
Formation Control of a Large Group of UAVs with

Safe Path Planning

Gergely Regula

MTA – BME Control Engineering Research Group

MTA SZTAKI Systems and Control Lab

H-1111 Budapest, Kende u. 13 – 17., Hungary

Email: regula.gergely@sztaki.mta.hu

Béla Lantos

Dept. Control Engineering and Information Technology, BUTE

H-1117 Budapest, Magyar Tudósok krt. 2., Hungary

Email: lantos@iit.bme.hu

Abstract—In this article we propose a hierarchical control
structure for multi-agent systems. The main objective is to
perform formation change manoeuvres, with guaranteed safe
distance between each two vehicles throughout the whole mission.
The key components that ensure safety are a robust control
algorithm that is capable of stabilising the group of vehicles in a
desired formation and a higher level path generation method that
provides all the vehicles with safe paths, based on graph theoretic
considerations. The method can efficiently handle a large group
of any type of vehicles. As an illustration, the results are applied
to a group of quadrotor UAVs.

Index Terms—multi-agent system, formation control, distrib-
uted control, robust control, UAVs, quadrotor helicopters

I. INTRODUCTION

Increasing attention has been focused on the problem of

controlling large scale systems that are built up from several

smaller subsystems, e.g. a group of UAVs. Controlling a group

of vehicles together can result in better overall performance

and certain tasks can also be performed more effectively.

Examples to such cases are surveillance missions and fuel

consumption reduction by travelling in formation.

Advances in communication technology, miniaturisation and

increased computation power open the way to implement

not only local, but also formation level control algorithms

on board of a single vehicle. Performing all the required

calculations in a centralised manner is often not viable. In

such cases, distributed solutions are required, even though

additional problems arise, e.g. communication errors or delays.

Several methods have been elaborated that solve certain

problems related to multi-vehicle systems. Each of them have

their strengths and weaknesses, thus they have evolved in

parallel. Two of the most frequently applied methods are the

model predictive control (MPC) and robust control techniques.

Obstacle and collision avoidance is most often solved by

applying MPC methods [1]–[4]. MPC involves numerical op-

timisation (occasionally mixed integer programming) at every

single time instant and it is a flexible framework, since various

objectives can be included into the problem formulation.

The cost is the increased computational complexity that may

require more computational power than what currently exists.

Other approaches include robust control methods [5]–[9]

that can guarantee certain types of robustness and performance

but cannot handle hard constraints the way MPC can. This is

the motivation of the method we propose in the following.

A promising formation stabilising algorithm is presented in

[9], which ensures that vehicles reach a desired formation,

even if the communication topology changes almost arbitrarily

and arbitrarily quickly. It utilises the graph theoretical results

of [10]. However, it does not guarantee that vehicles do

not collide with each other during the transients. We extend

this approach by a higher level method which effectively

tackles the above problem, even for a relatively large group

of vehicles.

The article is structured as follows. Preliminary results are

briefly summarised in Section II, which include the previous

results of the authors and present the method, the capabilities

of which is extended by our new method. The main contri-

bution of the article, i.e. the safe path generating algorithm

is presented in Section III, which is followed by a practical

example in Section IV. The article ends with a short conclusion

and summary of the results.

II. PRELIMINARY RESULTS

The relation between formation stability of connected linear

systems and graph-theory was discussed in the pioneering

work of Fax and Murray [10]. They revealed that the stability

of a formation of a group of identical systems is closely related

to the eigenvalues of the normalised Laplacian associated to

the communication topology graph of the group.

Based on their work, Popov and Werner presented a control

design method in [9] that extends this analysis framework.

They incorporate communication topology and its change

as a disturbance into the control design. Thus, by the aid

of well-known robust control design techniques, formation

controllers can be obtained locally. The design is robust against

communication topology changes and is independent of the

number of the vehicles forming the group.

This robust formation control method is suited to our control

system applied to quadrotor helicopters, which is presented

in detail in [11]. It can also be extended to include model

uncertainties in the future. Our method is a backstepping

control algorithm that stabilises the nonlinear dynamics of the

quadrotor in a specified 3D position and yaw angle. Thanks

to the backstepping control’s linearising and decoupling effect,

Local formation control
KF (s)

Backstepping
control

Quadrotor
ξ̈i = fξ,i + gξ,iuξ,i

η̈i = fη,i + gη,iuη,i

ei ui uξ,i

uη,i

vi

yi

H(s)

P (s)

Figure 1. Single quadrotor with local controllers.

the closed loop system can be treated as four separate linear

systems.

