®a VI TA SZTAKI

INSTITUTE FOR COMPUTER MAGYAR TUDOMANYOS AKADEMIA
SCIENCE AND CONTROL SZAMITASTECHNIKAI ES
HUNGARIAN ACADEMY OF SCIENCES AUTOMATIZALASI KUTATOINTEZET

Urban Traffic Monitoring from LIDAR Data with a
Two-Level Marked Point Process Model

Attila Borcs — Csaba Benedek

Technical Report
N° i4D-2

January 2013

Theme VISION

MTA SZTAKI

H-1111 Budapest, Kende u. 13-17, Hungary
H-1518 Budapest P.0.B. 63, Hungary
Phone: (+36 1) 279 6000

Fax: (+36 1) 466 7503






& VITA SZTAKI

O

Urban Traffic Monitoring from LIDAR Data with a Two-Level
Marked Point Process Model

Attila Bbrcﬂ Csaba Benedﬁk

Theme VISION — Computer Vision
Divison: Distributed Events Analysis Research Laboratory

Research report — January 2013 =} 20 pages

Abstract: In this report we present a new object based hierarchicaleiriod joint probabilistic
extraction of vehicles and coherent vehicle groups — catbeftic segments in airborne and terres-
trial LIDAR point clouds collected from crowded urban aresstly, the 3D point set is segmented
into terrain, vehicle, roof, vegetation and clutter class&hen the points with the corresponding
class labels and intensity values are projected to the grplane. In the obtained 2D class and
intensity maps we approximate the top view projections dficles by rectangles. Since our tasks
are simultaneously the extraction of the rectangle pojmdathich describes the position, size and
orientation of the vehicles and grouping the vehicles ihtttaffic segments, we propose a hierar-
chical, Two-Level Marked Point Process?(lPP) model for the problem. The output vehicle and
traffic segment configurations are extracted by an iteraiwehastic optimization algorithm. We
have tested the proposed method with real aerial and tealdSDAR measurements. Our aerial
data set contains 471 vehicles, and we provide quantitalijert and pixel level comparions results
versus two state-of-the-art solutions.

Key-words: rotating multi-beam Lidar, MPP, vehicle detection, traffionitoring

This work is connected to the i4D project funded by the iraeR&D grant of MTA SZTAKI.

* The author was supported by the Grant #101598 of the HungReasearch Fund (OTKA)
 The author was supported by the Janos Bolyai Research Sstiplaf the Hungarian Academy of Sciences and by the
Grant #101598 of the Hungarian Research Fund (OTKA)

Institute for Computer Science and Control
Hungarian Academy of Sciences
H-1111, Budapest Kende utca 13-17, Hungary
Telephone: +36 1 279 6000, Fax: +36 1 466 7503
http://www.sztaki.hu



Varosi forgalomfelligyelet kétszint( jeldlt pontfolyama modellel
LIDAR felvételeken

Kivonat : Riportunkban egy 0j objektum alapu hierarchikus valdszégi modellt mutatunk be,
melynek célja tavérzékelt varosi LiIDAR pontfélkben |6 jarmiivek észlelése és a forgalmi szempontbol
Osszetartozé jarmicsoportdiorgalmi szegmensekinyerése. EIS Iépésként a haromdimenzios
ponthalmazt szegmentdljuk, megkulénboztetwebaényzetjarmijelolt, épuletek tetdszerkezetei
illetve ritka ponthalmaosztalyokat. Ezutan az egyes pontokhoz tartoz6 osztakgliei és a LiDAR
eszkdz altal mért intenzitas (visszalidés ebdsség) értékeket a talaj sikjara vetitjiik. Az igy kapott
2D cimke- és intenzitasképen a fellilnéZdtlatszodo jarmiveket téglalapokkal kozelitjik. Mivel
feladatunk egy ilben a jarm(ivek elhelyezkedését és dimenzidit leiré k&g @opulacio megtalalasa,
valamint az objektumok csoportositasa forgalmi szegndreseegy hierarchikus, kétszint( jeldlt
pontfolyamat modellt (EMPP - Two-Level Marked Point Process) dolgoztunk ki a protdénegoldasara.
Az optimalis jarm(i és forgalmi szegmens konfiguraciégtersztochasztikus algoritmussal hatarozzuk
meg. A mbdszert valédi, 6sszesen 471 jarmivet tartalm&gid IDAR adathalmazokon teszteltiik,
kvantitativ médon kiértékeltik, és eredményességét kadtismalmi modszerrel 6sszehasonlitva
igazoltuk. Kiterjesztést mutatunk be foldi LIDAR mérésedzklésére is.

