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Abstract. A five-camera vision system was developed for UAV visual attitude 
calculation and collision warning. The vision system acquires images by using 
five miniature cameras, stores, and evaluates the visual data real-time with a 
multi-core processor system implemented in FPGA. The system was designed 
to be able to operate on a medium sized UAV platform, which raised numerous 
strict physical constraints.  
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1 Introduction 

Unmanned Aerial Vehicle (UAV) technology reached an advanced level, which 
enables them technically to fly autonomously a predefined paths and complete differ-
ent missions. However, legally they are not allowed to fly fully autonomously, since 
flight authorities identified various safety shortcomings [1]. One of the problems is 
that they are not robust enough due to the lack of on-board sensor and actuator redun-
dancies. Another missing capability is the collision avoidance [2,3,4,5], because the 
GPS based control and navigation system makes the UAV flying practically blindly, 
hence it can collide with any other aircraft, or with any stationary object, which is not 
correctly on the map (new building, antenna tower, pillar of a bridge, crane, ski lift, 
etc.). The introduced vision system was designed to help in these problems, by mak-
ing the Inertial Navigation System (INS) more robust by adding an extra angular ve-
locity sensor source, and by identifying collision threats in time. 

Naturally the vision system should fulfill numerous tough specification criteria. Its 
resolution and field of view (FOV) should be high enough to identify intruder aircraft 
from large distance; it should be able to perform real-time processing; its size, weight, 
and power consumption parameters should satisfy on-board UAV operation require-
ments; and finally, it should be affordable. From functionality point of view, it is ex-
pected to calculate the attitude of the aircraft by calculating the differential orientation 
changes between consequent frames (yaw, pitch, roll angles) and detect intruder air-
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crafts, which are on a collision course; store all the acquired images in full resolution 
for archiving and for off-line testing purposes.  

The paper is organized on a way that first we describe the state-of-the-art and the 
related work in this field (Section 2). Then, system specification is given in Section 3 
After that the system is described in Section 4. In Section 5 the multi-core processor 
array implementation is briefly shown. Finally, measurement results are given in Sec-
tion 6. 

2 Related work 

Naturally, avoiding mid-air collisions is not a new problem. Traditionally, there are 
two different approaches to address the airborne collision avoidance. The first as-
sumes cooperation among the aircrafts. In this case each aircraft transmits its position, 
velocity, and planned route, and based on a predefined protocol the aircrafts avoids 
approaching each-other. The nowadays used version of the system is called TCAS 
(traffic collision avoidance system) [6]. A new version of it, called ADS-B (automatic 
dependent surveillance-broadcast) is currently introduced, and will be mandatory in 
most larger aircrafts from 2020 [7]. Though cooperative approaches are relatively 
simple, and does not require sensing of remote aircrafts, however US and European 
agencies require having non-cooperating solution on board as well.  

Modern big airliners utilize sophisticated radar and computer systems, which iden-
tify the position and the velocity of intruder aircrafts, warns the pilot if they are on a 
collision course, and even make an avoidance maneuver automatically if pilot does 
not react. However, this solution cannot be applied to small aircrafts due economic 
and weight considerations.  

For large UAVs sensor fusion is a commonly used approach, to make the collision 
avoidance system operational in all flight conditions. The system, described in [8], is 
based on a pulsed Ka-band radar, two kinds of visible cameras, two IR cameras, and 
two PCs. For small UAVs vision only systems are currently developed in different 
places. One is described in [9], in which one piece of 1024x768 resolution camera and 
a PC with GPU is used to identify the intruder. Compared to this system, our system 
has significantly higher resolution, smaller weight, size and power consumption, 
thanks to its compact design and FPG image processor engine. 

3 System specification 

The vision system has two important roles, namely the attitude data calculation and 
the collision warning. From these, the more challenging task from image acquisition 
point of view is the collision warning, because detection of potentially dangerous 
intruder aircrafts in time requires the permanent monitoring of the field of view of 
220°×70° in front of our UAV [10] with high resolution as we will see below. Fig. 1 
illustrates the requirements of the safe avoidance. According to the flight safety re-
quirements [10], there should be a certain separation volume around each aircraft, in 



which nothing else can be. The size of the separation volume (separation minima) 
differs from airplane to airplane and situation to situation.  