A quadrotor with its local controllers is depicted in Fig. 1.

The notations follow the conventions of the previous works.

The signals in vi consist of the coordinates and the yaw angle

of the i-th helicopter. The robust formation controller, which

is identical for all vehicles, is denoted by KF (s). Its input and

output are the formation error ei and the reference trajectory

ui, respectively. Signals required by the local stabilising con-

troller are collected into yi.

III. SAFE FORMATION CHANGE

The most crucial strengths of the algorithms in the prelim-

inaries are that they are capable of stabilising a group of any

number of vehicles with almost any kind of communication

topology that holds certain connectivity properties. However,

there is a major drawback that is not explicitly tackled by

the algorithm, i.e. it is not guaranteed that the vehicles keep

safe distance from each other during the transients. Linear

robust control methods cannot satisfy such constraints. There-

fore, either different control algorithms are required for such

problems, such as model predictive control (MPC), or collision

avoidance must be implemented on a higher level.

The proposed method follows the latter approach and is the

main contribution of the paper. Given a number of identical

vehicles in an initial formation (defined by spatial points

Si ∈ R
3), the task is to occupy the specified target positions

Tj within finite time and keeping a predefined minimum

distance ds between each other during the transition. Vehicles

are assigned a target position dynamically during the path

generation. The vehicles track straight paths between the start

and target positions and may not necessarily move all at the

same time since one might act as an obstacle to the other,

depending on the structure of the initial and target formation.

The algorithm also takes into account that the vehicles have

a maximum travelling speed. There is only one restriction,

which is related to the formation and the predefined safety

distance. The ratio between the minimum distance between

each pair of vehicles in their initial and target positions and

the safety distance should exceed a constant value specified

later:

min
i,j
i6=j

‖Si − Sj‖
ds

> c min
i,j
i6=j

‖Ti − Tj‖
ds

> c, (1)

where ds is the safety distance. The crucial aim is to find

the smallest possible c. As it will be revealed later, the above

H(s)

Path
generation

L(p)

H(s)

f r e

e1

eN

v1

vN

v

-

Figure 2. Formation change logic.

constraint is not overly restrictive in real applications since

the safety distance is related to the physical dimensions of the

vehicles.

In the following, the safe path generating method will

be presented, then as an illustration, a formation changing

scenario will be shown.

A. Path Generating Algorithm

The basic idea of the proposed algorithm is to avoid online

path planning and optimisation at every sample time instant.

Instead, trajectories will be generated in a simple but efficient

way only if the formation of the vehicle group has to be

changed. The generated paths will be safe at the same time.

Throughout the paper, safety region of a point or a route have

the following meaning.

Definition 1 (Safety region): The safety region of a spatial

point P is the set points for which the following condition

holds:

RP,ds
=
{

Q ∈ R
3
∣

∣ ‖P −Q‖ ≤ ds
}

, (2)

where ds is the safety distance. Safety region can be defined

for a line segment ST similarly:

RST ,ds
=
{

Q ∈ R
3
∣

∣ d(ST ,Q) ≤ ds
}

, (3)

where d(ST ,Q) is the distance between ST and Q.

The formation change logic is integrated into the control

logic as shown in Fig. 2, while the steps of the method are

described in Tab. I. The first two phases may consist of several

steps. During phase 1, as many vehicles as possible move

directly from their initial positions to certain target positions.

The steps are repeated as long as new routes are found,

otherwise we proceed to the next phase. In phase 2, certain

vehicles that have already reached a target regroup so that

empty targets (target points which are not occupied by any

vehicle) are generated in the proximity of new vehicles. The

condition for advancing to the final phase is similar to that in

the previous case. In the last phase, vehicles that still remain

in their initial positions can simultaneously move to a target.

The key in each phase is how to determine which vehicles

are allowed to move at the same time. Graphs will be construc-

ted that contain information about the risk of collision. The

number of vehicles taking part in each step will correspond to

the size of a clique in these graphs. For computational reasons,

certain heuristics will also be included in the algorithm. The

Table I
ALGORITM OVERVIEW.

