
3D People Surveillance on Range Data Sequences of a Rotating Lidar
Csaba Benedek

Distributed Events Analysis Research Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences
H-1111, Kende u. 13-17, Budapest, Hungary, e-mail: benedek.csaba@sztaki.mta.hu

Abstract

In this paper, we propose an approach on real-time 3D people surveillance, with probabilistic foreground modeling, multiple person tracking
and on-line re-identification. Our principal aim is to demonstrate the capabilities of a special range sensor, called rotating multi-beam (RMB)
Lidar, as a future possible surveillance camera. We present methodological contributions in two key issues. First, we introduce a hybrid 2D–3D
method for robust foreground-background classification of the recorded RMB-Lidar point clouds, with eliminating spurious effects resulted by
quantification error of the discretized view angle, non-linear position corrections of sensor calibration, and background flickering, in particularly
due to motion of vegetation. Second, we propose a real-time method for moving pedestrian detection and tracking in RMB-Lidar sequences
of dense surveillance scenarios, with short- and long-term object assignment. We introduce a novel person re-identification algorithm based
on solely the Lidar measurements, utilizing in parallel the range and the intensity channels of the sensor, which provide biometric features.
Quantitative evaluation is performed on seven outdoor Lidar sequences containing various multi-target scenarios displaying challenging outdoor
conditions with low point density and multiple occlusions.
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1. Introduction

Moving people detection, localization and tracking are im-
portant issues in intelligent surveillance applications, such as
person counting, activity recognition or abnormal event detec-
tion. However, these tasks are still challenging in crowded out-
door scenes due to uncontrolled illumination conditions, irrel-
evant background motion, and occlusions caused by various
moving and static scene objects.

Vision algorithms in surveillance systems often follow a se-
quential approach (Mitzel et al., 2010), starting from low level
classification of the observed environment, until object level
and event level analysis of the scene. Foreground segmentation
is a crucial initial step (Benedek et al., 2012), since apart from
highlighting the regions of interest, accurate object-silhouette
masks can directly provide useful information for the scene in-
terpretation modules, like biometric descriptors or various in-
dicators of human behavior. Errors in the extracted foreground
mask may also effect the consecutive person localization (Utasi
and Benedek, 2011) and tracking (Baltieri et al., 2011) steps,
especially in scenes with strong vegetation motion and occlu-
sion. Model-based person tracking algorithms are widely used
in the literature. An approach on 3D estimation of human pose
from a monocular video was proposed by (Brubaker et al.,
2010), which adopts a physics-based model. In (Plaenkers and

Fua, 2002), a model-based technique has been introduced to
extract the silhouettes of moving people from stereo video se-
quences, and synthesizing realistic 3D person models. In both
cases, however, a single person can be observed in each video
frame, which condition is often not valid for outdoor surveil-
lance scenes. (Shu et al., 2012) introduced a part-based human
detector, which builds on person-specific SVM classifiers cap-
turing the articulations of the human bodies in dynamically
changing appearance and background. For such black-box mod-
els, an extensive training set selection is a crucial step.

Person re-identification is a fundamental task both for con-
necting the erroneously broken trajectories of the short term
tacker module, and for identifying people who temporarily
leave the Field of View (FoV) and re-appear later. Numerous
methods in the literature address person re-identification in op-
tical videos (Bak et al., 2010; Farenzena et al., 2010; Prosser
et al., 2010), however, their objectives are often notably differ-
ent from the needs in our focused application. In the referred
works, people identification is fulfilled within a large database
(>100 people) using a ranking system, and the applied eval-
uation metric favors already, if the correct match is included
within the first few candidates. This condition is acceptable
if a manual verification follows the automated identification
step (e.g. search in a police database), but in a fully automated
surveillance system each person should be labeled with a single
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unambiguous identifier in real-time. On the other hand, we only
deal with a few (6-8) pedestrians within a scenario, which en-
ables us to use weak biometric features for identification. Pre-
viously, (Baltieri et al., 2011) introduced a complete 3D video
surveillance system implementing model based person tracking
with re-identification based on multiple camera inputs, how-
ever it uses a computationally expensive Marked Point Process
based approach for the localization, which currently does not
enable real-time performance. Another practical problem is that
multiple camera systems should usually be carefully fixed and
calibrated beforehand, which makes quick temporary installa-
tion difficult for applications monitoring customized events.

Range image sequences offer significant advantages versus
conventional video flows for scene analysis, since geometri-
cal information is directly available (Schiller and Koch, 2011),
which can provide more reliable features than intensity, color or
texture values (Wang et al., 2006; Benedek and Szirányi, 2008).
Using Time-of-Light (ToF) cameras (Schiller and Koch, 2011)
or scanning Lidar sensors (Kaestner et al., 2010) enable record-
ing range images independently of the illumination conditions
and we can also avoid artifacts of stereo vision techniques. From
the point of view of data analysis, ToF cameras record depth
image sequences over a regular 2D pixel lattice, where estab-
lished image processing approaches, such as Markov Random
Fields (MRFs) can be adopted for smooth and observation con-
sistent segmentation and recognition (Benedek and Szirányi,
2008). However, such cameras have a limited Field of View
(FoV), which can be a drawback for surveillance and monitor-
ing applications.

