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Abstract: In this report, we introduce a complex approach on 4D reconstruction of dynamic
scenarios containing multiple walking pedestrians. The input of the process is a point cloud
sequence recorded by a rotating multi-beam Lidar sensor, which monitors the scene from a
fixed position. The output is a geometrically reconstructed and textured scene containing
moving 4D people models, which can follow in real time the trajectories of the walking
pedestrians observed on the Lidar data flow. Our implemented system consists of four main
steps. First, we separate foreground and background regions in each point cloud frame of
the sequence by a robust probabilistic approach. Second, we perform moving pedestrian
detection and tracking, so that among the point cloud regions classified as foreground, we
separate the different objects, and assign the corresponding people positions to each other
over the consecutive frames of the Lidar measurement sequence. Third, we geometrically
reconstruct the ground, walls and further objects of the background scene, and texture
the obtained models with photos taken from the scene. Fourth we insert into the scene
textured 4D models of moving pedestrians which were preliminary created in a special 4D
reconstruction studio. Finally, we integrate the system elements in a joint dynamic scene
model and visualize the 4D scenario.
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Helyszínek 4D rekonstrukciója több célpont követésével

Kivonat : Riportunkban komplex módszert mutatunk be dinamikus helyszínek 4D re-
konstrukciójára, feltételezve, hogy a megfigyelt területen több mozgó személy tartózkod-
hat egyszerre. A rendszer bemenete egy fix pozícióban álló forgó Lidar eszközzel készült
pontfelhő szekvencia. A kimenet egy geometriailag rekonstruált és textúrázott helyszín mo-
zgó emberek 4D modelljeivel, melyek valós időben követhetik a gyalogosok Lidar adatok
alapján megfigyelt valódi útpályáit. A létrehozott rendszer négy fő lépésből áll. Először
elkülönítjük az előtér és háttér részeket a mért pontfelhőkben egy robosztus valószínűségi
modellel. Másodszor detektáljuk és követjük a mozgó gyalogosokat, úgy hogy az előtér-
ként osztályozott pontfelhő-régiókon belül elkülönítjük a különálló objektumokat, majd az
összetartozó emberpozíciókat összerendeljük az egymást követő időkeretekben. Harmadik
lépésben rekonstruáljuk a talaj, falak és további objektumok geometriáját, és textúrázzuk
az elkészült háromszögelt modellt a helyszínről készített fotók segítségével. Negyedik elem-
ként, a rendszer indítása előtt előzetesen elkészítünk és rögzítünk textúrált 4D modelleket
mozgó gyalogosokról egy speciális 4D rekonstrukciós stúdióban. Végül integráljuk az egyes
rendszerelemeket egy közös dinamikus helyszínmodellben és megjelenítjük a 4D jelenetet.

Kulcsszavak : Lidar, Markov mező, mozgáskövetés, 4D rekonstrukció
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1 Introduction

Foreground detection and segmentation are a key issues in automatic visual surveillance.
Foreground areas usually contain the regions of interest, moreover, an accurate object-
silhouette mask can directly provide useful information for, among others, people or vehicle
detection, tracking, activity analysis, or biometrical analysis. Another important application
is the virtual reconstruction of the scene, which can be used in interactive virtual reality
systems, like animation or movie industry.

Range image sequences offer significant advantages versus conventional video flows for
scene segmentation, since geometrical information is directly available [1, 2], which can pro-
vide more reliable features than intensity, color or texture values [3, 4]. Using Time-of-Light
(ToF) cameras [1] or scanning Lidar sensors [5] enable recording range images indepen-
dently of the outside illumination conditions and we can also avoid artifacts of stereo vision
techniques. From the point of view of data analysis, ToF cameras record depth image se-
quences over a regular 2D pixel lattice, where established image processing approaches, such
as Markov Random Fields (MRFs) can be adopted for smooth and observation consistent
segmentation [4]. However, such cameras have a limited Field of View (FoV), which can be
a drawback for surveillance and monitoring applications.

Rotating multi-beam Lidar systems (RMB-Lidar) provide a 360◦ FoV of the scene, with
a vertical resolution equal to the number of the sensors, while the horizontal angle resolution
depends on the speed of rotation (see Fig. 2). For efficient data processing, the 3-D RMB-
Lidar points are often projected onto a cylinder shaped range image [5, 6]. However, this
mapping is usually ambiguous: On one hand, several laser beams with slight orientation
differences are assigned to the same pixel, although they may return from different surfaces.
As a consequence, a given pixel of the range image may represent different background
objects at the consecutive time steps. This ambiguity can be moderately handled by applying
multi-modal distributions in each pixel for the observed background-range values [5], but
the errors quickly aggregate in case of dense background motion, which can be caused e.g.
by moving vegetation. On the other hand, due to physical considerations, the raw data of
distance, pitch and angle provided by the RMB-Lidar sensor must undergo a strongly non-
linear calibration step to obtain the Euclidean point coordinates [7], therefore, the density of
the points mapped to the regular lattice of the cylinder surface may be inhomogeneous. To
avoid the above artifacts of background modeling, [6] has directly extracted the foreground
objects from the range image by mean-shift segmentation and blob detection. However, we
have experienced that if the scene has simultaneously several moving and static objects in
a wide distance range, the moving pedestrians are often merged into the same blob with
neighboring scene elements.