Phase 1 Direct transition

1.1) Selecting candidate paths

1.2) Conflict search in ”dual” graph

1.3) Maximum clique or single route search

1.4) Found new route?

Phase 2 Correction routes

2.1) Selecting candidate correction routes

2.2) Conflict search in ”dual” graph

2.3) Maximum clique or single correction route search

2.4) Found new correction route?

Phase 3 Resolving trapped targets

3.1) Checking all routes for conflicts

3.2) Maximum clique search

Yes

Yes

No

No

Finished

main theorems are stated first, while their proofs will be

presented after the details of the steps of the algorithm.

Theorem 1: Let N denote the number of vehicles in a group,

Si their initial positions and Tj the target points, for which

(1) holds with c = 4/
√
7. Applying phases 1 and 2 in Tab. I

to the group will transfer every vehicle but the trapped ones

to a target position in less than or equal to N steps, while the

distance between any two vehicles throughout the manoeuvre

will never be less than the safety distance ds.

Theorem 2: All the vehicles remaining in their start position

after phases 1 and 2 in Tab. I can be transferred to the

remaining target positions simultaneously in one final step,

keeping a minimum distance ds from each other during the

motion.

Observe that the above theorems require only the start and

target positions to satisfy a condition (separately). If this

condition holds for both groups of locations, the vehicles can

always reach all the target points if their paths are generated

by the algorithm in Tab. I.

1) Phase 1 – Direct Transition: During every step of this

phase, the aim is to find as many routes as possible, along

which vehicles can occupy empty targets in parallel. Routes

are defined as follows.

Definition 2 (Route): A route connects an occupied start

position and an unoccupied target point directly with a straight

line.

First, a graph G describing the candidate routes has to be

formed. The vertices of the graph correspond to the initial and

target positions and the edges correspond to a route between

an initial and a target point. Since in the simplest case every

vehicle has the possibility of travelling towards any target

point, this graph is a full bipartite graph (see Fig. 3).

Next, it should be checked whether vehicles stay within the

safety region of a route or a route conflicts with another. Such

routes have to be filtered out during the current step. In this

context, conflict is defined as follows.

S1

S2

T1

T2

Si Tj

SN TN

.

.

.

.
..

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

ei,0

ei,1

ei,j

ei,N

Figure 3. Path search graph.

Definition 3 (Conflicting routes): Two routes are in conflict

with each other if the distance between the two line segments

is less than the safety distance ds.

This definition is obviously conservative in the sense that

it does not take into account the motion of the vehicles, only

their paths. These pieces of information can be collected into a

”dual” graph Gd where each vertex corresponds to an edge in

G (marked by green in Fig. 3) and there is an edge between

two vertices if the distance between the corresponding two

routes is greater than ds.

The task is then to find as many routes as possible among

which there do not exist pairs that are in conflict with each

other. In other words, a maximum clique has to be found

within A(Gd), which is the adjacency matrix of Gd.

It is known that the maximum clique cannot contain more

vertices than the number of vehicles. However, in most cases

the size of the maximum clique is less than this value, due

to the fact that vehicles can act as obstacles to each other,

i.e. they are inside the safety region of a route. Therefore, the

above method has to be repeated as long as there are new

vehicles that can find their way to the targets.

Note that since stationary and moving vehicles constitute

obstacles of different nature, certain vehicles that are unable

to reach a target may be able to do so in later steps.

Clique search will be discussed in more detail in Section

III-B.

2) Phase 2 – Correction Routes: Since the algorithm above

cannot guarantee that all the vehicles reach a target position,

a variant of this method has to be applied afterwards, which

further reduces the number of vehicles that cannot reach a

target point. For this purpose, the notion of correction route

has to be introduced.

Definition 4 (Correction route): A correction route connects

an occupied initial position with an unoccupied target point

via a chain of routes defined by intermediate occupied target

points. No other vehicles stay within the safety regions of the

constituting routes.

The purpose of correction routes is that along the segments

of each such route the vehicles can regroup creating an

unoccupied target point that can be reached by a new vehicle.