Rotating multi-beam Lidar systems (RMB-Lidar) provide a
360◦ FoV of the scene, with a vertical resolution equal to the
number of the sensors, while the horizontal angle resolution de-
pends on the speed of rotation (see Fig. 1). Each laser point of
the output point cloud is associated with 3D spatial coordinates
and a calibrated intensity value of the laser reflection which
is related to the material and surface properties of the target
point. For efficient data processing, the 3D RMB-Lidar points
are often projected onto a cylinder shaped range image (Kaest-
ner et al., 2010; Kalyan et al., 2010). However, this mapping
is usually ambiguous: On one hand, several laser beams with
slight orientation differences are assigned to the same pixel,
although they may return from different surfaces. As a conse-
quence, a given pixel of the range image may represent dif-
ferent background objects at the consecutive time steps. This
ambiguity can be moderately handled by applying multi-modal
distributions in each pixel for the observed background-range
values (Kaestner et al., 2010), but the errors quickly aggre-
gate in case of dense background motion, which can be caused
e.g. by moving vegetation. On the other hand, due to physical
considerations, the raw data of distance, pitch and angle pro-
vided by the RMB-Lidar sensor must undergo a strongly non-
linear calibration step to obtain the Euclidean point coordinates
(Muhammad and Lacroix, 2010), therefore, the density of the
points mapped to the regular lattice of the cylinder surface may
be inhomogeneous. To avoid the above artifacts of background
modeling, (Kalyan et al., 2010) has directly extracted the fore-
ground objects from the range image by mean-shift segmen-

tation and blob detection. However, we have experienced that
if the scene has simultaneously several moving and static ob-
jects in a wide distance range, the moving pedestrians are often
merged into the same blob with neighboring scene elements.

Instead of projecting the points to a range image, another
way is to interpret the scene in the spatial 3D domain. MRF-
like techniques based on 3D spatial point neighborhoods are
frequently applied in remote sensing for point cloud classifica-
tion (Lafarge and Mallet, 2012), however the accuracy is low
in case of small neighborhoods, otherwise the computational
complexity rapidly increases. In (Spinello et al., 2010, 2011)
methods have been introduced for 3D pedestrian detection and
tracking in point cloud streams of a mobile RMB-Lidar sensor,
where the main challenge was to distinguish the pedestrians
from other street objects within a large FoV with compensat-
ing the sensor motion. In this paper, we address significantly
different scenarios: we use the RMB-Lidar sensor in a fixed
position, and monitor a dense scene with several moving peo-
ple in a compact outdoor environment, such as a courtyard or
a small square. We expect high occlusion rate between the ob-
served people due to crossing trajectories, and the considered
pedestrians may leave the FoV and re-appear at any time dur-
ing the inspection.

The main contributions of our method are twofold. Firstly,
we introduce a hybrid 2D–3D approach (partially presented in
Benedek et al. (2012)) for dense foreground-background seg-
mentation of RMB-Lidar point cloud sequences obtained from
a fixed sensor position. Our technique solves the computation-
ally critical spatial filtering steps in the 2D range image domain
by an MRF model, however, ambiguities of discretization are
handled by joint consideration of true 3D positions and back
projection of 2D labels. By developing a spatial foreground
model, we significantly decrease the spurious effects of irrele-
vant background motion, which principally caused by moving
tree crowns and bushes. For quantitative point level evaluation,
we have developed a 3D point cloud Ground Truth (GT) anno-
tation tool, and compared the detection results of the proposed
model to three reference methods.

Secondly, we propose a real-time method for moving pedes-
trian detection and tracking in RMB-Lidar sequences for dense
surveillance scenarios, with short- and long-term object assign-
ment. Our tracker is non-model-based, using the assumption
that people movements are expected in the monitored scene.
During the Short-Term Assignment (STA) the different peo-
ple are separated in the foreground regions of the point cloud
frames, and the corresponding centroid positions are assigned
to each other over the consecutive time frames. The Long-Term
Assignment (LTA) is responsible for connecting the broken tra-
jectories caused by STA errors and identifying the re-appearing
people. This step is accomplished by extracting simple discrim-
inative features from the tracked object sequences, and these
descriptors are archived if the object disappears from the FoV.
For newly appearing objects the descriptors are extracted over
an initialization period, then re-activation is based on matching
a given new object with its possible archived or temporarily in-
visible predecessors. As a consequence, in our system the STA
of the tracking process can be obtained in real-time, while the
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identification information is displayed with a few seconds delay
after the target had re-appeared. As a key novelty of the pro-
posed system, the weak biometric features used for person re-
identification are solely derived from the Lidar measurements,
by exploiting in parallel the range and the intensity channels
of the sensor. We propose here a combination of descriptors
featuring the clothing and the height of the tracked pedestri-
ans. The tracker module is quantitatively evaluated in seven
challenging surveillance sequences, by measuring the accuracy
both of STA and LTA.

An important aim of this paper is also to investigate the ef-
ficiency of the RMB-Lidar sensor as a surveillance camera.
Therefore during the tests we did not use any additional sen-
sors, such us optical or thermal cameras to support the tracking
and re-identification steps, which purely exploit the 3D point
position and intensity information of the Lidar. Although we
also recorded the test scenarios with an optical camera, these
videos are only used for validation of re-identification. In this
way, our system does not need any additional scene specific
calibration step thus it can be very quickly installed, or the cur-
rent viewpoint configuration can be modified.

2. Problem formulation and data mapping

Assume that the RMB-Lidar system contains R vertically
aligned sensors, and rotates around a fixed axis with a possibly
varying speed 1 . The output of the Lidar within a time frame t
is a point cloud of lt = R · ct points: Lt = {pt1, . . . , ptlt}. Here
ct is the number of point columns obtained at t, where a given
column contains R concurrent measurements of the R sensors,
thus ct depends on the rotation speed. Each point, p ∈ Lt,
is associated to sensor distance d(p) ∈ [0, Dmax], pitch index
ϑ̂(p) ∈ {1, . . . , R} and yaw angle φ(p) ∈ [0, 360◦] parame-
ters. d(p) and ϑ̂(p) are directly obtained from the Lidar’s data
flow, by taking the measured distance and sensor index values
corresponding to p. Yaw angle φ(p) is calculated from the Eu-
clidean coordinates of p projected to the ground plane, since the
R sensors have different horizontal view angles, and the angle
correction of calibration may also be significant (Muhammad
and Lacroix, 2010). Apart from the geometric parameters, each
point p has a calibrated intensity value, denoted by g(p).