Instead of projecting the points to a range image, another way is to solve the foreground
detection problem in the spatial 3D domain. However, 3D object level techniques prin-
cipally aim to extract the bounding boxes of the pedestrians [8], instead of labeling each
foreground point of the input cloud, which may be necessary for activity recognition by e.g.
skeleton fitting to the silhouettes. MRF techniques based on 3D spatial point neighborhoods

MTA SZTAKI
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Figure 1: Flowchart of the proposed 4D scene reconstruction system, with marking for each
step the corresponding section of the report

are frequently applied in remote sensing [9], however the accuracy is low in case of small
neighborhoods, otherwise the computational complexity rapidly increases.

In this report, we propose a hybrid approach for dense foreground-background point
labeling in a point cloud obtained by a RMB-Lidar system, which monitors the scene from
a fixed position. Our method solves the computationally critical spatial filtering steps in
the 2D range image domain by an MRF model, however, ambiguities of discretization are
handled by joint consideration of the true 3D positions and the 2D labels. Using a spatial
foreground model, we significantly decrease the spurious effects of irrelevant background
motion, which is mainly caused by moving tree crowns. We provide evaluation versus three
reference methods using our 3D point cloud Ground Truth (GT) annotation tool. Thereafter,
we perform moving pedestrian detection and tracking, so that among the point cloud regions
classified as foreground, we separate the different objects, and assign the corresponding peo-
ple positions to each other over the consecutive frames of the Lidar measurement sequence.
Next we transform the point cloud into a polygon mesh, with maintaining the information
about individual objects, such as ground, walls, trees and further objects of the background
scene, then we texture the obtained models with photos taken from the scene. Before start-
ing the system, we create and record textured 4D models of moving pedestrians in a special
4D reconstruction studio. Finally, we integrate the system elements in a joint dynamic
scene model and visualize the 4D scenario. The output is a geometrically reconstructed
and textured scene containing moving 4D people models, which can follow in real time the
trajectories of the walking pedestrians observed on the Lidar data flow. The flowchart of
the developed system is shown Fig. 1 with marking for each step the corresponding section
of the report.

DEVA Laboratory
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Figure 2: Point cloud recording and range image formation with a Velodyne HDL 64E
RMB-Lidar sensor

2 Foreground-background separation

In this section, we propose a probabilistic approach for foreground segmentation in 360◦-
view-angle range data sequences, recorded by a rotating multi-beam Lidar sensor, which
monitors the scene from a fixed position. To ensure real-time operation, we project the
irregular point cloud obtained by the Lidar, to a cylinder surface yielding a depth image on
a regular lattice, and perform the segmentation in the 2D image domain. Spurious effects
resulted by quantification error of the discretized view angle, non-linear position corrections
of sensor calibration, and background flickering, in particularly due to motion of vegetation,
are significantly decreased by a dynamic MRF model, which describes the background and
foreground classes by both spatial and temporal features. Evaluation is performed on real
Lidar sequences concerning both video surveillance and traffic monitoring scenarios. The
model has been originally published in [10].

2.1 Problem formulation and data mapping

Assume that the RMB-Lidar system contains R vertically aligned sensors, and rotates around
a fixed axis with a possibly varying speed1. The output of the Lidar within a time frame t is
a point cloud of lt = R ·ct points: Lt = {pt1, . . . , p

t
lt}. Here ct is the number of point columns

obtained at t, where a given column contains R concurrent measurements of the R sensors,
thus ct depends on the rotation speed. Each point, p ∈ Lt, is associated to sensor distance
d(p) ∈ [0, Dmax], pitch index ϑ̂(p) ∈ {1, . . . , R} and yaw angle ϕ(p) ∈ [0, 360◦] parameters.

d(p) and ϑ̂(p) are directly obtained from the Lidar’s data flow, by taking the measured
distance and sensor index values corresponding to p. Yaw angle ϕ(p) is calculated from the

1The speed of rotation can often be controlled by software, but even in case of constant control signal,
we must expect minor fluctuations in the measured angle-velocity, which may result in different number of
points for different 360

◦ scans in time.

MTA SZTAKI
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Euclidean coordinates of p projected to the ground plane, since the R sensors have different
horizontal view angles, and the angle correction of calibration may also be significant [7].

The goal of the proposed method is at a given time frame t to assign each point p ∈ Lt to a
label ω(p) ∈ {fg, bg} corresponding to the moving object (i.e. foreground, fg) or background
classes (bg), respectively.