Kulcsszavak : Lidar, jelélt Markovi pontfolyamatok, jarmi detekcid,rigalom figyelés
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1 Introduction

Automatic traffic monitoring is a central goal of urban traffiontrol, environmental protection and
aerial surveillance applications. Complex traffic anaysteds a hierarchical modeling approach:
at low levelindividual vehiclesshould be detected and separated, meanwhile at a highémleve
need to extractoherent traffic segmentby identifying groups of corresponding vehicles, such as
cars in a parking lot, or a vehicle queue waiting in front ofadfic light. Here, we introduce a joint
probabilistic model for vehicle detection and traffic segtaéion in airborne LIDAR data, which
contains point position, intensity and echo information.

1.1 Marked Point Processes

We model a traffic scene by a Marked Point Process (MEP) [litiwik an efficient Bayesian tool to
characterize object populations, through jointly desnghndividual objects by various data terms,
and using information from entity interactions by prior gegtric constraints. However, conven-
tional MPP models offer limited options for hierarchicatee modeling, since they usually exploit
pairwise object interactions, which are defined on fixed swtnimobject neighborhoods. In a traf-
fic situation we often find several groups of regularly alignwehicles, but we must also deal with
junctions or skewed parking places next to the roads (BigwRgre many differently oriented cars
appear close to each other. In addition, the coherent caipgrmay have thin, elongated shapes,
therefore concentric neighborhoods are less efficient.

For this reason, we propose here a Two-Level MPEMBP) model, which partitionates the
complete vehicle population into vehicle groups, calledffic segmentsand extracts the vehicles
and the optimal segments simultaneously by a joint energimization process. Object interactions
are differently defined within the same segment and betweerifferent segments, implementing
adaptive object neighborhoods. This model extends outeslegel MPP method 2] proposed for
vehicle detection. In addition, we present here an impr@agdt cloud segmentation algorithm, and
provide a detailed quantitative evaluation on four datage471 vehicles, considering two reference

methodsl[3] 4].

1.2 Related Work

Vehicle detection on urban roads is a crucial task in autmnigtffic monitoring and control, en-
vironmental protection and surveillance applicatidis [BEside terrestrial sensors such as video
cameras and induction loops, airborne and spacebornealatzes are frequently exploited to sup-
port the scene analysis. Some of the existing approachesmederial photos or video sequences,
however in these cases, it is notably challenging to devalegdely applicable solution for the
recognition problem due to the large variety of camera ssngoage quality, seasonal and weather
circumstances, and the richness of the different vehidéeopypes and appearance modgls [6]. The
Light Detection and Ranging (LIDAR) technology offers diiggant advantages to handle many of
the above problems, since it can jointly provide an acci8ddegeometrical description of the scene,
and additional features about the reflection propertiescamndpactness of the surfaces. Moreover
the LIDAR measurements are much less sensitive on the weatinglitions and independent on
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the daily illumination. On the other hand, efficient storagmnagement and interpretation of the
irregular LIiDAR point clouds require different algoritheinethodologies from standard computer
vision techniques.

LiDAR based vehicle detection methods in the literaturéofelgenerally either a grid-cell- or
a 3-D point-cloud-analysis-based approach [7]. In the §irsup of technique$[3] 8], the obtained
LiDAR data is first transformed into a dense 2.5-D Digital\&&gon Model (DEM), thereafter es-
tablished image processing operations can be adoptedraxettie vehicles. On the other hand, in
point cloud based methods [5], the feature extraction acoigeition steps work directly on the 3-D
point clouds: in this way we avoid loosing information dugtojection and interpolation, howev-
er time and memory requirement of the processing algorittmang be higher. We propose a hybrid
model, where the initial point cloud is classified via 3D feas, but the optimal object configuration
is extracted in a 2D lattice, after ground plane projection.