For efficient data manipulation, we also introduce a range
image mapping of the obtained 3D data. We project the point
cloud to a cylinder, whose central basis point is the ground
position of the RMB-Lidar and the axis is prependicular to the
ground plane. Note that slightly differently from (Kalyan et al.,
2010), this mapping is also efficiently suited to configurations,
where the Lidar axis is tilted do increase the vertical Field of
View. Then we stretch a SH × SW sized 2D pixel lattice S
on the cylinder surface, whose height SH is equal to the R
sensor number, and the width SW determines the fineness of
discretization of the yaw angle. Let us denote by s a given pixel

1 The speed of rotation can often be controlled by software, but even in case
of constant control signal, we must expect minor fluctuations in the measured
angle-velocity, which may result in different number of points for different
360◦ scans in time.

of S, with [ys, xs] coordinates. Finally, we define the P : Lt →
S point mapping operator, so that ys is equal to the pitch index
of the point and xs is set by dividing the [0, 360◦] domain of
the yaw angle into SW bins:

s
def
= P(p) iff ys = ϑ̂(p), xs = round

(
φ(p) · SW

360◦

)
(1)

3. Foreground-background separation

The goal of the foreground detector module is at a given
time frame t to assign each point p ∈ Lt to a label ω(p) ∈
{fg, bg} corresponding to the moving object (i.e. foreground,
fg) or background classes (bg), respectively.

3.1. Background model

The background modeling step assigns a fitness term fbg(p)
to each p ∈ Lt point of the cloud, which evaluates the hypoth-
esis that p belongs to the background. The process starts with
a cylinder mapping of the points based on (1), where we use a
R× Sbg

W pixel lattice Sbg (R is the sensor number). Similarly
to (Kaestner et al., 2010), for each s cell of Sbg, we maintain
a Mixture of Gaussians (MoG) approximation of the d(p) dis-
tance histogram of p points being projected to s. Following the
approach of (Stauffer and Grimson, 2000), we use a fixed K
number of components (here K = 5) with weight wi

s, mean µi
s

and standard deviation σi
s parameters, i = 1 . . .K. Then we

sort the weights in decreasing order, and determine the mini-
mal ks integer which satisfies

∑ks

i=1 w
i
s > Tbg (we used here

Tbg = 0.89). We consider the components with the ks largest
weights as the background components. Thereafter, denoting
by η() a Gaussian density function, and by Pbg the projection
transform onto Sbg, the fbg(p) background evidence term is
obtained as:

fbg(p) =

ks∑
i=1

wi
s · η

(
d(p), µi

s, σ
i
s

)
, where s = Pbg(p). (2)

The Gaussian mixture parameters are set and updated based on
(Stauffer and Grimson, 2000), while we used Sbg

W = 2000 angle
resolution, which provided the most efficient detection rates in
our experiments. By thresholding fbg(p), we can get a dense
foreground/background labeling of the point cloud (Kaestner
et al., 2010; Stauffer and Grimson, 2000) (referred later as
Basic MoG method), but as shown in the first row of Fig. 8,
this classification is notably noisy in scenarios recorded in large
outdoor scenes.

3.2. DMRF approach on foreground segmentation

In this section, we propose a Dynamic Markov Random
Field (DMRF) model to obtain smooth, noiseless and observa-
tion consistent segmentation of the point cloud sequence. Since
MRF optimization is computationally intensive (Boykov and
Kolmogorov, 2004), we define the DMRF model in the range
image space, and 2D image segmentation is followed by a point
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Fig. 1. Point cloud recording and range image formation with a Velodyne HDL-64E RMB-Lidar sensor

(a) Range image part (90◦ horiz. view) (b) Basic MoG (Kaestner et al., 2010; Stauffer and
Grimson, 2000)

(c) uniMRF (Wang et al., 2006) (d) Proposed DMRF segmentation

Fig. 2. Foreground segmentation in a range image part with three different methods

classification step to handle ambiguities of the mapping. As de-
fined by (1) in Sec. 2, we use a P cylinder projection transform
to obtain the range image, with a SW = ĉ < Sbg

W grid with,
where ĉ denotes the expected number of point columns of the
point sequence in a time frame. By assuming that the rotation
speed is slightly fluctuating, this selected resolution provides a
dense range image, where the average number of points pro-
jected to a given pixel is around 1. Let us denote by Ps ⊂ Lt

the set of points projected to pixel s. For a given direction, fore-
ground points are expected being closer to the sensor than the
estimated mean background range value. Thus, for each pixel
s we select the closest projected point pts = argminp∈Ps

d(p),
and assign to pixel s of the range image the dts = d(pts) dis-
tance value. For ‘undefined’ pixels (Ps = ∅), we interpolate the
distance from the neighborhood. For spatial filtering, we use
an eight-neighborhood system in S, and denote by Ns ⊂ S the
neighbors of pixel s.

Next, we assign to each s ∈ S foreground and background
energy (i.e. negative fitness) terms, which describe the class
memberships based on the observed d(s) values. The back-
ground energies are directly derived from the parametric MoG
probabilities using (2):

εtbg(s) = − log
(
fbg(p

t
s)
)
.