It will be shown that cmin in Theorem 1 guarantees that all the

ds

di,c

di,x

di,c < di,x

S

Ti,a

Ti,b

Ti,c

Ti,d

Ti,x

T

Occupied start position

Occupied target

Empty target

Figure 4. Correction route generation.

vehicles but the one in a start position may move in parallel

without entering the safety region of another, which reduces

the total time and energy required for the change of formation.

The construction of a correction route is an iterative process

and consists of the following steps. The first task is to check

if an occupied intermediate point Ti with minimum distance

from the line section between the current start and target

position (initially
−→
ST) exists within the safety distance. The

reason for selecting such point is to minimise the total length

of the correction route. If no such point is found, the route

is generated. Otherwise, correction route generation is split

into two parts and thus the safety region changes (this is the

reason for the iterative nature of the process). Finally, when

the process is finished, the intermediate points are collected

in the right order. Correction route generation is illustrated

in Fig. 4. The first intermediate target point found during the

process is Ti,c since the other candidate Ti,x is farther from−→
ST .

When searching for correction routes, it has to be ensured

that each intermediate point is closer to the target point than

the previous one, including the starting point. Otherwise,

correction routes could possibly be infinite.

If correction routes that satisfy the above requirements exist,

another search, similar to the direct transition phase can be

performed. The only difference lies behind the meaning of

conflict between a pair of correction routes.

Definition 5 (Conflicting correction routes): Correction

routes are in conflict with each other if the distance between

any pairs of the constituting routes are in conflict with each

other.

It can be proved geometrically that if none of the segments

of a correction route is shorter than 2/
√
3 · ds, then all the in-

termediate points in the correction route are closer to the target

than the previous one including the initial point. This follows

from the fact that the longest side of a triangle is opposite

the largest angle (recall that for two consecutive correction

route segments
−−→
PQ and

−−→
QR, intermediate point Q lies within

RPR,ds
). In the extremal case, three consecutive points form

an equilateral triangle. This corresponds to cmin = 2/
√
3.

Occupied start position

Empty target

Trap region

d

d

ds

ds

Figure 5. Trapped vehicles (extremal case, c =
√
2).

3) Phase 3 – Trapped Targets: In occasional cases, certain

target points are left empty after phases 1 and 2. We shall call

these targets trapped.

Definition 6 (Trap/trapped vehicle): A target point is said

to be trapped if it is within the safety region of two or more

vehicles remaining in their initial positions after the correction

route generation phase.

Such configuration is shown in Fig. 5. The most straight-

forward way to resolve these situations is to ensure that all

the vehicles remaining in their start positions are involved in

trapping target points and within every trapped region there

is only one empty target point. If the rather strict constraint

cmin = 2/
√
3 is increased to cmin =

√
2, this condition holds

and safe paths can be generated in one step by taking into

account the dynamic motion of each vehicle (see Fig. 5).

4) Generating Suitable Correction Routes: The problem

mentioned in III-A2 is illustrated in Fig. 6. Suppose a cor-

rection route has to be generated from start position S and

target T . When generating the correction route, vehicles may

have already occupied target positions in the red area, which

is within the safety region of route
−→
ST . The distance between

a vehicle in the red area and the target is greater than ‖−→ST‖.

Since these points cause divergence from the target, it should

be avoided that correction routes include them as intermediate

points.

ds
d′
s

d

c · ds

S T

Figure 6. Ensuring convergence to the target.

ds

d
′

s

Occupied start position

Occupied target

Empty target

The rest of the formation

Figure 7. Difficulty caused by vehicles in the red zone in Fig. 6.

A solution to this problem is as follows. If all the routes and

correction routes that end in a target point which has at least

one occupied initial point within an increased safety distance

d′s are filtered out, then it is ensured that suitable correction

routes can be found in each step. The ratio between d′s and

ds can be read from the figure when d = c · ds:

d′s = ds · c

√

√

√

√2

(

1−
√

1− 1

c2

)

. (4)

The downside, however, is that cmin has to be increased by

the same ratio, as it is revealed by the configuration depicted

in Fig. 7. A vehicle in the red region in Fig. 6 may block

vehicles from reaching targets. If these points are kept empty,

they may act as if they were trapped, thus they are treated as

trapped. Therefore, the ratio between d and d′s should be kept

at
√
2, which yields cmin = 4/

√
7. It has to be mentioned

that the change is less than 7%, which is not an overly strict

constraint.