Another important factor is related to the types of measergsutilized in the detection. A cou-
ple of earlier works combined multiple data sources, e pfui€ed LiDAR and digital camera inputs.
Other methods rely purely on geometric informatioh[[4, 8hpdasizing that these approaches are
independent on the availability of RGB sensors and limotaiof image-to-point-cloud registration
techniques. Several LIDAR sensors, however, provide amngity value for each data point, which
is related to the intensity of the given laser return. Simcgeneral the shiny surfaces of car bodies
result in higher intensities, this feature can be utilizedaa additional evidence for extracting the
vehicles.

The vehicle detection techniques should also be examired the point of view of objec-

t recognition methodologies. Machine learning methoderaibticeable solutions, e.d.][8] adopts

a cascade AdaBoost framework to train a classifier based geletdeatures. However, the authors

also mention that it is often difficult to collect enough regentative training samples, therefore, they
generate more training examples by shifting and rotatiedekv training annotations. Model based

methods attempt to fit 2-D or 3-D car models to the observea [t however, these approaches

may face limitation for scenarios where complex and higlalsious vehicle shapes are expected.

We can also group the existing object modeling techniquestiven they follow aottom-upor
aninverseapproach. Theottom-ugechniques usually consist in extractipgmitives(blobs, edges,
corners etc.) and thereafter, the objects are construstedthe obtained features by a sequential
process. To extract the vehicles] [3] introduces threeswifit methods with similar performance
results, which combine surface warping, Delaunay triaation, thresholding and Connected Com-
ponent Analysis (CCA). As main bottlenecks here, the Didigarain Model (DTM) estimation and
appropriate height threshold selection steps criticaifjuence the output quality. [[4] applies three
consecutive steps: geo-tiling, vehicle-top detectiondmal maximum filtering and segmentation
through marker-controlled watershed transformation. @iput is a set of vehicles contours, how-
ever, some car silhouettes are only partially extractedharaliple of neighboring objects are merged
into the same blob. In general, bottom-up techniques carlagvely fast, however construction of
appropriate primitive filters may be difficult/inaccuraaed in the sequential work flows, the failure
each step may corrupt the whole process. In addition, we livaited options here to incorporate a
priori information (e.g. shape, size) and object intexacti

DEVA Laboratory
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Figure 1: Workflow of the point cloud filtering, segmentatiand projection steps. Test data
provider: Astrium GEO-Inf. Servicé&s

Inverse methods, such as Marked Point Processes, MPP8)][hssign a fithess value to each
possible object configuration, thereafter an optimizaporcess attempts to find the configuration
with the highest confidence. In this way complex object apgre@e models can be used, it is easy to
incorporate prior shape information (e.g. only searchimgag rectangles) and object interactions
(e.g. penalize intersection, favor similar orientatiodhwever, high computational need is present
due searching in the high dimension population space. Tirereapplying efficient optimization
techniques is a crucial need.

We propose an MPP based vehicle detection method with tleiolg key features. (i) Instead
of utilizing complex image descriptors and machine leagt@chniques to characterize the individu-
al vehicle samples, only basic radiometric evidences, satgition labels and prior knowledge about
the approximate size and height of the vehicle bounding $axe exploited. (ii) We model inter-
action between the neighboring vehicles by prescribingrpron-overlapping, width similarity and
favored alignment constraints. (iii) Features exploitethie recognition process are directly derived
from the segmentation of the LIDAR point cloud in 3-D. Howgue keep the computational time
tractable, the optimization of the inverse problem is perfed in 2-D, following a ground projection
of the previously obtained class labels. (iv) During thejgection of the LIDAR point cloud to the
ground (i.e. a regular image), we do not interpolate pixéleg with missing data, but include in
the MPP model the concept pixel with unknown clasdn this way we avoid possible artifacts of
data interpolation.

2 Segmentation of aerial point clouds

In this section, we introduce our point cloud segmentati@thod for aerial LIDAR measurements.
The input of the proposed framework is a remotely sensed RpAint cloudl. Let us assume

that the cloud consists dfpoints: £ = {p1,...,p}, where each pointy € L, is associated to

geometric position, intensity and echo number paramedsrdgetailed in Tablel 1. Let us denote by

MTA SZTAKI
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Parameterl Domain Description

TpyYp, zp | R coordinates of the 3-D geometric location of the
pointp

9p [0,255] intensity (or gray level) value associated to the
pointp

Ny {1,2,3,4} number of echoes (or returns) from the direction
of p

Tp {1,2,3,4} index (ordinary number) of the echo associated to
pointp from its direction (i.er, < n,)

Table 1: Parameters associated to a ppioftthe input cloudC

V.(p) thee neighborhood op:

Ve(p) ={q € L:lg—pll <¢},

where||r — p|| marks the Euclidean distance of point&indp. Then with using|V.(p)| for the
cardinality of a neighborhood:

u(p) = clutter iff |V.(p)| < 7y,

wheree andy, threshold parameters depend on the point cloud resolutidrdansity. For effi-
cient neighborhood calculation, we need to divide the polotid into smaller parts by making a
nonuniform subdivision of the 3-D space usinkg-d tree data structure.