For description of the foreground, using a constant εfg could
be a straightforward choice (Wang et al., 2006) (we call this ap-
proach uniMRF), but this uniform model results in several false

alarms due to background motion and quantization artifacts.
Instead of temporal statistics, we use spatial distance similar-
ity information to overcome this problem by using the follow-
ing assumption: whenever s is a foreground pixel, we should
find foreground pixels with similar range values in the neigh-
borhood (Fig. 3 top). For this reason, we use a non-parametric
kernel density model for the foreground class:

εtfg(s) =
∑
r∈Ns

ζ(εtbg(r), τfg,m⋆) · k
(
dts − dtr

h

)
,

where h is the kernel bandwidth and ζ : R → [0, 1] is a sigmoid
function (see Fig. 3):

ζ(x, τ,m) =
1

1 + exp(−m · (x− τ))
.

We use here a uniform kernel: k(x) = 1{|x| ≤ 1}, where
1{.} ∈ {0, 1} is the binary indicator function of a given event.

To formally define the range image segmentation task, to
each pixel s ∈ S, we assign a ωt

s ∈ {fg, bg} class label so that
we aim to minimize the following energy function:
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Fig. 3. Top: demonstrating the different local range value distributions in
the neighborhood of a given foreground and background pixel, respectively.
Bottom: structure of the dynamic MRF model, and plot of the used sigmoid
function

E =
∑
s∈S

VD(dts|ωt
s) +

∑
s∈S

∑
r∈Ns

α · 1{ωt
s ̸= ωt−1

r }︸ ︷︷ ︸
ξts

+
∑
s∈S

∑
r∈Ns

β · 1{ωt
s ̸= ωt

r}︸ ︷︷ ︸
χt
s

, (3)

where VD(dts|ωt
s) denotes the data term, while ξts and χt

s are
the temporal and spatial smoothness terms, respectively, with
α > 0 and β > 0 constants. Let us observe, that although
the model is dynamic due to dependencies between different
time frames (see the ξts term), to enable real time operation,
we develop a causal system, i.e. labels from the past are not
updated based on labels from the future.

The data terms are derived from the data energies by sigmoid
mapping:

VD(dts|ωt
s = bg) = ζ(εtbg(s), τbg,mbg)

VD(dts|ωt
s = fg) =


1, if dts > max

{i=1...ks}
µi,t
s + ϵ

ζ(εtfg(s), τfg,mfg), otherwise.

The sigmoid parameters τfg, τbg, mfg, mbg and m⋆ can be
estimated by Maximum Likelihood strategies based on a few
manually annotated training images. As for the smoothing fac-
tors, we use α = 0.2 and β = 1.0 (i.e. the spatial constraint is
much stronger), while the kernel bandwidth is set to h = 30cm.
The MRF energy (3) is minimized via the fast graph-cut based
optimization algorithm (Boykov and Kolmogorov, 2004).

The result of the DMRF optimization is a binary foreground
mask on the discrete S lattice. As shown in Fig. 4, the final step
of the method is the classification of the points of the original
L cloud, considering that the projection may be ambiguous, i.e.
multiple points with different true class labels can be projected
to the same pixel of the segmented range image. With denoting
by s = P(p) for time frame t, we use the following strategy:
• ω(p) = fg, iff one of the following two conditions holds:

(a) ωt
s = fg and d(p) < dts + 2 · h

Fig. 4. Backprojection of the range image labels to the point cloud. Top:
simple backprojection with assigning the same label to s and p, whenever
s = P(p). Bottom: result of the proposed backprojection scheme

(b) ωt
s = bg and ∃r ∈ Nr : {ωt

r = fg, |dtr − d(p)| < h}
• ω(p) = bg: otherwise.
The above constraints eliminate several (a) false positive and
(b) false negative foreground points, projected to pixels of the
range image near the object edges, which improvement can be
seen by comparing the top and bottom examples of Fig. 4.

4. Pedestrian detection and multi-target tracking

In this section, we introduce the pedestrian tracking module
of the system. The input of this step is a RMB-Lidar point cloud
sequence, where each point is marked with a segmentation
label of foreground or background, while the output consists of
clusters of foreground regions so that the points corresponding
to the same person receive the same label over the sequence.
We also generate a 2D trajectory of each pedestrian.

The module iterates foot point candidate detection and po-
sition assignment steps. Although, as detailed later, we should
expect several false and missing alarms among the detected
pedestrian positions, we can take the advantage that RMB-Lidar
point cloud sequences have nowadays notably high spatial ac-
curacy (less than 2cm error) and high frame rate (15 Hz). For
these reasons, outlier positions can be efficiently filtered by
temporal analysis. Trajectory initialization is implemented in a
straightforward way: we consider each target candidate posi-
tion in the first point cloud frame as the initial point of a possi-
ble trajectory. In the following frames, each detected position
is either assigned to an existing trajectory, or it is marked as
the starting point of a new track. False alarms are removed by
deleting short trajectories during the process.

4.1. Separation of moving pedestrians

In the starting step of the module, we estimate the footprint
positions of the pedestrians in each Lidar frame. First, we fit
a regular rectangular lattice C onto the ground plane, where
the ground position of the Lidar system is in the central cell of
C, denoted by c0. Next the foreground regions are vertically
projected onto the lattice, and at each cell, c ∈ C we count the
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Fig. 5. Pedestrian separation. Left: side view of the segmented scene, centered:
top view, right: projected blobs in the image plane

number of foreground points, N(c), which are projected to c.
Then a binary Nb(.) cell mask is derived by thresholding N(.),
i.e. by selecting the cells which contain at least τN points. The
τN threshold is determined so that we attempt to extract each
pedestrian center from top view, but also avoid to merge closely
located, or slightly connecting people (e.g. shaking the hand of
each other) into the same blob in the Nb mask (used τN = 10).