To be able to avoid the separation minima, the intruder should be detected from a 
distance, which is not smaller than the traffic avoidance threshold. If the intruder is not 
detected before crossing the traffic avoidance threshold, but detected before the colli-
sion avoidance threshold, the collision can be still avoided. For human pilots 12.5 
second before collision is the last time instant, when collision can be avoided with high 
probability [Hiba! A hivatkozási forrás nem található.]. Naturally, to avoid scaring 
the pilots and the passengers of the other aircraft, and to increase the safety level, earli-
er initialization of the avoidance maneuver is required, which certainly assumes earlier 
detection. Since the tracks of the small and medium size UAVs do not interfere with 
streamliners, or high speed jets, we have to be prepared for other UAVs and Cessna 
172 type manned crafts. This means that the maximal joint approaching speed is 100 
m/s, therefore we need to detect them from 2000 meters (20 seconds before collision), 
to be able to safely avoid them. In these cases the separation minima is 2000ft (~660m) 
collision volume is 500ft (~160m). 

collision volume  

 
Fig. 1. Traffic (green) and collision (magenta) avoidance courses 

To be able to perform robust visual detection of an aircraft, it should be at least 3 
pixels large in the captured image. For a Cessna 172 class aircraft, with 10 meters 
wingspan, 0.1 degree/pixel resolution is minimum required. This means an overall 
minimum 2200x700 pixel resolution. 

Other important system requirement is the speed. The control system is expecting 
20 navigation parameter update in a second, therefore, the frame rate should be mini-
mum 20FPS. Naturally, the image processing part of the vision system should be able 
to perform the complete processing on this speed also. 

For real-time attitude calculation the same resolution and speed, but smaller FOV 
is satisfactory. Therefore the system with the above specification can calculate the 
angular changes of the aircraft orientation. 
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The system should be able to fit and operate on a UAV platform, which introduces 
strong limitations to its size, weight and power parameters. Our target was to fit the 
device to medium sized UAVs with 3m wingspan, which limits the weight to maxi-
mum 0,5kg including batteries. Another important requirement is that the vision and 
storage system should be resonance tolerant.  

4 System description 

In this section first, the selection of the main components is described, then the sys-
tem architecture, the interconnections of the components, the power distribution, and 
the system integration are shown. 

4.1 Camera selection  

The key component of a special purpose vision system is the camera. During the 
design phase, one has to consider different types of camera. One would think that the 
most straightforward solution would be to use one piece of high resolution (like 
2500x1000) camera with a low distortion ultra-wide angle optics. However, the prob-
lem with this setup is that the size and the weight of the camera and especially the 
ultra-wide view angle optics is way beyond the acceptable limits.  

Therefore we have decided to apply multiple small cameras. We have studied three 
different classes of cameras:  

1. Micro cameras with integrated lenses (mobile phone class); 
2. Miniature cameras with S-mount (M12) lenses; 
3. Small industrial cameras with C-mount or CS-mount lenses. 

Micro cameras. The advantage of the micro cameras is that they are cheap, have 
sufficient pixel resolution up to 8 megapixels (e.g. Framos 
ules: http://www.framos-imaging.com/sensormodules.html?&L=1), and they are ul-
tra-compact and low power. However, the price of the miniaturization is poor optical 
quality, and rolling shutter sensors, which makes them unusable for UAV navigation 
application, where it is critical to capture the entire image at the same time. 

Miniature cameras with S-mount (M12) lenses. Miniature cameras are good candi-
dates for low volume, low weight applications. In this camera class, the optics is al-
ready replaceable, and one can find high resolution (megapixel) lightweight optics 
(http://www.sedeco.nl/sedeco/index.php/lenses/smount) for them with different view 
angles. The resolution of the rolling shutter ones are going up or beyond 5 megapixels 
(http://www.mobisensesystems.com/pages_en/aptina_modules.html), while the global shut-
ter ones have lower resolutions, like WVGA or the soon available 1.2 megapixels one 
(http://www.mobisensesystems.com/pages_en/camera_modules.html). Here the typical pow-
er consumption is less than 200mW, and the weight is around 10g including optics.  