For point cloud segmentation we have proposed an energyniziaiion method in the 3D space,
which utilizes various 3D descriptors to identify the diffat point classes. In our model, we distin-
guishterrain, vegetationroof, vehicleandsparseregions, and we denote §yp) the class label of
a given poinfp.

To classify the point cloud, we define for each clgsa pe(p) € [0,1] inverse membership
function, which evaluates the hypothesis that £ belongs to th& segmentation class, marking
high quality matches with lower values. For deriving the membership functions we ¢isegmoid
functions, which can be consideredsast thresholds

1
1+exp(—m-(x—71))°
wherex € R is a scalar valued fitness descriptois the soft threshold correspondingitpam is a
steepness parameter used for normalization.

We identify theterrain points, by estimating the the best plaRen the cloudl \ L., using a
RANSAC-based algorithm of [11]. This technique selectsagteiteration three points randomly
from the input cloud, and it calculates the parameters ottiieesponding plane. Then it counts the
points inL \ L., which fit the new plane and compares the obtained result Wwithast saved one.
If the new result is better, the estimated plane is replaciéid thve new candidate. The process is
iterated till convergence is obtained. Since the groundigally not planar in a greater area, large

C(I’ T’ m) =
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8 A. Borcs and C. Benedek

point clouds are first be divided into smaller segment, aedytiound plane is estimated within each
segment separately. Thereafter the points are evaluatet lzm theirdg = dist(p, T') distance
measured from the local ground plane:

,Uterrain(p) = § (dg, Tterrain, mterrain) ,

where Tierain IS @ height threshold depending on the geometric accurathieotiDAR data and
Mierrain IS @ NOrmalizing parameter. We set these factors in a sugeehwivay by training regions,
since they highly depend on the noise level and point depsittye measurement.

For estimating the@egetationwe analyzed the return (echo) numbers of the points. Asldédta
in Table[1, the LIDAR system provides apart from the 3D poiosifion coordinates, the number
of laser returns from the direction of poipi(n,), and the reflection index correspondingt¢ry,).
Typically, in regions covered by vegetation we can obserwdtipie lase returnsr, < n, i.e.
ny, — 7p > 1) which gives as evidences to filter trees and bushes:

,Uvegetatior(p) =1-¢ (np — Tp, 0.5, mvegetatior) .

Regarding theoof class, we assume that tkl§ height parameter of the points exceedsg
threshold, and the points form dense regions, so|th&p)| > 7v. The corresponding data term is:

Mroof(p) = (1 —C (dzj;, Troof, mroof) ) : (1 —¢ (|V€(p)|a Ty,my))

In sparse regiongn contrast with the previous case, we expect at most a féghhers around
each point

psparsép) = ¢ ([Ve(p)[, 7v, my)
Finally, for points corresponding to vehicles, we expeett tthe height from the local terrain

plain segment were between a minimahf) and maximal fmax) height value, and the should
correspond to the last reflection from the direction coroesiing to them:

Mvehicle(p) = § (dzj;a Timax; mvehicle) : (1 - C (dg, Timin mvehicle) ) : C (np — Tp, 0.5, mn)

After constructing the membership functions, we defingzaanergy function on the space of
the possible global point cloud labellings, which uses tbé#gsfmodel to describe the neighborhood
interactions similarly to[[12].

E{éw)lpe L) =Y pem®) +Y > r-1{&p) #&(r)} 1)

peL pELTEV(p)

wherex > 0 is the weight of the intrraction term arid{.} is an indicator function1{true} = 1,
1{false} = 0.