For efficient data manipulation, we also introduce a range image mapping of the obtained
3D data. We project the point cloud to a cylinder, whose central basis point is the ground
position of the RMB-Lidar and the axis is perpendicular to the ground plane. Note that
slightly differently from [6], this mapping is also efficiently suited to configurations, where
the Lidar axis is tilted do increase the vertical Field of View. Then we stretch a SH × SW

sized 2D pixel lattice S on the cylinder surface, whose height SH is equal to the R sensor
number, and the width SW determines the fineness of discretization of the yaw angle. Let us
denote by s a given pixel of S, with [ys, xs] coordinates. Finally, we define the P : Lt → S
point mapping operator, so that ys is equal to the pitch index of the point and xs is set by
dividing the [0, 360◦] domain of the yaw angle into SW bins:

s
def
= P(p) iff ys = ϑ̂(p), xs = round

(

ϕ(p) ·
SW

360◦

)

(1)

2.2 Background model

The background modeling step assigns a fitness term fbg(p) to each p ∈ Lt point of the
cloud, which evaluates the hypothesis that p belongs to the background. The process starts
with a cylinder mapping of the points based on (1), where we use a R×Sbg

W pixel lattice Sbg

(R is the sensor number). Similarly to [5], for each s cell of Sbg, we maintain a Mixture of
Gaussians (MoG) approximation of the d(p) distance histogram of p points being projected
to s. Following the approach of [11], we use a fixed K number of components (here K = 5)
with weight wi

s, mean µi
s and standard deviation σi

s parameters, i = 1 . . .K. Then we
sort the weights in decreasing order, and determine the minimal ks integer which satisfies
∑ks

i=1 w
i
s > Tbg(we used here Tbg = 0.89). We consider the components with the ks largest

weights as the background components. Thereafter, denoting by η() a Gaussian density
function, and by Pbg the projection transform onto Sbg, the fbg(p) background evidence
term is obtained as:

fbg(p) =

ks∑

i=1

wi
s · η

(
d(p), µi

s, σ
i
s

)
, where s = Pbg(p). (2)

The Gaussian mixture parameters are set and updated based on [11], while we used Sbg
W =

2000 angle resolution, which provided the most efficient detection rates in our experiments.
By thresholding fbg(p), we can get a dense foreground/background labeling of the point
cloud [5, 11] (referred later as Basic MoG method), but as shown in Fig. 7(a),(c), this
classification is notably noisy in scenarios recorded in large outdoor scenes.

DEVA Laboratory
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(a) Range image part (90◦ horiz. view) (b) Basic MoG [5, 11]

(c) uniMRF [3] (d) Proposed DMRF segmentation

Figure 3: Foreground segmentation in a range image part with three different methods

2.3 DMRF approach on foreground segmentation

In this section, we propose a Dynamic Markov Random Field (DMRF) model to obtain
smooth, noiseless and observation consistent segmentation of the point cloud sequence. Since
MRF optimization is computationally intensive [12], we define the DMRF model in the range
image space, and 2D image segmentation is followed by a point classification step to handle
ambiguities of the mapping. As defined by (1) in Sec. 2.1, we use a P cylinder projection

transform to obtain the range image, with a SW = min(ĉ, Sbg
W /2) grid with, where ĉ denotes

the expected number of point columns of the point sequence in a time frame. By assuming
that the rotation speed is slightly fluctuating, this selected resolution provides a dense range
image. Let us denote by Ps ⊂ Lt the set of points projected to pixel s. For a given
direction, foreground points are expected being closer to the sensor than the estimated
mean background range value. Thus, for each pixel s we select the closest projected point
pts = argminp∈Ps

d(p), and assign to pixel s of the range image the dts = d(pts) distance value.
For pixels with undefined range values (Ps = ∅), we interpolate the dts distance from the
neighborhood. For spatial filtering, we use an eight-neighborhood system in S, and denote
by Ns ⊂ S the neighbors of pixel s.

Next, we assign to each s ∈ S foreground and background energy (i.e. negative fit-
ness) terms, which describe the class memberships based on the observed d(s) values. The
background energies are directly derived from the parametric MoG probabilities using (2):

εtbg(s) = − log
(
fbg(p

t
s)
)
.

For description of the foreground, using a constant εfg could be a straightforward choice
[3] (we call this approach uniMRF ), but this uniform model results in several false alarms

MTA SZTAKI
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Figure 4: Demonstrating the different local range value distributions in the neighborhood
of a given foreground and background pixel, respectively

Figure 5: Structure of the dynamic MRF model

due to background motion and quantitization artifacts. Instead of temporal statistics, we
use spatial distance similarity information to overcome this problem by using the following
assumption: whenever s is a foreground pixel, we should find foreground pixels with similar
range values in the neighborhood (Fig. 4). For this reason, we use a non-parametric kernel
density model for the foreground class:

εtfg(s) =
∑

r∈Ns

ζ(εtbg(r), τfg ,m⋆) · k

(
dts − dtr

h

)

,

where h is the kernel bandwidth and ζ : R → [0, 1] is a sigmoid function:

ζ(x, τ,m) =
1

1 + exp(−m · (x− τ))
.