In the next step, we extract the connected components in
the Nb binary image: {b1, . . . , bk}, where ∀i : bi ⊂ C. For
each blob bi we determine the “point volume” of the com-
ponent as vi =

∑
c∈bi

N(c) and the weighted central point
ci =

∑
c∈bi

c ·N(c)/vi. Considering that the point density pro-
vided by the RMB-Lidar system decreases proportionately to
the squared distance from the Lidar center, we accept bi as a
valid object candidate, if vi · ||ci− c0||2 > τvol. We used τvol =
100000 in a courtyard with a 15m radius, by measuring the
point coordinates in centimeters. The output of this step is a
set of the Measured pedestrian foot-positions in the 2D ground
plane {M1, . . . ,Mn}, where n ≤ k and Mi = cj if bj is the
ith valid object candidate. For visualization and later feature
extraction, the foot blobs around the valid measurement points
are vertically backprojected the foreground regions of the 3D
point cloud, and the point cloud parts corresponding to the
measurements are extracted and stored for the tracking step.

The result of the object separation step is demonstrated in
Fig. 5 from different viewpoints. Note that here the tightly con-
necting people may be merged into the same object candidate,
or blobs of partially occluded pedestrians may be missing or
broken into several parts. Instead of proposing various heuris-
tic rules to eliminate these artifacts at the level of the individ-
ual time frames, we developed a robust multi-tracking module
which efficiently handles the problems at sequence level.

4.2. Pedestrian tracking

The pedestrian tracking module combines Short-Term As-
signment (STA) and Long-Term Assignment (LTA) steps. The
STA part attempts to match each actually detected object can-
didate (Sec. 4.1) with the current object trajectories maintained
by the tracker, by purely considering the projected 2D centroid
positions of the target. The STA process should also be able to
continue a given trajectory if the detector misses the concerning
object in a few frames due to occlusion. In these cases the tem-
poral discontinuities of the tracks must be filled with estimated
position values. On the other hand, the LTA module is respon-
sible for extracting discriminative features for re-identification

of objects lost by STA due to occlusion in many consecutive
frames or leaving the FoV. For this reason, lost objects are reg-
istered to an archived object list, which is periodically checked
by the LTA process. LTA should also recognize if a new per-
son appears in the scene, who was not registered by the tracker
beforehand.

4.2.1. Short-Term Assignment (STA)
Based on the obtained 2D object foot-positions, the Short-

Term Assignment (STA) task can be formulated as a multi-
target tracking problem, which is handled by a classical linear
Kalman filtering approach. On each current frame the n de-
tected target candidate points have to be assigned to m tracked
object models. We assume that for each j = 1, . . . ,m, the
tracker has already assigned a Oj predicted position to the jth
maintained object track, based on the target’s motion history.
As introduced in Sec. 4.1, let us denote by Mi (i = 1, . . . , n)
the target positions (i.e. Measurements) detected in the current
frame. A distance matrix D is calculated by simple Euclidean
distance in the 2D space Dij = ||Mi −Oj ||.

Based on the calculated distances, the trajectories and the
current measurements are assigned with the Hungarian method
(Kuhn, 1955), which expects a squared D = [Dij ]n̂×n̂ distance
matrix, where n̂ = max{m,n}. For this reason, if m > n we
temporarily generate m−n fictional measurements which have
maximum distance from all trajectories within the normalized
data cube. Similarly, if n > m, we generate n − m fictional
tracks to complete the D matrix.

The output of the Hungarian matcher is a unique assignment
i → A(i) between the measurements and the trajectories, where
i (resp. A(i)) index may also correspond to a real or fictive
measurement (resp. trajectory). Let τdist be a distance threshold.
The obtained assignment is interpreted in the following way:

if (i ≤ n, A(i) ≤ m):
if
(
Di,A(i) < τdist

)
measurement Mi is matched to trajectory OA(i)

else
both the ith measurement and the A(i)th trajectory
are marked as unmached.

endif
elseif (m ≥ i > n and A(i) ≤ m)

the A(i)th trajectory is marked as unmached.
else

the ith measurement is marked as unmached.
endif

If the Mi measurement is matched to the Oj trajectory point,
we consider that Mi corresponds to the new position of the jth
target. Since the Mi foot position is estimated as the centroid
of the projected silhouette, we usually observe strong measure-
ment noise. For this reason, we maintain a linear Kalman filter
for each track, which is updated in each frame with the as-
signed measurements values. Tracks with label unmached are
not closed immediately: they are marked as Inactive, in which
state they can spend at most TSIL time frames. Inactive tracks
also participate in the STA process, but since they do not have
actual measurements, the Kalman filter of the trajectory is up-
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Arrow codes: STA match succeed:

STA match failed:

SIL < TSIL

Activate called

by LTA

ATL >= TinitL

LTA match succeed

CALL: Activate

SIL >= TSIL
SIL >= TSIL

SIL < TSIL

ATL >= TinitL

LTA match failed
ATL < TinitL

Init

Active

Init

Inactive

Deleted Archieved

Identified

Active

Identified

Inactive

New 

measurement

Fig. 6. State machine of the tracking algorithm. Arrows with continuous resp. dotted lines denote transition yielded by successful respectively unsuccessful
Short-Term Assignment (STA) of the tracks. Further notations are as follows. ATL, Active Trajectory Length: total number of object trajectory points with
valid observation values. SIL Short-term Inactivity Length: number of time frames since the object is inactive during Short-Term tracking. Tsil: maximal
allowed SIL. TinitL minimal ATL for LTA-identification.

dated with the latest prediction value of the current position. In
both cases, the next point of the trajectory will be the corrected
state of the filter. The final step of the trajectory update is to
make the Kalman prediction for the next point of each track,
which can be used for measurement assignment in the next time
frame. Unmached measurements are potential initial points of
new trajectories, thus we start new object tracks for them, which
is investigated during the upcoming iterations. Further manage-
ment issues of unmached trajectories and measurements will
be detailed in Sec. 4.2.3.