For the minimum off{]L), we can get an efficient approximatigrgbaph-cut based techniques,
which we have tested using the implementation’of [13]. H@vewe have also experienced that
compared to the point-by-point segmentation (which igadine Potts smoothing terms), the quick

MTA SZTAKI
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Figure 2: Results of point cloud segmentation in a data sampbp right: result of point-by-
point classification. Bottom right: classification obtaingy the minimization of[{11) with theCM
algorithm

Iterated Conditional Modes (ICM) optiomization can alsoypde significant improvements which
is demonstrated in Figl 2.

After the 3-D segmentation process, we stretch a 2-D pixgté&sS (i.e. an image) onto the
ground plane, where € S denotes a single pixel. Then, we project each LIDAR pointhie t
lattice, which has a label of ground, vehicle or buildingftobhis projection results in a 2-D class
label map and an intensity map, where multiple point prapestto the same pixel are handled by a
point selection algorithm, which gives higher precedeceshicle point candidates. On the other
hand, the projection of the sparse point cloud to a regulagiriattice results in many pixels with
undefined class labels and intensities. In contrast to aBpesvious solutions, we do not interpolate
these missing points, but include in the upcoming model thecept of unknown label at certain
pixels. In this way, our approach is not affected by the acts of data interpolation.

Let us denote by(s) C £ the set of points projected to pixel After the projection (Fig[14),
we distinguishvehicle, background andundefined classes on the lattice as follows:

vehicle if 3p € x(s) : u(p) = vehicle
w(p) = roof
v(s) = ¢ background if Vp € x(s): OR

wu(p) = ground
undefined  if x(s) = 0.

Note that for easier visualization, in Figl. 1 ddd 4 we havémtisiished pixels of roof (red) and
ground (blue) projections, but during the next steps, wesiclan them as part of thieackground

DEVA Laboratory



10 A. Borcs and C. Benedek
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Figure 3: Challenges of vehicle detection in the label map

class. We also assign to each pixednd intensity valug(s), which is0, if v(s) = undefined,
otherwise we take the average intensity of points projeicted

Note that we may face further challenges regarding vehietealion from the projected point
cloud data. As shown in Fidl] 3, we must expect several missiranly partially detected vehicles
due to missing data or segmentation errors. An interestisg & shown in the top of Fif] 3, where
a car was parking below a tree thus the vehicle points weréehidrom the Lidar, but we can
observe an appropriately sized hole on the ground whichsgivédence for the presence of a car.
To estimate the true vehicle shapes, we can exploit somegxpectation such as regular alignment
of vehicles, i.e. similar sizes and orientations are exgzkint local neighborhoods. For this reason
we have chosen a population level traffic description apgrpahere prior information is exploited
about vehicle geometry and interaction In the followingtpdrthe algorithm, we purely work on
the previously extracted label and intensity images. Thedaien is mainly based on the label map,
but additional evidences are extracted from the intensigge, where several cars appear as salient
bright blobs due to their shiny surfaces.

3 L2-Marked Point Process Model

The inputs of this step are the label and intensity maps dnepixel latticeS, which were extracted
in the previous section. We will also refer to the input datiafy by D. We assume that each
vehicle from top view can be approximated by a rectangleckvhie aim to extract by the following
model. A vehicle candidate is described by five parameters; andc, center coordinates,,, ¢,
side lengths and € [—90°, +90°] orientation (Fig.[b(c)). Note that with replacing the regk
shapes for parallelograms, the “shearing effect” of mowvielgicles may also be modeléd [7], but in
the considered test data this phenomenon could not belsetibberved.

MTA SZTAKI
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Figure 4: Demonstration of the projection step (best vieimamblor). LIiDAR points are denoted by
spheres, and pixels on the image lattice by cells, with thleviing color codes: red - roof, blue -
ground, white - vehicle. Roof and ground pixels represemb#tkgrouncclass in the lattice, while
black cells correspond to pixels with class labetefined

Let # be the space ofi objects. We define a neighborhood relatiorin H: u ~ wv iff the
distance of the object centers is smaller than a threshold.d&gcribe the scene by a Two-level
Marked Point Process ZMPP) model: a global configuratian is a the set of traffic segments,

w = {4¢1,...,¢¥r}, where each traffic segmerit (: = 1...k) is a configuration of:; vehicles,
Y = {ul, ..., ul, } € H". Here we prescribe that; N ; = () for i # j, while thek set number
andnq, ..., ny set cardinality values may be arbitrary (and initially uotum) integers. We mark

with v < w if w belongsto any inw, i.e.3Y; € w: u € ;. Q denotes the space of all the possible
w global configurations.