We use here a uniform kernel: k(x) = 1{|x| ≤ 1}, where 1{.} ∈ {0, 1} is the binary indicator
function of a given event.

DEVA Laboratory
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Figure 6: Backprojection of the range image labels to the point cloud

To formally define the range image segmentation task, to each pixel s ∈ S, we assign a
ωt
s ∈ {fg, bg} class label so that we aim to minimize the following energy function:

E =
∑

s∈S

VD(dts|ω
t
s) +

∑

s∈S

∑

r∈Ns

α · 1{ωt
s 6= ωt−1

r }

︸ ︷︷ ︸

ξt
s

+
∑

s∈S

∑

r∈Ns

β · 1{ωt
s 6= ωt

r}

︸ ︷︷ ︸

χt
s

, (3)

where VD(dts|ω
t
s) denotes the data term, while ξts and χt

s are the temporal and spatial
smoothness terms, respectively, with α > 0 and β > 0 constants. Let us observe, that
although the model is dynamic due to dependencies between different time frames (see the
ξts term), to enable real time operation, we develop a causal system, i.e. labels from the past
are not updated based on labels from the future.

The data terms are derived from the data energies by sigmoid mapping:

VD(dts|ω
t
s = bg) = ζ(εtbg(s), τbg,mbg)

VD(dts|ω
t
s = fg) =

{
1, if dts > max{i=1...ks} µ

i,t
s + ǫ

ζ(εtfg(s), τfg,mfg), otherwise.

The sigmoid parameters τfg, τbg, mfg, mbg and m⋆ can be estimated by Maximum Likelihood
strategies based on a few manually annotated training images. As for the smoothing factors,
we use α = 0.2 and β = 1.0 (i.e. the spatial constraint is much stronger), while the kernel
bandwidth is set to h = 30cm. The MRF energy (3) is minimized via the fast graph-cut
based optimization algorithm [12].

The result of the DMRF optimization is a binary foreground mask on the discrete S
lattice. As shown in Fig. 6, the final step of the method is the classification of the points of
the original L cloud, considering that the projection may be ambiguous, i.e. multiple points
with different true class labels can be projected to the same pixel of the segmented range
image. With denoting by s = P(p) for time frame t:

MTA SZTAKI
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• ω(p) = fg, iff one of the following two conditions holds:

(a) ωt
s = fg and d(p) < dts + 2 · h

(b) ωt
s = bg and ∃r ∈ Nr : {ωt

r = fg, |dtr − d(p)| < h}

• ω(p) = bg: otherwise.

The above constraints eliminate several (a) false positive and (b) false negative foreground
points, projected to pixels of the range image near the object edges.

2.4 Evaluation of foreground detection

We have tested our method in real Lidar sequences concerning both video surveillance
(Courtyard) and traffic monitoring (Traffic) scenarios (see Fig. 7). The data flows have
been recorded by a Velodyne HDL 64E S2 camera, which operates with R = 64 vertically
aligned beams. The Courtyard sequence contains 2500 frames with four people walking in a
25m2 area in 1-5m distances from the Lidar, with crossing trajectories. The rotation speed
was set to 20Hz. In the background, heavy motion of the vegetations make the accurate
classification challenging. The Traffic sequence was recorded with 5Hz from the top of a
car waiting at a traffic light in a crowded crossroad. The adaptive background model was
automatically built up within a few seconds, then 160 time frames were available for traffic
flow analysis. We have compared our DMRF model to three reference solutions:

1. Basic MoG, introduced in Sec. 2.2, which is based on [5] with using on-line K-means
parameter update [11].

2. uniMRF, introduced in Sec. 2.3, which partially adopts the uniform foreground model
of [3] for range image segmentation in the DMRF framework.

3. 3D-MRF, which implements a MRF model in 3D, similarly to [9]. We define here
point neighborhoods in the original Lt clouds based on Euclidean distance, and use
the background fitness values of (2) in the data model. The graph-cut algorithm [12]
is adopted again for MRF energy optimization.

Qualitative results on two sample frames are shown in Fig. 7. For Ground Truth (GT)
generation, we have developed a 3D point cloud annotation tool, which enables labeling the
scene regions manually as foreground or background. Next, we manually annotated 700
relevant frames of the Courtyard and 50 frames of the Traffic sequence. For quantitative
evaluation metric, we have chosen the point level F-rate of foreground detection [4], which
can be calculated as the harmonic mean of precision and recall. We have also measured
the processing speed in frames per seconds (fps). The numerical performance analysis is
given in Table 1. The results confirm that the proposed model surpasses the Basic MoG
and uniMRF techniques in F-rate for both scenes, and the differences are especially notable
at the Courtyard. Compared to the 3D-MRF method, our model provides similar detection
accuracy, but the proposed DMRF method is significantly quicker. Observe that differently

DEVA Laboratory
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(a) Basic MoG, Courtyard sequence (b) Proposed DMRF, Courtyard sequence

(c) Basic MoG, Traffic sequence (d) Proposed DMRF, Traffic sequence

Figure 7: Point cloud classification result on sample frames with the Basic MoG and the
proposed DMRF model: foreground points are displayed in blue (dark in gray print).