4.2.2. Long-Term Assignment (LTA)
In an outdoor surveillance situation Lidar point clouds are

considerably sparse. Depending on the distance from the sen-
sor, we measured that 180-500 points correspond to a given
pedestrian appearance, which encapsulate strongly limited in-
formation for biometric analysis. After investigating various
static and dynamic point cloud descriptors, we found two ones
as relevant for person re-identification in the considered scenes.
First, since clothes of people consist of various materials, the
calibrated reflection intensities (g(p) values) obtained by the
RMB-Lidar sensor exhibit different statistical characteristic for
different people. Fig 7(a) displays the point silhouettes of two
selected pedestrians, where points are colored by the measured
laser intensity values, while Fig 7(b) shows the corresponding
intensity histograms collected over 100 frames. Although the
differences are usually not as significant as in this demonstra-
tion example, we found that the Bhattacharyya distance of the
h1 and h2 normalized intensity histograms for two object sam-
ples efficiently indicates whether the candidates correspond to
the same person or not:

dBhat(h1, h2) = − log
255∑
k=0

√
h1[k] · h2[k].

As a second feature, we measure the height of the person.
In a given time frame, the height can be estimated by taking
the elevation difference of the highest and lowest object points.
However, this feature proved to be notably unreliable by deter-
mining it based on a single scan or only a few point clouds,
due to the low vertical resolution of the RMB-Lidar camera.
On the other hand we have experienced that by extracting the
peak value of the actual height histogram over around 100
frames, we can obtain a relevant height estimation with an error
less than 4cm. Even with this robust calculation, the estimated
height remains a quite weak feature, but it can significantly
help the long term matching process if two similarly colored
people are present in the scene. Since both features are derived
by temporal feature statistics, a newly appearing object must
enter first an Initial phase, where the long-term histograms are
accumulated. After a given number of frames, we can execute
the LTA process which marks the object as Identified. We ac-
cept a long term target match only if both the intensity and the
height difference features show relevant similarity. Pedestrians
unsuccessfully matched to any archived objects by LTA receive
a new unique identifier.

4.2.3. Tracking process
Based on the previously introduced STA and LTA modules,

the tracking process is realized by a finite-state machine, which
is displayed in Fig. 6. The state of a given actually tracked ob-
ject encodes if the object is currently Active or Inactive accord-
ing to the STA module, and if it is already Identified or is yet
in the Initialization phase of LTA. With these two binary pa-
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Fig. 7. Feature extraction for Long-Term Assignment

rameters, four states can be distinguished as shown in the top
part of Fig. 6. Transitions between the corresponding Active
and Inactive states are controlled by the STA module, depend-
ing on the success of matching the existing trajectories with
actual measurements. Identified objects which are Inactive for
more than TSIL frames are moved to the archive list: Archived
objects do not participate in the STA process, but they can be
re-activated later by LTA. Objects spending TSIL frames in the
Init-Inactive state are marked as Deleted, and excluded from
the further investigations during the tracking process. These
deleted trajectories usually correspond either to measurement
noise, or they are too short to provide us reliable descriptors
for later LTA matching.

The LTA identification process can be applied for objects
which have spent in the Init-Active state at least TinitL frames.
If a match is successful with an archived object, the trajectories
of the new and matched objects are merged with interpolating
the missing trajectory points. Then the LTA-matched Archived
object is moved to the Identified-Active state, and the new object
is Deleted to prevent us from duplicates. On the other hand
if the LTA match fails, the new object steps to the Identified-
Active state with keeping its identifier.

4.3. Parameter settings and practical considerations

Since person tracking algorithms are developed for contin-
uous operation, feasible parametrization and adaptiveness are
crucial issues.

Outdoor surveillance systems using optical cameras usually
suffer from external illumination changes, which can be result
of either the moving position of the sun (i.e. daily illumination),
or illumination changes due to changed weather circumstances
(e.g. slight changes in humidity). For optical images, the above
effects immediately alter the measured color values, thus color
based appearance models of objects need usually some illumi-

nation dependent parameters, even with using illumination in-
variant color transforms (such as the hue channel in HSV, or
a*/b* in CIE L*a*b*).

On the other hand the direct geometric information stored in
the point clouds could be considered more stable, as far as the
Lidar is able to operate and provide an accurate point cloud
(except heavy rain or fog). From the point of view of object
recognition, this feature is a great advantage compared electro-
optical imaging systems, where we should train the objects
or classes for differently illuminated scenarios or building up
adaptive illumination following models Benedek and Szirányi
(2008).

In our proposed system, the pedestrian separation and track-
ing modules have a few threshold-like parameters, such as the
τN cell-occupancy value, the τvol pedestrian volume (Sec. 4.1),
the τdist STA distance threshold (Sec. 4.2.1), or the TSIL and
TinitL time frame limits for Inactive resp. pre-Identified objects
(Sec. 4.2.3). These factors are related either to the refreshing
frequency or to the geometrical density and density-distance
characteristics of the obtained point clouds, and they can be set
based on the specification of the Lidar hardware. Thereafter,
the thresholds can be considered constant in a scenario, with
specifying the valid spatial range of the surveillance system
(i.e. the field of interest).