Q= Uzozo {{1/)17 s ﬂ/fk} € [U?zo:1\11n]k} Where‘l’n = {{u17 s ,’LLn} € HTL}

Taking an inverse approach, an energy functigw) is defined, which can evaluate eache Q2
configuration based on the observed data and prior knowl&dgeabove neighborhood-energiesare
constructed by fusing various data terms and prior termigitecduced in the following subsections
in details. Therefore, the energy can be decomposed intdaatelan and a prior term®(w) =
®4(w) + @, (w), and the optimab is obtained by minimizing@ (w).

3.1 Data-dependent energy terms

Data terms evaluate the proposed vehicle candidates fieeu &= {c,, ¢y, er, e, 0} rectangles)
based on the input label- or intensity maps, but indepemdehtther objects of the population. The
data modeling process consists of two stéfist, we define differenf (u) : # — R features which
evaluate a vehicle hypothesis foiin the image, so that ‘highf (u) values correspond to efficient
vehicle candidates. In theecond stepwe construci;oﬁ;(u) data drivenenergy subterms for each
featuref, by attempting to satisfyaﬁ;(u) < 0 for real objects andag(u) > 0 for false candidates.
For this purpose, we project the feature domaip-b, 1] with a monotonously decreasing function:
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12 A. Borcs and C. Benedek

1 |
(a) Label map (Colors: (c) Rectangle parame- (e) Vehicle model + label
vehicle class: black, ters of a vehicle candi- map (background class =

undefined class: white) date u roof + terrain: gray color)
u
] LR
.l
e a
]

(b) Intensity map (d) Internal (R) and ex-  (f) Vehicle candidate +
ternal (T) regions for u  binarzed intensity map

Figure 5: Demonstration of the (a)-(b) input maps (c) objectangle parameters and (d)-(f) datater-
m calculation process

¢h(u) = Q(f(u),d}), where

(1—%), if = < do

exp (—Io_‘li") —1, if z>dp.

Q(x,do) = { 2

Observe that th&@ function has a key paramet@i({, which is the object acceptance threshold for
featuref: u is acceptable according to tbé(u) term iff f(u) > d({.

We used four different data-based features. To introduemthet us denote byg, C S the
pixels of the image lattice lying inside thevehicle candidate’s rectangle, and By?, T,°t, T,
and7'# the upper, bottom, left and right object neighborhood regjoespectively (see Figl 5). The
feature definitions are listed in the following paragraphs.

Thevehicle evidencteaturefV¢(u) expresses that we expect several pixels classifiedldsle
within R,,:

() = —— 3" 1{u(s) = vehicle},
|Ru| SER,
where|R, | denotes the cardinality aR,,, and1 {.} marks an indicator function1{true} = 1,
1{false} = 0.

MTA SZTAKI
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The external backgroundeature f*(u) measures if the vehicle candidate is surrounded by
background regions:

eb _ .
J7 ) = ie{lfnlé%%?f}rg} |T1| EXT: 1{v(s) = background} |,

where themin2nd operator returns the second smallest element from the bawakd filling ratios
of the four neighboring regions: with this choice we alsogptwehicles which connect with at most
one side to other vehicles or undefined regions.

The internal backgroundeature i (u) prescribes that withirz,, only very few background
pixels may occur:

flb

—1{v(s) = background} .
SER
Demonstration of thgVe, f¢ and fi" feature calculation can be followed in FIg. 5(e).

Finally, theintensityfeature provides additional evidence for image parts doimig high inten-
sity regions (see Fidl 5(b) and (f)).

£ (u) |R|Zl{g ) > Ty},

SER,

whereTy, is an intensity threshold.
After the feature definitions, the data terg$(u), ¢3¢ (u), ¢ (u), P (u) can be calculated

with the Q function by appropriately fixing the correspondmb parameters for each feature. We
set the parameters based on manually annotated trainiagwlaich step can be further optimized
by Maximum Likelihood Estimators (MLE) as detailed In]14].

Once we obtained the subterms, the joint data energy of bhjsaerived as

pq(u) = max(min(pyf (u), o3° (1)), 95> (), o (u)).