Aspect Sequence Seq. prop. Bas. MoG uniMRF 3D-MRF DMRF

Detection rate Courtyard 4 obj/fr. 55.7 81.0 88.1 95.1
(F-mes in %) Traffic 20 obj/fr. 70.4 68.3 76.2 74.0

Proc. speed Courtyard 65K pts/fr. 120 fps 18 fps 7 fps 16 fps
(fr per sec) Traffic 260K pts/fr. 120 fps 18 fps 2 fps 16 fps

Table 1: Numerical evaluation on the Courtyard and Traffic sequences: detection accuracy
(F-rate in %) and processing speed (fps, measured in a desktop computer)

from 3D-MRF, our range image based technique is less influenced by the size of the point
cloud. In the Traffic sequence, which contains around 260000 points within a time frame, we
measured 2fps processing speed with 3D-MRF and 16fps with the proposed DMRF model.

3 Pedestrian detection and multi-target tracking

In this section, we introduce the pedestrian tracking module of the system. The input of this
step is a Velodyne point cloud sequence, where each point is marked with a segmentation
label of foreground or background, while the output consists of clusters of foreground regions

MTA SZTAKI



4D Scene Reconstruction in Multi-Target Scenarios 13

Figure 8: Pedestrian separation. Left: side view of the segmented scene, centered: top view,
right: projected blobs in the image plane

so that the points corresponding to the same person receive the same label over the sequence.
We also generate a 2D foot point trajectory of each pedestrian, which will be directly used
by the 4D scene reconstruction module (see Fig. 9 and Sec. 6).

3.1 Separation of moving pedestrians

In the starting step of the module the point cloud regions classified as foreground are clus-
tered to obtain separate blobs for each moving person. First, we fit a regular lattice onto
the ground plane and foreground regions are projected onto this lattice. Then in the im-
age plane apply morphological filters to obtain spatially connected blobs for the different
people. Thereafter we extract appropriately sized connected components, which satisfy area
constraints determined by lower and higher thresholds. The latter step is demonstrated in
Fig. 8. Each extracted blob center is considered as a pedestrian foot-position candidate
in the 2D ground plane. Note that in this way, connecting people may be merged into
the same blob, or blobs of partially occluded pedestrians be missing or broken into several
parts. Instead of proposing various heuristic rules to eliminate these artifacts at the level of
the individual time frames, we developed a robust multi-tracking module which efficiently
handles the problems at sequence level.

3.2 Pedestrian tracking

The multi target tracking problem can be formulated in the following way. On each current
frame the k detected target candidates (in our case 2D points in ground plane’s coordinate
system) have to be assigned to n tracked objects from the previous frames. While processing
the current frame, we have to simultaneously handle the following cases:

• If a given detected point is the continuation of an existing track, we have to find the
correct assignment.

DEVA Laboratory
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Figure 9: Workflow of the tracking algorithm

• A given detected point may be a false alarm.

• A given detected point in the current frame may be the starting point of a new track.

• An existing object track may be finished in the previous frame.

• The detector may ignore some of the targets in the current frame, which should not
result in broken or re-started object tracks. Temporal discontinuities of the tracks
must be filled later with estimated position values.

The workflow of the proposed algorithm can be followed in Fig. 9. Three steps are
iterated for each frame: (A) Assignment, (B) Kalman filter correction and (C) Kalman
prediction.

3.2.1 Assignment

The assignment step is the key part of the algorithm. First, the coordinates of the measured
positions are normalized to fit into the [0, 1] domain for each dimension. We define the
distance of the targets as the Euclidean in the normalized data cube. Let us denote by Oj

(j = 1, . . . , k) the normalized target positions (i.e. Measurements) detected in the current
frame, and by Mi (i = 1, . . . , n) the predicted position of the object which corresponds to
the ith track maintained by the detector. A distance matrix D is calculated encapsulating
the distances of Oi and Mj for different i and j values:

Dij = d(Oi,Mj) for i ≤ n, j ≤ k

Here the Dij matrix element expresses how good the jth measurement fits the ith maintained
track.
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Based on the D distance matrix, the trajectories and the current measurements are
assigned with the Hungarian Graph Matching algorithm [Kuhn55].

We must notice that the Hungarian algorithm always expects a squared distance matrix,
which is automatically fulfilled if the input of the matcher consists of the same number of
tracks and measurements. However, this condition does usually not hold. For this reason, if
n > k we temporarily generate n− kfictional measurements which have maximum distance
from all trajectories:

d(Oi,Mj) = 2 for i ≤ n, n ≥ j > k

Here 2 is chosen as default distance value, because it is greater than the distance of any
point pairs within the normalized data cube.

