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Abstract: “Big Data” (BD) problems require handling 
extremely large or complex datasets that would be 
difficult and expensive using traditional relational 
databases. Software solutions with distributed 
processing, weakened consistency requirements and 
well-designed data models help overcoming scalability 
issues. 

Wind energy systems produce extremely large 
datasets. Today’s wind farm operators either do not 
collect all available data in a central, easy to access 
database, or they delete valuable data, because of 
scalability issues of traditional databases. Emerging 
“Big Data” tools and algorithms enable collecting all of 
the most detailed data; moreover, data may not be 
deleted at all. This is a huge advantage for wind farm 
operators, because detailed information can be 
(re)used later for many purposes: e.g., building failure 
detection and prognosis models, ad-hoc analysis of the 
past becomes feasible. 

The paper shows how detailed operation data from a 
large number of wind farms can be collected and 
stored for further use. A Business Intelligence (BI) 
reporting prototype system for wind farm analytics is 
described, with describing typical cases of wind turbine 
operations where advantages of the “Big Data” 
initiative can be exploited. Performance tests for 
collecting and storing of SCADA data from many wind 
farms prove the advantages and applicability of the 
proposed method. 
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1. INTRODUCTION 
Wind energy is one of the most promising branches of 
the energy sector [3]. A characteristic trend in Europe 
over the last few years is that the speed of increase in 
the establishment of new wind farms decreased, 
consequently, the importance of the wind farm 
operation receive more attention [12]. This trend 

predicts extensive use of Wind Turbine Generator 
(WTG) condition monitoring and supervision solutions. 

Various wind turbine condition monitoring and sensing 
techniques related to different WTG components are 
compared in [6, 13]. In [14] the relation of condition 
monitoring to reliability calculation is explained, as a 
tool for handling the wearing outside of a bath curve of 
reliability. Combinations of turbine components and 
monitoring techniques are highlighted in [14], while 
hybrid statistical models are introduced in [11] for 
special problem domains. 

Big Data problems require handling extremely large 
data sets and running complex algorithms, which are 
beyond the ability of commonly used software tools 
[24]. These problems appear more and more 
frequently in practice, and new software solutions are 
developed to solve them. According to Deloitte, by the 
end of 2012 more than 90 percent of the Fortune500 
companies will likely have some Big Data initiatives, at 
least as pilot projects [19]. 

Originally driven by Web and telecommunication 
companies, a wide range of Big Data tools have arisen 
and matured in the last decade. They have proven to 
be useful for data scientists of social networks, 
consumer behaviour, retail, mobility and sensor data, 
where traditional data warehouses reached their limits. 
These solutions are easy to extend by predictable 
costs, as data sets grow. They offer value to the 
energy sector:  they support efficient operation and 
maintenance by scalable wind data analytics. 

In the following a prototype wind turbine business 
intelligence system is presented, with experiments 
showing how effectively Big Data tools can aid 
preparing large wind turbine sensor datasets for 
analytics. Performance tests for collecting and storing 
of SCADA data from many wind farms prove the 
advantages and applicability of the proposed method. 
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2. WIND FARM OPERATIONAL 
DATA COLLECTION AND STORAGE 
Wind turbine generators are data intensive devices 
incorporating various sensors, as in manufacturing 
branch, too [17]. The sensors allow real-time condition 
monitoring and supervision, and enable preparation of 
statistical reliability models [5,4]. Wind turbines are 
operating in a rapidly changing and sometimes 
extreme environment [15]. Handling the variety of 
environmental effects is a hard task requiring 
advanced statistical and Artificial Intelligence (AI) 
technique based analysis. Data collection under 
various conditions is a necessity, and sophisticated 
data processing techniques are needed [10,16,18]. 

Current wind turbine data processing systems contain 
the following typical elements: 

 Sensors of various physical-electrical effects 
are the initial data sources. 

 PLC(s) (Programmable Logic Controller(s)) 
receive information from sensors transforming 
electrical signals to digital data. Moreover they 
do many transformations and interventions into 
the working behaviour of wind turbine. 

 SCADA (Supervisory Control and Data 
Acquisition) systems are physically connected 
to the sensors/PLCs collecting signal and 
other data. 

 Condition Monitoring (CM) systems (beyond 
the PLC and SCADA components) also collect 
relevant signal data and produce relatively 
high frequency data series. 

 Industrial computers provide local storage 
inside the turbine with basic calculation 
functions. 

 Data transmission systems are mobile devices 
providing a communication channel for data 
transmission between turbines and data 
centres. 

 Data centres collect, store and archive data of 
individual turbines. 