Here the min and max operators are equivalent to the logi€ak&p. AND operations for the
different feature constraints in the negative fitness dam@ie do not prescribe simultaneously the
vehicle evidencandintensityconstraints, since usually not all vehicles appear as bbigis in the
intensity map. The data term of theconfiguration is obtained as the sum of the individual object

energies®,(w) = >, . wa(u).

3.2 Prior terms

The prior terms implement geometric constraints betwe#ardint objects and traffic segments of

| o) = 3 I+ Y AW 3)

U,v<w U<w,PEeEw

DEVA Laboratory
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TR D
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Figure 6: Favored{) and penalizedx) sub-configurations within a traffic segm.

wherel(u, v) penalizes any overlapping rectangles withindheonfiguration:

I, 0) = Area{R, N R,}
Area{R, U R,}

To measure if a vehicle is appropriately arranged with respect to a traffic segnmiemte define
an alignment distance measufg(u) € [0, 1] which is the average of two termérstly, the nor-
malized angle difference betweerand the mean angle withip (see Fig[b(a)-(b))secondlywith
using RANSAC, we fit one or a couple of parallel lines to theegbjcenters within), and calcu-
late the normalized distance of the centeudfom the closest line (Fid.6(c)-(d)). For prescribing
spatially connected traffic segments, we use a constantdifiginence factor, ifu has no neighbors
within v w.r.t. relation~. Thus we derive a modified distance:

5 {1 if fv € P\{u}:u~wv

dop (u) = dy(u) otherwise

We define thed(u, 1)) arrangement term of{3) in the following way. We slightly pére vehicle
groups which only contain a single vehicle: with a smialk ¢ < 1 constantA(u,y) = c iff
1 = {u}. Otherwise, large,, (u) is penalizedf u € 1; andfavoredif u ¢ :

A(u, 1) = Tuey - dy(u) + Lugy - (1 — dy(u))

wherelg € {0,1} is an indicator function of everf.

4 QOptimization

To estimate the optimal object configuration, we have pregas two-level modification of the
Multiple Birth and Death Algorithm 1], as follows:

Initialization: start with empty populationr = (, set the birth raté, initialize the inverse
temperature paramet@r= (3, and the discretization step= 0.

Main programalternate the following three steps:
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e Birth step Visit all pixels on the image lattic& one after another. At each pixe] with
probabilitydby, generate a new objeatwith centers and randonz, ¢; andd parameters. For each
new objectu, with a probabilityp, = 1, + 1,9 - miny, cw cij (u), generate a new empty
traffic segment, add to 1> andy to w. Otherwise, add, to an existing traffic segment; € w with
aprob.p,, = (1 —dy,(u)/ >y e, (1 — dy; (u)).

e Death step Consider the actual configuration of all objects withirand sort it by decreas-
ing values depending opg(u) + A(“’w)‘uew' For each object: taken in this order, compute

AP, (u) = Pp(w/{u}) — ®p(w), derive thedeath rated,, (u) as

dexp(—p - A, (u))

dy(u) =T(AD,(u)) = 1+ dexp(—43- Aq)w(u))’

and delete objeat with probabilityd,, (). Remove empty traffic segments framif they appear.

e Group re-arrangementPropose randomly group merge, group split and vehicldustering
moves. For each proposed mdvg, calculate the corresponding energy ca™, and apply the
move with a probability"(A®M), similarly to the case in the death step.

Convergence tesif:the process has not converged yet, increased decreaséwith a geomet-
ric scheme, and go back to the birth step.

Convergence tesif the process has not converged yet, increase the invargeerature5 and
decrease the discretization stepwith a geometric scheme, and go back to the birth step.

5 Evaluation

We evaluated our method in four aerial LIDAR data sets (ftedliby Astrium GEO-Inf. Services
- Hungary), which are captured above crowded urban areasartdin in aggregate 471 vehicles.
The parameters of the method were set based on a limited muwhb@ining samples, similarly
to [1]. For accurate Ground Truth (GT) generation, we haweltped an accessory program with
graphical user interface, which enables us to manuallyter@ad edit a GT configuration of rectan-
gles. We have performed quantitative evaluation both aaitgnd at pixel levels. At object level,
we have measured how many vehicles are correctly or indtymetected in the different test sets,
by counting the Missing Objects (MO), and the Falsely de@dbjects (FO). These values are
compared to the Number of real Vehicles (NV), and the F-ratb@detection (harmonic mean of
precision and recall) is also calculatéd [1]. At pixel leweé compared the vehicle silhouette mask
to the GT mask, and calculated the F-rate of the matth [1]. e lalso measured the correct
Group Classification Rate (GR, %) among the true positivepdasn considering GT classification
of human observers.