On the other hand, if k > n, we generate k−n fictional tracks to complete the D matrix:

d(Oi,Mj) = 2 for k ≥ i > n, j ≤ k

The output of the Hungarian matcher is a unique assignment j → A(j) between the
measurements and the trajectories, where j (resp. A(j)) index may also correspond to real
or fictive measurements (resp. trajectory).

Let tdist be a distance threshold. The obtained j → A(j) assignment is interpreted in
the following way:

• if A(j) ≤ n, j ≤ k and d(OA(j),Mj) < tdist: DO measurement j is matched to
trajectory A(j)

• otherwise

– if A(j) ≤ n, j ≤ k, but d(OA(j),Mj) ≥ tdist: both the jth measurement and the
A(j)th trajectory are marked as unmached.

– if A(j) ≤ n and n ≥ j > k the A(j)th trajectory is marked as unmached.

– if k ≥ A(j) > n and j ≤ k the jth measurement is marked as unmached.

If the Mj measurement is matched to the Oi trajectory point, we can expect that Mj

corresponds to the new position of the ith target: therefore it will be used for trajectory
update in the following steps.

Unmachedmeasurements are potential initial points of new trajectories, or they are caused
by false positive targets of the detector. We cannot distinguish these two cases at the current
frame. Thus for each unmatched measurement value, we start a new potential object track,
which is investigated during the upcoming iterations. We expect that by the end of the
tracking process, false target candidates will result in short or stationary tracks, which can
be eliminated in the post processing phase. If a trajectory is unmached, it may be caused
by two reasons: (i) either it has already ended, (ii) or the detector produced a mis-detection
in the current frame. Therefore, unmached tracks are not closed immediately, but they are
marked as INACTIVE. If a trajectory is inactive for longer than a time threshold ttime, it
is marked as DELETED, and excluded from the further investigations during the tracking
process.

DEVA Laboratory



16 Benedek, Jankó, Horváth, Molnár, Chetverikov and Szirányi

3.2.2 Kalman correction

Each object trajectory consists of a point sequence over the consecutive frames. Since
with the applied sampling rate, the target motion can be considered smooth, we can make
predictions from the trajectory for the next expected track point. Moreover, since the
measurement may be distorted by the detector noise, the true object position should be
estimated by both considering the actual detector output and the previous trajectory part
of the target.

For this reason, we maintain a Kalman filter for each track, which is updated in each
frame with the assigned measurements values. For INACTIVE (but still not DELETED)
tracks - which do not have actual measurements - the Kalman filter of the trajectory is
updated with the latest prediction value of the current position. In both cases, the next
point of the trajectory will be the corrected state of the filter. Note that the estimation of
the Kalman filter becomes only reliable after a couple of frames. Therefore, we use a tKalman

frame number threshold, and if the trajectory is shorter than tKalman, we directly use the
matched measurement value as the next track point, instead of the corrected state. In this
way, we must expect that the track will be noisy (less smooth) in its initial phase, but the
probability of completely loosing the trajectory is significantly decreased.

The trajectory points of INACTIVE targets are collected first in a temporary queue.
If the target is re-activated later, this queue is appended to the real trajectory, which is
continued with the latest state correction. If the target is DELETED (inactive for more
than ttime frames), the temporary trajectory points are removed.

3.2.3 Kalman prediction

The final step of the trajectory update is to make the prediction for the next point of each
track (marked with Oi above), which can be used for measurement assignment in the next
frame. Here again, we only apply the Kalman prediction after tKalman frames. In the initial
part of the track, we use the last known trajectory point as the prediction for the next
position.

3.2.4 Post processing and filtering

The above tracker may assign object trajectories for point sequences resulted by measure-
ment noise. These false tracks should be eliminated after the iterative tracking process has
finished. We have observed that the false tracks are either short, or contain targets with
nearly constant position (our assumption is that our targets are in motion). Therefore, in
the post processing phase, we used two constraints for the trajectories:

• The length of the trajectory should be higher than tlength

• The average variance of the point coordinates over the track should be higher than
tvariance
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Figure 10: Demonstration of successful pedestrian tracking in Lidar sequences. Point cloud
regions corresponding to the same person are displayed with permanent color (video frame
can be used for verification)

Figure 11: Bounding boxes of pedestrians - obtained by Lidar based tracking - projected to
the image plane of the video camera

Trajectories which fail any of the above constraints are removed, and only the remaining
ones are used as output of the tracker.

3.3 Label backprojection and camera registration

The tracker module provides a set of pedestrian trajectories, which are 2D foot center point
sequences in the ground plane. To determine the points corresponding to each pedestrian

DEVA Laboratory



18 Benedek, Jankó, Horváth, Molnár, Chetverikov and Szirányi

in a selected frame, the connected foot blobs around a given trajectory point should be
vertically backprojected to the 3D point cloud. The result of tracking is demonstrated in
Fig. 10, which shows two segmented point cloud frames from a measurement sequence in
a courtyard. We also show video frames taken in parallel as reference, which confirm that
during the tracking the Lidar clouds of the same pedestrian obtain the same color.