It also has to be mentioned that in case c >
√
2, every

vehicle in a correction route can move at the same time without

the risk of collision, apart from the vehicle in the start position.

It has to be checked separately whether there is a risk of

collision with the next vehicle or not, since in this case, only

the safety distance constraint holds.

B. Clique Finding in A(Gd)

A number of maximum clique search algorithms have

already been developed by research groups, see e.g. [12]–[15].

The algorithm presented in [15] is considered as an efficient

method in most cases, thus it is applied to our problem as

well.

Since finding a maximum clique in a graph is known to

be NP-complete [16], certain modifications and additional

heuristics are necessary to be applied to the algorithm to make

it is tractable in case the number of vehicles reaches the order

of 50. One way of accelerating the search is that during the

graph construction step, only a subset of all possible routes are

considered. Selection is made after sorting the target distances

from each initial position. Based on the order, n routes are

selected evenly. This method performed the best among the

ones we tried. Note that this step is also important because

of the considerable time required for creating the adjacency

matrix itself, since its original size is N2-by-N2!

Even though this modification greatly reduces the search

space, finding the maximum clique in the reduced graph

may still require a long time. In most practical cases a first

candidate clique is found in a relatively short time, the size

of which is not much less than that of the maximum clique.

Finding new candidates can be time consuming. Thus, a time

limit is introduced that sets a maximum time between every

new candidate clique.

The above modifications are destructive in the sense that

applying them most likely results in finding a clique whose

size is less than that of the maximum clique of the original

adjacency matrix. However, all the vehicles still reach a target

point, though the number of iterations may increase.

Time and energy consumption can also be taken into

consideration. Since route lengths are already available when

the clique search begins, these pieces of information can be

utilised as a tie-breaker when sorting the vertices based on

their degree (c.f. lines 9 – 13 of Fig. 4 in [15]). This way, the

shortest routes are checked as early as possible.

IV. FORMATION CHANGE SCENARIO

As an illustrative example, a formation change manoeuvre

involving a group of 25 quadrotors is presented. The vehicles

are placed randomly in the 3D space and the target positions

are chosen randomly in the xy-plane, satisfying the constraints

of (1) with the constant c = 4/
√
7. The vehicles point to the

same direction (Ψd,i = 0) throughout the mission.

Communication topology is chosen so that each vehicle ex-

changes information with 5 others. For simplicity, the topology

is fixed throughout the mission.

The coefficients of the backstepping controller and the ro-

bust formation controller are tuned so that the quadrotors track

constant and ramp reference paths at a desired performance.

Robust stability is achieved and all the designed controllers

are stable. The full formation-level controller is obtained by

placing the four controllers in the diagonal of a 4-by-4 matrix.

Reference paths are generated so that the speed of vehicles

never exceeds 1m/s. Such setting is necessary for guaranteeing

the stability of the backstepping controller of each vehicle.

Reference paths in each formation change step are designed

so that vehicles involved in the current step start moving and

reach target at the same time. Computation time statistics are

shown in Tab. II, where columns tA(Gd), tMC and |MC| show

Table II
PATH GENERATION STATISTICS.

Phase Step # tA(Gd)
tMC |MC|

Direct 1 0.8356 s 0.0288 s 11

2 0.3865 s 0.0241 s 8

3 0.0650 s 0.0024 s 4

Correction 1 0.0261 s 0.0007 s 2

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

x [m]

Direct step #1

y [m]

z
 [
m

]

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

25

24

13

21

8

17

10

x [m]

2

7

24

20

12

15

17

5

7

21

12

8

18

234

2220

Direct step #1

9

1

1

6

14

36

2

13

23

5

19

3

15

9

11

16

14

19

10

11

18

25

4

y [m]

16

22

z
 [
m

]

Figure 8. Example scenario, direct phase, step 1.

