termination time), next we run the virtual
machine placement algorithm for these VMs in our sim-
ulated cloud infrastructure, finally we have estimated the
energy use and the total CPU hours the VMs spent in the
simulated environment.

In our first experiments, we assumed uniform likeliness
that our architecture transforms a selected user. Thus we
have specified a random order of users in which they are

Sheet1

Page 1

0%10%20%30%40%50%60%70%80%90%100%
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Grid5000
LCG
AuverGrid
DAS2
SHARCNET

% of users who still apply their past bad practices

R
e

la
tiv

e
 r

e
so

u
rc

e
s 

a
cq

u
ir

e
d

 
(c

o
m

p
a

re
d

 t
o

 1
0

0
%

 c
o

m
m

e
rc

ia
l l

ik
e

 b
e

h
a

vi
o

r)

Figure 7: The effect of transforming randomly chosen users
to commercial like behavior

Sheet1

Page 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Grid5000
LCG
Auver
DAS2
SHARCNET

User heaviness

N
or

m
al

iz
ed

 e
ne

rg
y 

im
pa

ct

Figure 8: Chance of energy saving based on user heaviness

transformed to commercial like. At first, we have set all
users to behave like commercial ones. We run an initial
experiment and collected the total CPU hours spent in
the system. This formed our baseline. During our first
experiments, we have collected the total CPU hour figures
from the experimental runs and divided by the previously
acquired baseline. Figure 7 shows the possible extra re-
source demands (compared to our baseline) for the five
analyzed traces depending on the percentage of the users
who behave as non-transformed academics. Although we
have evaluated the trends for all selected clusters, we pre-
sented them as an average per analyzed trace. Based on
the results, we see that if only non-transformed users are
using the system, then the energy and resource consump-
tion is at its maximum. AuverGrid is impacted the most
by user behavior. About 2.6 times more resources are used
when all users apply the bad practices they are used to.
The figure also shows, that users can be served by signif-
icantly (23%–33%) smaller infrastructure even if just half
of them are converted to behave more like a commercial
user.

When we looked at the non averaged trends, it clearly
showed that some users have heavy impact on the resource
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Figure 9: Prioritizing transformation of the heaviest users

utilization in the system. Therefore, we have analyzed
the traces from a different point of view: if a given user
transforms its behavior what is its impact on the overall
resource demands? We have constructed an experiment
where only one user is changed to non-transformed, the
rest already behaves like commercial users. With this ex-
periment we evaluated all the users in all the selected clus-
ters of the five traces, then we checked the difference in
energy consumption between the case when the user was
non-transformed and when he/she was already acting as a
commercial one. The bigger the difference the heavier the
user is for the system. In Figure 8, we show how the heav-
iest users relate in their energy consumption to the other
users in the traces. On its x axis the individual users are
shown (ordered by their heaviness). To allow a less com-
pressed figure, we omitted those users who have less than
1% of the heaviest user’s energy impact. According to the
figure, only a few users are responsible for the vast ma-
jority of the extra energy consumption. Thus providers
should put extra effort in the advertisement of the leader
boards to those users. Also, it might be beneficial to set
up a hall of shame – an inverse ranking leader board – that
prominently highlights those users who misbehave.

Following the analysis of the impact of the heavier users
on the general saving, we evaluated a scenario where heav-
ier users are the first to adopt commercial like behavior.
We expect that targeted leader board advertisements and
the hall of shame will increase the likeliness of such a sce-
nario. With this new adoption order, we have re-evaluated
our first experiments and presented the new results in Fig-
ure 9. The figure not only highlights the impact of heavy
users, but also reveals that converting just half of the users
result in an even more dramatic decrease in the required
infrastructure size as before. The reductions are now be-
tween 37% and 61%.

Our evaluation has shown the possible transformations
of academic user towards more commercial like behavior
and their impact on the overall energy and resource us-

age. In real life systems, we expect the introduction of the
leader boards will immediately turn some users towards
the behavior of commercial users. Thus even though our
experiments start from 100% non-transformed users, it is
only a hypothetical case. The saving curve that can be
expected in realistic scenarios is expected to be close to
the one shown in Figure 7.

7. Conclusion & Future Work

Regrettably, even if an academic cloud provider applies
similar resource management approaches as commercial
providers, their resource needs and energy footprint hardly
decreases because of the bad practices the academic users
developed in the unconstrained environments of the past.
Resources are occupied longer than needed as the lim-
iting factor from commercial cloud providers is missing:
cost. We have proposed an architecture that helps to raise
the resource and power usage awareness of academic cloud
users by two technologies: (i) leader boards which provide
direct feedback on how closely academics behave compared
to commercial users and (ii) engaging options that direct
users towards more economical resource usage.

Our evaluation shows potentially high savings both in
terms of utilized resources and energy if users are willing
to change their usage patterns. Our architecture tries to
increase their willingness to change by allowing academics
to compete with fellow scientists. This competition en-
courages academics to self-ration their resource usage for
better scores on the leader boards. As a result of self ra-
tioning, academic providers will have a chance to utilize
state of the art resource management approaches to re-
duce energy expenses just like commercial providers. Such
resource provisioning algorithms can have high influence
on power draw of infrastructure and in combination with
energy aware users this can lead to considerable power
savings. Also, self-rationing practices often increases the
throughput of the infrastructure, thus academics can use
the infrastructure more productively than before the ap-
plication of our architectural extensions.

We plan to continue our work into multiple directions.
First, we intend to evaluate different scoring schemes in
detail and we will analyze their impact on the overall re-
source and energy utilization. We will investigate high
level leader board organizational issues like proposing new
schemes to reduce possible imbalances caused by leader
boards between individual providers in a cloud federation.
Next, we will evaluate the possible positive effects of en-
gaging option brokers and marketplaces on user behavior
and we will investigate new behavioral patterns made pos-
sible by advanced engaging option handling. Afterwards,
we plan to research engaging option issue policies and how
they can result in user behavior that resembles reserved
and spot pricing schemes more. Finally, we expect that
this article raises the awareness of academic providers so
the proposed system could be implemented and tested with
real users and its general usability could be demonstrated.
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