The output of these cameras is either parallel raw data or USB. 

http://www.framos-imaging.com/sensormodules.html?&L=1
http://www.sedeco.nl/sedeco/index.php/lenses/smount
http://www.mobisensesystems.com/pages_en/aptina_modules.html


Small industrial cameras with C-mount or CS-mount lenses. There are a very 
large number of cameras in this class. One can find them in different resolution (from 
VGA up to 8 megapixels), size (from 3x3x3cm), weight (from 40g), and both rolling 
and global shutter types (e.g. http://www.ptgrey.com/products/index.asp). However, here 
the weight of a precision lens is significant as well (60-200g) 
(http://www.edmundoptics.com/imaging/imaging-lenses/), hence the overall weight is 
above 100g. This weight is much larger than the cameras in the second category, but 
as an exchange, the precision of the lens and the optical alignment is much better. The 
power consumption of these cameras is watts rather than hundred milliwats, mostly 
because they use power hungry high-speed serial output data channels. 

The outputs of these cameras are typically Gige, USB 2, USB 3, Camera Link, or 
Fire-wire.  

Selection. Since we need global shutter sensor, we can select cameras from the 
second or the third category only. The second category makes possible to build vision 
system for small and medium sized UAVs, where weight of the vision system should 
not exceed 500g.  

Our other selection criterion was the data interface. For us the parallel digital raw 
data IO was the optimal, since for short distance it consumes much less power than 
high speed serial interfaces (Gige, USB, Fire-wire, Camera Link) which were de-
signed for long distance communications.  

We have selected 5 pieces WVGA (752x480) cameras (MBSV034M-FFC from 
Mobisens) to cover the required resolution with necessary overlap. For this ⅓ inch 
camera module, we have selected 3.66 mm focal length High Resolution Infinite Con-
jugate µ-Video™ Imaging Lenses from Edmund.  

4.2 Data storage unit 

In an airborne application the data storage can be implemented in some kinds of 
flash memory device. The options are memory card, USB stick, or solid state disk. 
The data-rate to save in this device is 5x752x480x20=36Mbyte/sec (2.1 Gbyte/min) 
raw data assuming 5 cameras, WVGA image size, and 20fps. Though data compres-
sion is a widely used option for image storage, in our application, where very small 
remote objects are needed to be identified, the artifacts introduced by the compression 
is intolerable.  

Therefore we needed a device which can cope with 36Mbyte/sec data flow. This is 
way beyond the write speed of an SD card (2-10Mbyte/sec) or a USB stick (4-
25Mbyte/sec). Moreover, we need to store up to 20 minutes flight data during a test 
data acquisition flight, hence 45Gbyte data storage space is needed. This fits already 
to a small sized SSD (64 Gbyte). The system enables easy up scaling, since SSDs go 
up to 600Gbyte.  

4.3 Processor selection 

Nowadays the high-performance image processing platforms are based either on 
GPUs, or on DSPs, or on FPGAs. In case of strict power, weight, and size budget, the 
power hungry GPU platforms with their heavy cooling radiators cannot be an option, 

http://www.ptgrey.com/products/index.asp
http://www.edmundoptics.com/imaging/imaging-lenses/
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4.6 Power supply 

The total power consumption of vision system is about 7.5 W. Most of it is con-
sumed by the SSD, which is 4.8 W alone (http://www.legitreviews.com/article/1980/1/). 
The energy source of the entire system is a 1200mAh 7.4V Lithium Polymer battery 
(2S1P). It can provide continuously 30 amps (25C), which ensures that the battery 
will not be overloaded. It enables close to 1 hour continuous operation. 