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

x [m]

Direct step #2

y [m]

z
 [
m

]

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

25

24

13

21

8

17

10

x [m]

2

7

24

20

12

15

17

5

7

21

12

8

18

234

2220

Direct step #2

9

1

1

6

14

36

2

13

23

5

19

3

15

9

11

16

14

19

10

11

18

25

4

y [m]

16

22

z
 [
m

]

Figure 9. Example scenario, direct phase, step 2.

the time required for adjacency matrix generation, finding a

maximum clique and the clique’s size, respectively. Tests were

performed by the aid of MATLAB on an average P4 PC. All

the algorithms were executed on a single core. It can be seen

that the most time consuming step is the first, in particular

the adjacency matrix generation, which is common in general

situations.

Test runs were performed for larger groups as well, which

show that calculating A(Gd) takes considerably longer time.

The total required time for a group of 50 vehicles takes 10
times more in MATLAB, though the number of elements in

the matrices are 16 times more than in the case of 25 vehicles.

However, calculations may be performed in a distributed

fashion together with the maximum clique search [17], to

utilise the computing power of all the vehicles. Notice also

that, the most crucial is the time required for the first step,

since vehicles can start the manoeuvre after the calculation of

this step finishes.

The steps of the direct and correction phases of the example

formation change are shown in Figs. 8, 9, 10 and 11. The

graphs show the paths of vehicles involved in the transition

steps. Start and target positions are marked by red crosses and

blue circles, respectively. Only vehicles that change position

are shown for transparency reasons. An additional dashed

arrow connects the starting and end points of each correction

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

x [m]

Direct step #3

y [m]

z
 [
m

]

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

25

24

13

21

8

17

10

x [m]

2

7

24

20

12

15

17

5

7

21

12

8

18

234

2220

Direct step #3

9

1

1

6

14

36

2

13

23

5

19

3

15

9

11

16

14

19

10

11

18

25

4

y [m]

16

22

z
 [
m

]

Figure 10. Example scenario, direct phase, step 3.

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

x [m]

Correction step #1

y [m]

z
 [
m

]

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

25

24

13

21

8

17

10

x [m]

2

7

24

20

12

15

17

5

7

21

12

8

18

234

2220

Correction step #1

9

1

1

6

14

36

2

13

23

5

19

3

15

9

11

16

14

19

10

11

18

25

4

y [m]

16

22
z
 [
m

]

Figure 11. Example scenario, correction phase, step 1.

route in the figures presenting the correction steps. Black

arrows show the motion of vehicle 12 (the one which starts

from initial position 12 and reaches target point 13 via target

point 10). At each step, a maximum of 5 of all the possible

routes are selected from each occupied start position. It is

worth mentioning that trapped targets occur rarely in practice,

since vehicles that might be involved in such situations usually

find their way to different target points.

The safety distance is set to 0.45m. Throughout the simu-

lation, the minimum distance between two vehicles during the

whole formation change process is 0.46m.

CONCLUSION

The proposed path generation method together with a care-

fully tuned robust formation controller is capable of guaran-

teeing a safe formation change with a practically negligible

constraint on the formation topology for any type of vehicles.

The developed method was applied to formation control of

quadrotor helicopters in 4D (3D position and yaw angle).

Currently, path generation is performed in a centralised fash-

ion. However, the algorithm can be accelerated by performing

computations in a distributed manner, since neither adjacency

matrix generation, nor the maximum clique search has to

be performed on a dedicated unit. The parallel maximum

clique search method presented in [17] seems to be a prom-

ising solution. Further methods which reduce the complexity

and improve the performance of the algorithm are to be

investigated in the near future. Also, handling obstacles or

malfunctioning vehicles will be considered.

ACKNOWLEDGEMENT

This research was supported by the MTA – BME Control

Engineering Research Group and by the Hungarian National

Research Program under grant No. OTKA K71762.

APPENDIX

PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1: It is straightforward that routes

found in phase 1 may be considered as correction routes.

It is sufficient to show that omitting phase 1 and applying

phase 2 from the beginning of trajectory generation leaves

only trapped targets. Since after every step in phase 2, the

number of occupied start positions decreases, it is obvious

that the number of required steps is not greater than N .

The first part of the theorem follows from the fact that a

target point Tj is possibly excluded from the search only if

there exists a start position Si for which Si ∈ RTj ,d′

s
holds.

Otherwise, there exists an occupied start position Si closest

to Tj and there exists a correction route from Si to Tj if the

points satisfy (1) with c = 4/
√
7.