 Functional servers typically receive data from 
data centres and support various data 
Extraction, Transformation and Load (ETL), 
reporting and analysis tasks. 

 Client computers are connected to functional 
servers, and provide end-user interfaces. 

 

At each step of the data chain, the amount of the data 
is reduced, resulting in much less information for the 
end-user than originally. “Big data” solutions can be 
applied to data centres and functional servers to 
decrease information loss with a high throughput, and 
to provide more complex analytical services. 

 

3. THE CONCEPT OF “BIG DATA” 
In case of “Big data” problems the size of the data itself 
becomes part of the problem: data becomes large 
enough that it cannot be processed using conventional 
methods [2]. Processing Web- or sensor data are 
considered as traditional “big data” problems. 

Several new solutions arose in the last decade for big 
data problems. They include new generation SQL 
databases with massive parallelization and in-memory 
processing; distributed NoSQL tools relaxing the strict 
consistency criteria and the data model of traditional 
databases; and parallel data streaming frameworks 
providing real-time processing. 

Figure 1 enumerates some big data solution providers 
[15]. The planes build on each other: the first plane 
contains infrastructure providers; the second one 
contains frameworks for data processing, and the third 
one covers analytical applications. 

3.1 Tools for “Big Data” (BD) 
The idea behind all of the BD tools is to “divide and 
conquer”, to apply distributed computing on easily 
extendable shared-nothing architectures. The main 
goal is to keep processing time linear in the input size; 
this way the required computing capacity remains 
predictable. For example, if the input data doubles, 
then only the number of computer nodes has to be 
doubled. 

BD tools fall into two main categories. Data-streaming 
frameworks offer large throughput real-time 
processing, while NoSQL solutions provide persistent 
storage with fast data access. One of the most mature 
streaming tools is Twitter’s Strom [20]. The scalable 
and flexible model of Strom might be used for real-
time, low-latency alerting, based on detailed sensor 
data. 

We concentrate on NoSQL solutions in this paper, as 
alternatives of traditional business intelligence and 
data warehousing tools. “NoSQL” refers to non-, or 
“not only” relational (SQL) distributed databases. A 



great variety of NoSQL tools are available today, 
addressing different tasks and requirements [24]. 

Brewer’s CAP theorem [23] states that for a distributed 
computer system consistency (C), availability (A) and 
partition tolerance (P) cannot be satisfied at the same 
time – only two of them can. One way to categorise 

NoSQL tools is to specify what they give up. 
Traditional distributed databases do not tolerate if a 
partition falls out (CA). Others, for example HBase and 
MongoDB, might not response to a request if there is 
no consensus between partitions (CP). While for 
example Dynamo, CouchDB are always available, but 
they might give us false, outdated results (AP). 

 

 

Figure 1: Big data planes with solution provider examples 

 

Another way of categorizing NoSQL tools is based on 
the data model they support (instead of SQL on 
relations). The most simple data model handles key-
value pairs with simple key-based operators, enabling 
very fast data access. Project Voldemort and Riak are 
commonly used key-value stores. There are lots of 
document databases, supporting large unstructured 
documents with fast indexing, for example Cassandra. 
Or, there are tools dedicated to graph data: they 
support processing of social networks or mobility data; 
examples include OrientDB or Neo4j. The most similar 
data model to relational is the so called “wide column” 
model, where for a given key multiple series of columns 
are given, without a fixed schema. These were 
originally used for web user sessions, where the key is 

a user id and rows contain user interactions. Examples 
include Google BigTable or Apache HBase. 

Performance of NoSQL tools comes at the cost of 
versatility and consistency. Traditional databases 
support and require the “ACID” criteria: transaction 
handling with concurrent but isolated (I), atomic (A), 
consistent (C) and durable (D) operations. With NoSQL, 
we satisfy only “BASE”: data is basically available (most 
of the time), states are soft (answers are not consistent 
all the time), operations are eventually consistent (we 
reach consistency at some stage). As these new criteria 
are much weaker than ACID, they are not a perfect 
match for flight control or banking applications. 
However, in such scenarios, where erroneous values 



appear, concurrent updates are not common, and 
eventual consistency is sufficient, scalability of NoSQL 
tools could provide us additional potentials.  Wind data 
analytics is such a typical field: we could gain much 
more by the increased data sizes behind our analytics 
than we lose by the reduced consistency criteria. 

In the wind data analytics scenario described in the 
paper Apache Hadoop [21] with Apache Hive [22] were 
selected as BD solutions. These are actively developed, 
mature distributed data processing and storage tools 
used for a lot of analytical and data science BD 
problems. Hive provides data warehousing environment 
with SQL interface on top of Hadoop; this enables rapid 
extension of existing data warehouses. 