5.1 Reference Methods

For comparison, we have selected two algorithms. The fiesbttom-upgrid-cell-based algorithm
from [3], called later aDEM-PCA which consists of three consecutive steps: (1) Height map (
Digital ElevationModel) generation by ground projection of the elevation ealim the LiDAR point
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16 A. Borcs and C. Benedek

Table 2: Obj. and pix. level F-rates (in %) by the DP [3], X p4d the proposediIMPP (M)
methods, and the Group Classification Rate (GR) of tHdPP model.

Object level %| Pixel level % || GR
Set| NV S5 T X T2M [ DP | hX | M [ M
#1 | 78 | 78 | 68 | 96 | 64 | 46 | 89 || 94
#2191 |90 |93 |98 |77 | 77| 88| 93
#3 | 132| 70 | 74 | 83 | 61 | 46 | 66 || 86
#4 | 170| 85 |87 |89 | 77 | 76 | 64 || 92

[A[471]83[82]91]70]61][80] 91|

*NV = Number of real Vehicles in the test set

Best viewed in color

Figure 7: Detection result with four clusters. Vehicles dfatent segments are displayed with
different colors, background is interpolated for visualian.

cloud, and missing data interpolation. (2) Vehicle regietedtion by thresholding the height map
followed by morphological connected component extracti(8) Rectangle fitting to the detected
vehicle blobs byPrincipal Componen®nalysis.

The second is a recent state of the art methbd [4], which usesXima (hX) transform followed
by watershed segmentation. Some qualitative results aversin Fig.[7 anf[B (best viewed in color),
and the quantitative evaluation is provided in Tdble 2. Sithe reference methods do not deal with
vehicle grouping, only the car detection rates are compahedproposed tMPP model surpasses
the references both at object and at pixel levels.

6 Model extension for terrestrial LIDAR data

The previously discussed model can be extended in orderetdous/ehicle detection in terrestial
LiDAR data (see figurgl9). The terrestial data provided by\Waldyne HDL-64ELIDAR sensor.
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Figure 8: Method comparison on a sample

To achieve this goal we developed a method to preprocessegmlesit urban scenes in terrestial
LiDAR point clouds. The segmented classes are the follogiimgad surfaceshort street objects
(such as cars and peopléyall and tall static objects (such as lamps posts, traffibtéy This
classification is based on local point properties. Usingesstatistical descriptors, we segment the
data into one of these semantic classes which later can loetogether or separately for various
tasks [15]. In many cases, the old data-dependent enengyrtet sufficient enough to complete
vehicle detection in terrestial point clouds due to datdusion and shape deformation. For this
reason hereby we present two new data-dependent energytieanhieve good detection results:

+ The Unlabelled data allowancéeaturef™i(u) expresses that we exept small proportion of
the unlabelled pixels besides vehicle pixetaicle within R,,:

£7e(u) = Lu' 3" 1{v(s) = unlabelled},

o|R
sER,

where|R,| denotes the cardinality a®,,, o is a proportion coefficient of the unlabelled data
(we usedr = 0.3 here) andL {.} marks an indicator functiort {true} = 1, 1{false} = 0.

« elevationfeature provides additional evidence for image parts ¢oimtg elevation values
within a certain range

F) = T 3 Mol > Th Ag(s) <)

sER,
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Figure 9: Vehicle detection result on terrestial Velodyaead
whereT; is a lower andl’, is an upper elevation thresold.

7 Conclusions

This paper has proposed a novel Two-Level MPP model for jititaction of vehicles and traffic
segments in aerial and terrestrial laser point cloud datee dfficiency of the approach has been
tested with real-world LIDAR measurements, and its advgedgarersus two reference methods have
been demonstrated. Note that in the proposed model, thelestdre grouped based on similar
orientation, but we have experienced that the method carwdéacar groups on slightly curved
roads as well. As future work, we plan to extend the prior teofiour method to handle more
complex vehicle arrangement patterns such as stronghedwaxit ramps or roundabouts.
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