We note that a camera calibrated to the point cloud may also provide efficient features
for long term person identification and scene analysis. In the future part of this project we
aim to investigate the options of Lidar and camera fusion. As a first step, we projected the
bounding boxes of the people - obtained solely from the Lidar data - to the camera plane,
as shown in Fig. 11.

4 Background scene reconstruction

In this section, we describe the static environment reconstruction method. If we subtract
the foreground points (mostly people) from the Courtyard sequence, the result is a dense
point cloud, which represents the ground, walls, trees, or other background objects. The
ground points were automatically detected by the RANSAC [13] algorithm, fitting an optimal
plane onto the point cloud. If we are able to extract the points, which corresponds to the
ground, we can calculate the average height of the ground, which will be used in the next
step. The rest of the points is projected vertically to the calculated ground level, then a
Hough transform [14] is applied to find lines, which probably correspond to wall points in
the cloud. From these points we create a polygon mesh with the Ball-pivoting algorithm.
The automatic reconstruction of vegetation, other smaller objects, and automatic texturing
is part of our future goals, currently we do this manually. Environment reconstruction
flowchart is displayed in figure 12, example frames of the process are in figure 13.

5 4D walking pedestrian model generation

A realistic solution for people reconstruction cannot be obtained based on the Velodyne
point cloud only, because it is too sparse and it gives 2.5D information. We have decided
to place models of walking actors into the virtual environment, which had been captured
earlier, and follow the trajectories based on real measurement results. The realistic textured
models were created in the 4D Reconstruction Studio being developed at MTA SZTAKI by
the Geometrical Modeling and Computer Vision Laboratory [15] [16].

A 4D studio is an advanced, intelligent sensory environment operated by sophisticated
programming tools. This environment can be used for computer vision research as well as for
technological development in a variety of applications. To our best knowledge, the 4D Re-
construction Studio at MTA SZTAKI is a pioneering project in Central and Eastern Europe.
The main motivation for building the Studio was the desire to bring advanced knowledge
and technology to this region in order to facilitate testing new ideas and developing new
methods, tools and applications.
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Figure 12: Environment reconstruction flowchart.

In this section, we discuss the main hardware and software elements of the 4D Recon-
struction Studio, and the process to obtain realistic walking pedestrian models.

5.1 Hardware of the 4D Reconstruction Studio

The 4D Reconstruction Studio is a “green box”: green curtains and carpet provide homoge-
neous background. The massive, firm steel frame is a cylinder with dodecagon base. The
size of the frame is limited by the size of the room. The diameter is around five meters;
originally, a seven-meter studio was planned. The frame carries 12 video cameras placed
uniformly around the scene and one additional camera on the top in the middle (Fig. 14).

The cameras are equipped with wide-angle lenses to cope with relatively close views; this
necessitates careful calibration against radial distortion. The resolution of the cameras is
1624× 1236 pixels; they operate at 25 fps and use GigE (Gigabit Ethernet).

Special, innovative lighting has been designed for the Studio to achieve better illumina-
tion. Apart from the standard diffuse light sources, we use light-emitting diodes (LEDs)
placed around each camera, as illustrated in Fig. 15. The LEDs can be turned on and off
with high frequency. A micro-controller synchronizes the cameras and the LEDs: when a
camera takes a picture, the LEDS opposite to the camera are turned off. This solution
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(a) Segmented background points. (b) Points classified as walls.

(c) Walls and ground polygon mesh. (d) Fully reconstructed environment.

Figure 13: Example frames on the segmentation steps.

improves illumination and allows for more flexible configuration of the cameras. The Studio
uses seven conventional PCs; each of them but one handles two cameras.

5.2 Software modules of the Studio

The Studio has two main software blocks: the image acquisition software for video recording
and the 3D reconstruction software for creation of dynamic 3D models. The software system
includes elements from the OpenCV [17]; otherwise, the entire system has been developed
at SZTAKI.

The image acquisition software configures and calibrates the cameras and selects a sub-
set of the cameras for video recording. The easy-to-use, robust and efficient Z. Zhang’s
method [18] implemented based on OpenCV routines is used for intrinsic and extrinsic cam-
era calibration and calculation of the parameters of radial distortion. During calibration, the
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Figure 14: A sketch of the 4D Studio at SZTAKI.

Figure 15: Adjustable platform with a video camera and LEDs mounted on the frame.

operator repeatedly shows a flat chessboard pattern to the cameras. The complete procedure
takes a few minutes.

The main steps of the 3D reconstruction process are as follows:

1. Extract color images from the raw data captured.

2. Segment each color image to foreground and background.

3. Create volumetric model using the Visual Hull algorithm.
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Figure 16: Sample input images of the Studio.

4. Create triangulated mesh from the volumetric model using the Marching Cube algo-
rithm.

5. Add texture to the triangulated mesh.

Segmenting input images into foreground and background is a critical step. Our image
segmentation procedure is a novel method developed at SZTAKI for this project. The
method assumes that the background is larger than the object, which is normally the case
since the object needs room to move in the scene. The principles of segmentation are listed
below.