 

4. “BIG DATA” SITUATIONS AT 
WIND TURBINES 
Big Data situations at wind turbines can be identified 
from the following two viewpoints:  

 The volume of the data puts too high load on 
both the local industrial computers and the data 
centres. 

 End user applications must balance between 
flexibility of querying and quick query response 
times as distributed systems pose limitations to 
certain elements of SQL including the join 
operation. 

To illustrate data volumes, an average turbine contains 
20-30 sensors, resulting in 60-100 different SCADA 
signals. With a sampling rate of 1 second with 8 byte 
values, 1.8 GB raw data per turbine per month are 
produced, resulting in a big data problem for a typical 
wind farm having 10-100 turbines, moreover for zones 
or geographical regions incorporating 5-50 wind farms. 
It is a necessity to apply big data solutions not only to 
extract valuable knowledge, but even to enable storage 
of raw data. The task becomes even more challenging, 
if PLCs collect data with the sampling frequency of 
some tens of milliseconds. 

Big data solutions open up new perspectives, including 
the following: 

 No data has to be dropped in the data chain. 
For example, both SCADA and PLC data with 
resolution of some seconds and high frequency 
condition monitoring signals can be stored 
centrally. 

o Reports, statistics would become more 
accurate. 

o In certain situations (failures, stops, 
unwinding etc.), the reasons could be 
explored and identified. 

o Turbine technical and operational 
conditions could be reviewed in detail. 

 Using streaming data processing tools, real-
time and global calculations could be 
performed. This enables more accurate, more 
sophisticated wind farm level alarms and 
warnings, seeing the whole picture. 

 Scalability features of BD solutions eliminate 
the need for data archiving, all historical data 
could be taken into account. 

 Because extending distributed BD systems is 
relatively easy and less costly than traditional 
databases, they can keep up with growing wind 
farms in a predictable way. 

These examples prove that DB aspects are highly 
relevant in the wind energy field, too. 

 

5. ARCHITECTURES FOR 
ADVANCED WIND DATA ANALYTICS 
Business intelligence software tools are used to enable 
sophisticated and effective reporting where the back-
end of the reporting system is typically a data 
warehouse [8,9]. Figure 2 introduces architecture 
alternatives of combined “Big Data” and traditional SQL 
databases for BD wind data business intelligence. 

During operation, wind farms produce input data 
according to the methods described in Section 2. Both 
SQL and BD tools can be used to prepare data for 
reporting. 

The first alternative applies a SQL database for 
aggregating data and to present basic reports for 
analysis. 

Analytical capabilities can be greatly enhanced by 
dedicated OLAP reporting data marts. These elements 
are introduced in the second version, which is a classic 
relational data warehouse with an OLAP reporting tier. 

A BD layer appears first in the third alternative 
architecture, having two roles: 

 Extraction, Transformation and Load (ETL): 
Data coming from wind turbines and wind farms 



are collected by the BD system and they are 
transmitted into the same central database as 
before. 

 Data Warehouse: The BD solution is replacing 
the data centre providing ETL functionalities 
and acting as data source for different data 
marts at the same time. 

The last alternative omits SQL tier completely. BD tools 
with SQL interfaces substitute relational databases, 
providing the same aggregations and derived data to 
the data marts. Also, real time alerting functions are 
implemented by streaming BD tools. 
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Figure 2: Data processing alternatives for wind farm data 

 

The paper summarizes the experiences in relation of 
the second and the third cases in the Figure 2 (“Present 
with DW” and “Big Data with ETL”). The ETL times for 
loading the same data cubes in these two cases were 
compared using traditional SQL based database 
systems (as “Present with DW”) and a novel Big Data 
(NoSQL) solution (as “Big Data with ETL”). 

 

6. BIG DATA WIND TURBINE 
ANALYTICS PROTOTYPE 
A prototype BD wind data analytics system was 
implemented with alternative data flows to simulate and 
study BD architectures. With this experimental 
framework scalability properties and limits of the 
alternative architectures can be evaluated. Data 
productions of wind farms were simulated in large 
quantity to answer our main questions:  

 “What would happen, if we would have twice, or 
even 100 times as much turbines, or, much 
more detailed operation data?“  

 “Are BD tools mature enough to substitute IT 
components in a wind data analytical 
scenario?” 

 Are traditional data warehousing reporting tools 
applicable on top of new BD solutions? 

The data flow, depicted in Figure 3, is as follows. 
MSSQL database tables substitute real data sources of 
wind farms, and form the base for both SQL and BD 
computations. Both two paths aggregate the most 
detailed data into smaller data cubes. Reporting relies 
on OLAP analytical user interfaces. 