Proof of Theorem 2: Let the distance ratio be c =
4/
√
7 >

√
2. The greatest distance between two points within

the intersection of two start positions Si and Sj is strictly less

than c · ds (see Fig. 5). Therefore, no intersection of RSi,ds

and RSj ,ds
can contain more than 1 empty target. Since the

number of vehicles trapping targets is equal to the number of

trapped target points after phases 1 and 2, these intersections

cannot be empty. As a consequence, trapped positions can only

form closed chains or closed three-dimensional surfaces (they

may form separate similar structures). In case vehicles travel

at constant speeds along straight lines, they never enter the

safety region of other vehicles.

REFERENCES

[1] T. Keviczky, F. Borrelli, and G. J. Balas, “Decentralized receding horizon
control for large scale dynamically decoupled systems,” Automatica,
vol. 42, no. 12, pp. 2105–2115, 2006.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[3] A. Richards and J. How, “Decentralized model predictive control of
cooperating UAVs,” in Decision and Control, 2004. CDC. 43rd IEEE

Conference on, vol. 4, Dec. 2004, pp. 4286–4291 Vol.4.
[4] T. Schouwenaars, J. How, and E. Feron, “Decentralized cooperative

trajectory planning of multiple aircraft with hard safety guarantees,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug.
2004, p. 14 pp.

[5] E. Shaw and J. Hedrick, “String stability analysis for heterogeneous
vehicle strings,” in American Control Conference, 2007. ACC ’07, July
2007, pp. 3118–3125.

[6] J. K. Rice and M. Verhaegen, “Distributed computations and control in
multi-agent systems,” in Proc. 4th Int. Conf. Autonomous Robots and

Agents ICARA 2009, 2009, pp. 44–49.
[7] P. Massioni, T. Keviczky, E. Gill, and M. Verhaegen, “A decomposition-

based approach to linear time-periodic distributed control of satellite
formations,” Control Systems Technology, IEEE Transactions on, vol. 19,
no. 3, pp. 481–492, may 2011.

[8] P. Massioni, “Decomposition methods for distributed control and iden-
tification,” Ph.D. dissertation, Delft Center for Systems and Control,
2010.

[9] A. Popov and H. Werner, “A robust control approach to formation
control,” Proc. European Control Conference, Budapest, Hungary, pp.
4428–4433, 2009.

[10] J. Fax and R. Murray, “Information flow and cooperative control of
vehicle formations,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1465–1476, 2004.

[11] G. Regula and B. Lantos, “Backstepping based control design with
state estimation and path tracking to an indoor quadrotor helicopter,”
Periodica Polytechnica Electrical Engineering, vol. 53, no. 3–4, pp.
151–161, 2009.

[12] P. San Segundo, F. Matia, D. Rodriguez-Losada, and M. Hernando, “An
improved bit parallel exact maximum clique algorithm,” Optimization

Letters, pp. 1–13, 2011.
[13] M. C. Schmidt, N. F. Samatova, K. Thomas, and B. H. Park, “A scalable,

parallel algorithm for maximal clique enumeration,” J. Parallel Distrib.

Comput., vol. 69, no. 4, pp. 417–428, Apr. 2009.
[14] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, “A

Simple and Faster Branch-and-Bound Algorithm for Finding a Max-
imum Clique,” in WALCOM: Algorithms and Computation, M. Rahman
and S. Fujita, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, vol. 5942, ch. 18, pp. 191–203.

[15] J. Konc and D. Janezic, “An improved branch and bound algorithm for
the maximum clique problem,” MATCH Communications in Mathemat-

ical and in Computer Chemistry, June 2007.
[16] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-

ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
Plenum Press, 1972, pp. 85–103.

[17] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, M. Patwary, and M. Ali,
“A fast parallel maximum clique algorithm for large sparse graphs and
temporal strong components,” arXiv preprint arXiv:1302.6256, 2013.

	Introduction
	Preliminary Results
	Safe Formation Change
	Path Generating Algorithm
	Phase 1 - Direct Transition
	Phase 2 - Correction Routes
	Phase 3 - Trapped Targets
	Generating Suitable Correction Routes

	Clique Finding in A(Gd)

	Formation Change Scenario
	References