As for intensity based person re-identification in Sec. 4.2.2,
we have highly exploited that our laser scanner provides us cal-
ibrated reflectivities, thus different intensity ranges correspond
to diffuse and retro-reflectors, and the observation does not sig-
nificantly depend on outside illumination. In addition, laser in-
tensity histograms are on-line re-freshed, yielding a high adap-
tiveness to this module. We have set the maximal allowed in-
tensity distance for LTA matching (Sec. 4.2.2) in an empirical
way, which we found it efficient for discriminating 6-8 peo-
ple in several test sequences. In scenes with significantly more
pedestrians it could be necessary to involve further biometric
features probably from different sensors.

Another practical issue we had to deal with is related to the
applied adaptive background model. According to the original
background update algorithm (Stauffer and Grimson, 2000), a
person standing in place for several frames becomes part of the
background, and thus missed by the target detector. We handle
this situation with a feedback from the object level to the low
level module of the system: laser points classified as foreground
points are not utilized for adaptive background update.

5. Evaluation

We have evaluated our method in 7 real outdoor Lidar se-
quences containing multi-target scenarios recorded in the court-
yard of our institute in different parts of the year. The data flows
have been captured by a Velodyne HDL-64E sensor, which op-
erates with R = 64 vertically aligned beams. The sequences
contain 4-8 people walking in a 220m2 area FoV in 1-15m dis-
tances from the Lidar. The rotation speed was set from 15Hz to
20Hz. In the background, heavy motion of the vegetations make
the accurate classification challenging. We have also recorded
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Fig. 8. Foreground classification results on sample time frames with the Basic MoG, uniMRF, 3D-MRF and the proposed DMRF models: foreground points
are displayed in blue (dark in gray print). First two columns correspond to people surveillance scenarios, while on the third column we can investigate the
usability of the methods in a traffic monitoring environment

the test scenarios with a standard video camera only for ver-
ification of the tracking and re-identification process. The ad-
vantage of using sequences from different seasons was that we
could test the robustness of the approach versus seasonal cloth-
ing habits (winter coats or T-Shirts) and illumination changes.
Names (Summer1-Spring2) and basic properties of the test
sequences are listed in Table 1.

We divided the testing phase into two parts. First, we have
evaluated the proposed DMRF foreground-background sepa-
ration process, which is a general contribution of the present
work, and may be also applied in different applications from
pedestrian surveillance. For this reason, as an example we also
inserted a traffic monitoring (Traffic) scenario (see Fig. 8,
third column), which sequence was recorded with 5Hz rota-
tion speed from the top of a car waiting at a traffic light in a
crowded crossroad. Here the provided point clouds are signif-
icantly larger: each scan contains around 260000 points. Sec-
ond, we have also verified the multiple people tracking and

re-identification modules by counting the correct and incorrect
trajectory matches during the whole observation periods.

5.1. Evaluation of foreground-background separation

We have compared our proposed DMRF model for
foreground-background separation to three reference solutions:

(i) Basic MoG, introduced in Sec. 3.1, which is based on
(Kaestner et al., 2010) with using on-line K-means pa-
rameter update (Stauffer and Grimson, 2000).

(ii) uniMRF, introduced in Sec. 3.2, which partially adopts
the uniform foreground model of (Wang et al., 2006) for
range image segmentation in the DMRF framework.

(iii) 3D-MRF, which implements a MRF model in 3D, simi-
larly to (Lafarge and Mallet, 2012). We define here point
neighborhoods in the original Lt clouds based on Eu-
clidean distance, and use the background fitness values of
(2) in the data model. The graph-cut algorithm (Boykov
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and Kolmogorov, 2004) is adopted again for MRF energy
optimization.

Qualitative segmentation results on sample frames from three
sequences are shown in Fig. 8, concerning the three refer-
ence methods and the proposed DMRF model. For quantitative
(numerical) evaluation, we manually generated Ground Truth
(GT). For this reason we have developed a 3D point cloud an-
notation tool, which enables labeling the scene regions man-
ually as foreground or background. Next, we manually anno-
tated around 100 relevant frames of each test sequence. For
quantitative evaluation metric, we have chosen the point level
F-rate of foreground detection (Benedek and Szirányi, 2008),
which can be calculated as the harmonic mean of precision and
recall. We have also measured the processing speed in frames
per seconds (fps). The numerical performance analysis is given
in Table 1(a). The results confirm that the proposed model sur-
passes the reference techniques in F-rate in all surveillance se-
quences, meanwhile the processing speed is 15-16fps, which
enables real-time operation. In the Traffic sequence with
large and dense point clouds, the 3D-MRF approach is able
to slightly outperform our approach in detection rate, but the
proposed DMRF method is significantly quicker: we measured
there 2fps processing speed with 3D-MRF and 16fps with the
proposed DMRF model. We can also observe that differently
from 3D-MRF, our range image based technique is less influ-
enced by the size of the point cloud.

5.2. Evaluation of multi-target tracking

For quantitative evaluation of the tracking process the out-
put trajectories of the system were verified by manual observes
watching the point cloud sequences and the recorded videos in
parallel. (Note that the system did not use the optical video in-
formation, we only recorded it to enable verification of tracking
and re-identification.)

As evaluation metrics, we counted the following events (see
results in Table 1(b)):
• STA trans. num: number of all Inactive→Active state transi-

tions during the tracking process, i.e. the number of events,
when the Short-Term Assignment (STA) module can con-
tinue a track after the object had been occluded for a couple
of frames (counted automatically).

• STA trans. error: number of erroneous track assignments by
the STA module (counted manually).