6.1 Benchmarking input dataset 
Our prototypes are based on the ten minute average 
SCADA data that can be extended with more frequent 
values and also with condition monitoring system 
measurements. 

We simulated  

Five wind farms were simulated, resulting in test data 
resembling the schema of industrial SCADA systems. 
This data set covers high volumes of commands, 

alarms and warnings, signals, state and event data for a 
period of five years. This initial benchmark dataset was 
generated in a relational database (MS SQL Server), 
and contains approximately 400 million records. 

The initial data set was multiplied by duplicating wind 
farms to simulate BD situations. Measurements were 
executed using an appropriate number of wind farms, 
from one (approx. 80 million records) up to 80 wind 
farms (approx. 32 billion records). 

 

Figure 3: Data flow of the SQL and Big Data solutions, realized by MS SQL Server and a combination of Hadoop and 
Hive 

 

6.2 Benchmarking operation 
A typical data warehousing aggregation operation was 
selected to test BD and SQL architecture versions. The 
task is to load a “heavy” aggregate wind farm data 
cube, combining all types of input data. The 
aggregation uses all detailed records of the tables in the 
benchmark dataset, computing for all months and wind 
farms:  

 number of commands, 

 number of different alams, warnings and 
events, 

 average, minimum, maximum and standard 
deviation of the length of all alarms, warnings 
and events, 

 number and average length of different 
statuses. 

 minimum, maximum, average and standard 
deviation of 8 selected typical, mostly relevant 
signals. 

These are grouping and aggregating procedures, some 
special mathematical calculations and also using simple 
join operations. 



6.3 Relational database engine, MS SQL 
Server 2012 (SQL solution) 
A straightforward and an advanced ETL process for 
benchmarking were developed (Figure 3). The 
straightforward method does the computations in the 
form of SQL queries using the usual table join, group by 
constructs and aggregation functions with optimization 
left to the database engine. 

In the advanced method indexes were used, eliminated 
critical table joins and groupings by prefetching join 
data and splitting the queries into smaller chunks 
aligned with group boundaries (techniques common in 
the relational world to deal with large datasets). By 
optimization a 2-times speedup was measured. 
However, in a real life scenario data is coming from the 
sensors or from the PLC unit on-the-fly in a streaming 
way. In this setup there is simply no time and capacity 
to build indexes efficiently. Without indexes the 
advanced techniques perform even worse than the 
straightforward method. 

Table partitioning is another option that arises in the 
relational world when dealing with large data volumes. It 
can improve performance by skipping partitions not 
needed to satisfy the query. At wind turbine data 
collection case all the data is needed to do 
aggregations so all the partitions are needed and not a 
single one can skipped, consequently, table partitioning 
was ignored. 

6.4 Hadoop-Hive based test environment 
(Big Data solution) 
The Big Data layer (Figure 3) is composed from the 
industry-wide accepted Apache Hadoop framework and 
the Apache Hive data warehouse system.  

The Hadoop framework allows for the distributed 
processing of large data sets using the so-called map-
reduce programming model. The framework is scalable 
from single server up to thousands of nodes. All nodes 
have local storage and computation. The system is 
designed to provide error-free operation. This is 
achieved using software error handling mechanism at 
the application layer instead a high-availability hardware 
layer. The framework is capable of handling dynamic 
addition, removal and failure of nodes with data 
replication. Two main component of the system are the 
map-reduce job scheduling framework and the 
distributed file system (HDFS).  

On top of these frameworks operates the Apache Hive 
data warehouse system that act as a client to the 
Hadoop. It provides a convenient SQL-like language 

(HiveQL) to perform data aggregation, ad-hoc querying 
and analysis of large datasets. The tables are stored in 
the HDFS and the SQL queries are mapped to map-
reduce operations executed by the Hadoop framework. 
The functionalities of the HiveQL can be extended by 
custom functions thus performing non-standard 
calculations. 

The data export-import between Hive and MSSQL is 
handled by the Apache Sqoop tool. 

6.5 Experiments 
Three different environments for our scalability tests 
was set up, one to test SQL, and two to test NoSQL 
solutions. 

A mid-range server, having 4 Intel Xeon processor 
cores, 10 GB memory and older disks with RAID was 
running a MSSQL Server 2008. This setup was used to 
test traditional relational data warehousing methods. 
Also the common reporting OLAP frontend was running 
here. Since the MSSQL server used limited resources a 
Linux cluster was created with only two mid-range 
nodes, each having 8 Intel Xeon cores and 12TB of 
HDFS storage. 