4.7 System integration 

Physical system integration is always a key point of a complex embedded system. 
It is especially true for an airborne vision system with multiple cameras, where the 
relative camera orientations are critical. Therefore a horseshoe like solid aluminum 
frame was constructed for holding the cameras and cancelling any cross vibrations 
(Fig. 3). The interface and the FPGA cards were put in and behind the horseshoe be-
tween two aluminum planes. The vision system is mounted to the nose of a two en-
gine aircraft on a way that the axis of the front camera is aligned with the horizontal 
axis of the aircraft (Fig. 4). 

  
Fig. 3. Camera holder aluminum frame with the cameras (left), and the entire vision system 

without the power units (right) 

5 Multi-core processor architecture in the FPGA 

The image processing system should execute the following parallel tasks: 

• calculating the attitude changes of the aircraft; 
• identifying intrude aircrafts; 
• communicating with the control and navigation processor of the UAV; 
• and transferring the raw image data towards the SSD. 

All of these functionalities are handled by a custom designed multi-core processor 
architecture implemented in a Spartan 6 LX45T FPGA. The basic concept of the pro-
cessor design was to mimic the human foveal vision on a way that a pre-processor 

http://www.legitreviews.com/article/1980/1/


examines the entire frame and identifies those locations, which needs more attention. 
Then, the focus of the processing is shifted to these locations one after the other, simi-
larly as our fovea focuses to different important details of a scene. 

   
Fig. 4. The vision system mounted on the nose of the aircraft (left) and the enlarged aircraft 

nose (right) 

The architecture of the multi-core foveal processor is shown in Fig. 5. As it is 
shown on the figure, the five parallel 8 bit data flows arriving synchronously from the 
cameras are combined to one, time multiplexed 8 bit data flow. The combined data 
flow goes to the SATA core and to the full-frame streaming pre-processor as well.  

The pre-processor has a streaming architecture, means that it cannot randomly 
access the entire frame, but it receives it row-wise sequentially as the image is read 
out from the sensor. To be able to calculate neighborhood operators, it collects a few 
lines of the frame and processes those lines together. As the data stream flows through 
the processor, it finds those high contrast corner-like locations where displacement 
vector will be calculated when the next frame arrives. It also identifies those objects 
which might turn out during the post processing phase to be an intruder aircraft. The 
pre-processor sends the coordinates of the identified locations to the internal micro-
processor (MicroBlaze), and saves the raw frame and the some processed data to the 
external memory. 

The MicroBlaze is a general purpose 32 bit soft-core processor  implemented in the 
Xilinx FPGAs. It has relatively low computational power (~200MHz clock speed), 
which means that it cannot perform image processing tasks. It can be used to be the 
control processor of the system, and also to perform some decision making and com-
munication.  

The MicroBlaze then goes through the identified suspicious locations and performs 
foveal (region of interest, ROI) processing one after the other, by instructing the bi-
nary and the grayscale ROI processors to cut out the required windows, copy them 
into the internal block memories of the FPGA, and execute the program sequences. 
The detailed description of the pre-processor and the foveal processor can be found in 
[11], while the algorithm description in [12]. 
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7 Conclusion 

A five-camera vision system was introduced. The system was designed to be able 
to operate on UAV platforms. Its role is real-time attitude (orientation angle) calcula-
tion, vision based collision warning, and visual flight data acquisition. The system has 
been built and partially verified on a UAV platform.  
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	Small industrial cameras with C-mount or CS-mount lenses. There are a very large number of cameras in this class. One can find them in different resolution (from VGA up to 8 megapixels), size (from 3x3x3cm), weight (from 40g), and both rolling and global shutter types (e.g. http://www.ptgrey.com/products/index.asp). However, here the weight of a precision lens is significant as well (60-200g) (http://www.edmundoptics.com/imaging/imaging-lenses/), hence the overall weight is above 100g. This weight is much larger than the cameras in the second category, but as an exchange, the precision of the lens and the optical alignment is much better. The power consumption of these cameras is watts rather than hundred milliwats, mostly because they use power hungry high-speed serial output data channels.
	Selection. Since we need global shutter sensor, we can select cameras from the second or the third category only. The second category makes possible to build vision system for small and medium sized UAVs, where weight of the vision system should not exceed 500g. 