• LTA trans. num: number of Archived→Identified state tran-
sitions during the tracking process, i.e. the number of events,
when the Long-Term Assignment (LTA) module can recog-
nize a previously archived and re-appearing person (counted
automatically).

• LTA trans. error: number of erroneous person assignments
by the LTA module (counted manually).
The seven surveillance sequences listed in Table 1(b) imply

varying difficulty factors for the multi-target tracking process.
First, we calculated the Average people number per frame (4th
column) among the frames of the Lidar sequence, which contain
at least two pedestrians. Higher people density results in more

occlusions, thus usually in increasing STA trans. num, which
means challenges for the STA module. On the other hand, the
total number of people (4-8) and the LTA trans. num affect the
LTA re-identification process. As shown in the table, the first
three sequences have been used only to verify the STA tracking
module. As for sequences Winter1-Spring1, by increas-
ing the people number to 6 the re-identification step becomes
crucial, but the LTA-match is still nearly faultless (97% perfor-
mance). Finally, in the 8-people scenario (Spring2), which
contains not only more people, but also a significnatly increased
number of occlusions, the LTA yields 4 assignment errors out
of 17 re-identification attempts, which means a 76.4% perfor-
mance.

Fig. 9 displays two sample frames from the Winter2
sequence. Between the two selected frames, all pedestrians
left the FoV, therefore a complete re-assignment should have
been performed by the LTA module. Note that even with
applying Kalman filtering, the resulted raw object tracks are
quite noisy, therefore, we applied a 80% compression of the
curves in the Fourier desciptor space (Zhang and Lu, 2002),
which yields the smoothed tracks displayed in Fig 9, right.
A demonstration video about the tracking process in the
Winter2 sequence can be watched in the author’s homepage:
http://web.eee.sztaki.hu/i4d/PRLDEMO

An important feature of the proposed system is the nearly
real time performance with processing 15 Hz Lidar sequences.
The last column of Table 1(b) lists the measured processing
speed on the different test sets. Compared with fps values of
Table 1(a), we can conclude that the most expensive part of
the process is foreground-background segmentation (in itself
15-16 fps), since the complete workflow including foreground
detection, pedestrian separation and tracking operates with 12-
13 fps. We can observe a slight computational overload as the
number of people increases yielding more occlusions. Quicker
operation in the Summer1 sequence is the result of the smaller
point clouds, since that sequence has been recorded at 20 Hz
rotation frequency.
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7. Conclusions

We have introduced a novel 3D surveillance framework for
detecting and tracking multiple moving pedestrians in point
clouds obtained by a rotating multi-beam (RMB) Lidar sys-
tem, with focusing on specific challenges raised by the selected
range sensor. We have proposed first an efficient foreground
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Fig. 9. Results of pedestrian separation and tracking in the Winter2 Lidar sequence. Note that between the two displayed frames (#1174 and #1850) all
pedestrians have left the field of interest and re-appeared in a random order, thus a complete re-identification process has been conducted. Trajectories in the
right correspond to frames between #1580 and #1850, where the position in Frame #1850 is marked with a circle. Video images (in the top) were only used
for validation of tracking and re-identification.

Table 1
Numerical point level evaluation of foreground detection and object level
evaluation of tracking and re-identification on the test sequences

Sequence Point cloud F-measure based on 100 frames (in %)

name size Bas. MoG uniMRF 3D-MRF DMRF

Summer1 65K pts/fr. 55.7 81.0 88.1 95.1

Summer2 86K pts/fr. 59.2 86.9 89.7 93.2

Summer3 86K pts/fr. 38.4 83.3 78.7 89.0

Winter1 86K pts/fr. 55.0 86.6 84.1 91.9

Winter2 86K pts/fr. 54.9 86.6 84.1 91.9

Spring1 86K pts/fr. 49.9 84.8 82.7 88.9

Spring2 86K pts/fr. 56.8 89.1 86.9 94.4

Traffic 260K pts/fr. 70.4 68.3 76.2 74.0

Processing Speed 120fps 17-18fps 2-7fps 15-16fps
(a) Point level evaluation of foreground detection detection accuracy (F-rate
in %) and processing speed (fps, measured in a desktop computer)

Sequence Frame People Av peopl. STA trans. LTA trans. Processing

name num. num. per frame num (error) num (error) speed (fps)

Summer1 2556 4 3.51 57 (0) 1 (0) 14.95

Summer2 960 4 3.64 30 (0) 0 (-) 12.89

Summer3 1406 4 3.77 44 (0) 0 (-) 13.03

Winter1 3641 4 2.91 71 (0) 9 (0) 12.91

Winter2 2433 6 4.38 129 (0) 12 (0) 12.65

Spring1 2616 6 4.34 127 (0) 16 (1) 12.78

Spring2 2383 8 5.51 216 (1) 17 (4) 12.45
(b) Object level evaluation on the seven surveillance test sequences. STA:
Short-Term Assignment, LTA: Long-Term Assignment. Processing speed is
related to the complete workflow including foreground detection.

segmentation model, which uses a spatial foreground filter to
decrease artifacts of angle quantization and background motion.
This component has been quantitatively validated based on 3D
Ground Truth data, and the advantages of the proposed solu-
tion versus three reference methods have been demonstrated.
Thereafter, we have introduced a multi-target tracking module
with on-line person re-identification functions, where biomet-
ric features were derived from the range and intensity chan-
nels of the Lidar data flow. The tracker module was also tested
in real outdoor scenarios, with multiple occlusions an several
re-appearing people during the observation period. The experi-
ments confirmed, that an efficient 3D video surveillance system
can be based on a single RMB-Lidar sensor, whose installation
is significantly easier than setting up a calibrated multi-camera
system.
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