One of the main points of Hadoop is the easy 
extendibility; we validated this by moving our Hadoop 
setup to a 48 node Linux cluster. Here each node 
contained 2 Intel Pentium processor cores, 4GB 
memory and older disks without RAID. 

Figure 4 shows the running times of generating the 
aggregated data cube on these three architectures. As 
hardware and software environments were highly 
different, times are not comparable directly. It was 
examined were the shapes of the series vary: these 
indicate how the tools scale with data volumes. 
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Figure 4: Scalability of different cube aggregator 
solutions 

 

The SQL solution ran almost in linear time up to 40 
farms (approximately 3.2 billion records). Farther up 
processing times drastically fall. The reason is that we 
reached the hardware, especially the memory limits of 
the given database. 

Both NoSQL series scale linearly with the input size 
(number of simulated wind farms) examined, while 
computing times of the larger cluster are significantly 
smaller. No sudden relapse was experienced. 
Therefore, for a given input size the infrastructural 
requirements are predictable. Furthermore, the cost of 
extending a Hadoop cluster comes from adding new 
identical nodes. For relational databases, extending 
resources might be more costly. Adding memory or 
CPU can postpone the point where performance 
degrades, but above that point, setting up powerful 
distributed relational database appliances is a costly 
process. 

For smaller data sets MSSQL outperforms Hive 
solutions. The reason for that is that the Hadoop 
framework has a constant job initialization penalty. 

7. WIND TURBINE BUSINESS 
INTELLIGENCE SYSTEM 
SCADA information can be analysed by various experts 
and managers based on specific reports. Reporting is 
based on the individual cubes of the data mart(s). 
These are designed according to common OLAP 
conceptual data modelling techniques [8, 9]. The data 
cubes used in our prototype system are:  

 Commands 

 Alarms & Warnings & Events 

 Statuses 

 Signals 

 SCADA (this cube “integrates” information from 
the previous cubes) 

 SCADA slice (this cube is the same as the 
previous SCADA cube but it contains only a 
small, selected fraction of its data content) 

 Aggregate wind farm information (this cube 
contains the same information as the SCADA 
cube but in a significantly selected and 

aggregated form – for information integration 
and performance reasons as described before) 

All cubes have its own set of dimensions with a given 
granularity. The dimensions used for the data cubes are 
the following: 

 Wind farm 

 Wind turbine 

 Status 

 Category (incorporating codes for measured 
and calculated signals, alarms and warnings, 
etc.) 

 Month 

 Date 

 Time 

 Source (this is a technical dimension not a user 
application specific one) 

The On-line Analytical Processing (OLAP) part of the 
architectures (see Figure 2) is a data mart realized in 
Microsoft SQL Server 2012 Analysis Services 
(MSSAS). Our prototype reporting interface is Ms Excel 
with direct connection to MSSAS cubes. Of course, 
many other (e.g. web based) reporting solutions can be 
used for report building ensuring with the same 
communication protocol. 

Figure 4-7 show sample reports of the system. (The 
diagrams serve only as illustrative examples they are 
based on generated and not on real SCADA dataset). 

 

Figure 4: Report based on the Status cube representing 
the distribution in the number of statuses and the 

related duration being in the given status 
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Figure 5: Report based on the Commands cube 
representing the distribution in the cumulative number 
of commands of five different turbines over five years 
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Figure 6: Report based on the Signals cube 
representing the monthly averages of four different 

SCADA signals 
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Figure 7: The report is based on the Aggregated 
SCADA cube and represents two kinds of information in 

the same time: command number and average wind 
turbine temperature 

 

Each of these diagrams has the flexibility of the basis BI 
system, for example drill-down, dimension change, 
aggregation and selection. Consequently, a great 
variety of management and expert reports on the 
behaviour and working conditions of wind turbines can 
be prepared easily and quickly. 

 

8. CONCLUSIONS 
In this paper it was introduced how Big Data tools 
provide value for wind farm operation and maintenance. 
After briefly introducing the problem of collecting and 
analysing wind turbine data, Big Data architecture 
alternatives were described. We validated the idea of 
substituting relational database engines with NoSQL 
tools for data intensive tasks using an experimental 
prototype analytical system. The measurements 
showed that Hadoop and Hive as applied Big Data 
solutions could provide a cost effective alternative of 
traditional data warehousing and ETL tools processing 
SCADA data of many wind farms. An OLAP analytical 
frontend for wind data is also presented, which can be 
built on both SQL and NoSQL solutions. 

As a future work we plan to extend our experiments 
towards streaming Big Data tools for real-time analytics. 
Experiments will also be extended with other data-
heavy tasks besides the construction of the selected 
data cube presented. 
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