• Acquire a reference background image in the absence of any object.

• Convert the input RGB image to the spherical color representation.

• Calculate the absolute difference between the input image and the reference back-
ground image.

• In the difference image, select object pixels as outliers using robust outlier detection.

• Clean the resulting object image using morphologic operations such as erosion and
dilation by disc.

Fig. 16 shows sample input images acquired in our Studio. The binary segmented images
are demonstrated in Fig. 17.
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Figure 17: Segmentation of the images shown in Fig 16.

Figure 18: Extracting the visual hull from silhouettes.

A shape-from-silhouettes technique is used to obtain a volumetric model of the dynamic
shape [19]. Object silhouettes obtained by the cameras are back-projected to 3D space as
the generalized cones whose intersection gives the visual hull, a bounding geometry of the
actual 3D object. Using more cameras results in a finer volumetric model, but some concave
details may be lost anyway. The process of obtaining the visual hull from silhouettes is
illustrated in Fig. 18.
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Currently, video frames are processed separately, i.e., the dynamic model obtained is a
sequence of separate, instantaneous shapes.

The volumetric visual hull is transformed into a surface mesh which is textured by
selecting the most appropriate view for each unit of the mesh based on visibility, or by
combining several views. The mesh is obtained from the hull using the standard Marching
Cubes algorithm [20]. The algorithm for texturing the triangulated surface [21] calculates
a measure of visibility for each triangle and each camera. The triangle should be visible
from the camera and its normal vector should point towards camera. Then, a cost function
is formed with visibility and regularization terms to balance between visibility of triangle
and smoothness of texture. The regularization term reduces sharp texture edges between
adjacent triangles. The cost function is minimized using graph cuts.

Fig. 5.2 shows examples of textureless and textured models. Figs. 20-21 illustrate our
system’s capability to create mixed reality.

6 Dynamic 4D scene reconstruction

The last step of the workflow is the integration of the different components. The walking
pedestrian models are placed into the reconstructed background scene, and their foot-center
points follow the trajectories extracted from the Lidar point cloud sequence. In the current
stage, we used the assumptions that the people are walking forward along the trajectory,
and the orientation from top view is calculated from the gradient of the 2D track. A sample
frame from the reconstruction results can be seen in figure 23. We show six frames from a
video about the reconstructed dynamic scene using a simulated moving camera in Fig. 24.
Finally consecutive frames of the processed pointclouid and the reconstructed scenario are
displayed in Fig. 25.
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Figure 19: Examples of textureless and textured models.

References

[1] I. Schiller and R. Koch. Improved video segmentation by adaptive combination of
depth keying and Mixture-of-Gaussians. In Proc. Scandinavian Conference on Image
Analysis, Ystad, Sweden, volume 6688 of LNCS, pages 59–68, 2011.

[2] B. Langmann, S.E. Ghobadi, K. Hartmann, and O. Loffeld. Multi-modal background
subtraction using gaussian mixture models. In ISPRS Symposium on Photogrammetric
Computer Vision and Image Analysis, pages 61–66, 2010.

[3] Y. Wang, K-F Loe, and J-K Wu. A dynamic conditional random field model for fore-
ground and shadow segmentation. IEEE Transactions on Pattern Analysis and Machine

DEVA Laboratory



26 Benedek, Jankó, Horváth, Molnár, Chetverikov and Szirányi

Figure 20: Obtained 3D models can be multiplied.

Intelligence, 28(2):279 –289, 2006.

[4] C. Benedek and T. Szirányi. Bayesian foreground and shadow detection in uncertain
frame rate surveillance videos. IEEE Transactions on Image Processing, 17(4):608 –
621, 2008.

[5] R. Kaestner, N. Engelhard, R. Triebel, and R.Siegwart. A Bayesian approach to learning
3D representations of dynamic environments. In Proc. International Symposium on
Experimental Robotics (ISER), Berlin, 2010. Springer Press.

[6] B. Kalyan, K. W. Lee, W. S. Wijesoma, D. Moratuwage, and N. M. Patrikalakis. A
random finite set based detection and tracking using 3D LIDAR in dynamic environ-
ments. In IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pages 2288–2292, Istanbul, Turkey, 2010. IEEE.

[7] N. Muhammad and S. Lacroix. Calibration of a rotating multi-beam Lidar. In Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 5648–5653, Taipei,
Taiwan, 2010. IEEE.

MTA SZTAKI



4D Scene Reconstruction in Multi-Target Scenarios 27
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Figure 23: Object tracking and reconstruction results. Upper left: raw point cloud; lower
left: segmented and separated objects; upper right: trajectories from upper view; lower
right: reconstructed environment, the studio objects placed to the original positions.

Figure 24: Sample frames from a video about the reconstructed dynamic scene using a
simulated moving camera
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Figure 25: Consecutive frames of the processed pointclouid and the reconstructed scenario
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