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Abstract— This paper extends the LTI anti-windup compen-
sator scheme proposed in [6] to linear parameter-varying (LPV)
systems. Following the MRAW concept, the dynamical part of
the compensator is formed by the exact copy of the plant.
The design procedure is thus simplified to the construction
of a parameter-dependent state feedback, which stabilizes the
plant’s copy and determines the performance and the domain of
applicability of the compensator. To decrease the conservatism,
the presented method applies parameter-dependent Lyapunov
function and embeds the saturation (dead-zone) in a parameter-
dependent sector. The design is formulated as an LMI-based
convex optimization problem.

The paper also investigates the possibility of eliminating
certain free variables in order to reduce the complexity of the
synthesis procedure. It is shown that an elimination procedure
similar to that in [6] can be carried out, but with LPV
systems the reconstruction of the compensator gain is not so
straightforward. To overcome the difficulty a novel method is
proposed, which is based on a closed formula parameterizing all
solutions of the synthesis LMIs. Both of the fully parameterized
and the reduced complexity syntheses are presented and their
properties are analyzed. The applicability of the methods is
demonstrated on a simple LPV plant.

I. INTRODUCTION
Control input limitations are always present in real physi-

cal systems. If the controller is designed irrespective of these
limitations, the later appearance of a saturation may cause
undesired behavior in the closed loop: it leads to performance
degradation or even instability. This effect is called controller
windup.

One possible way to minimize the undesired effects of
controller windup is using an anti-windup compensator. The
concept is simple ([17], [21]): the controller is designed
irrespective of the saturation and then a a static or dynamic
compensator is designed so that the following three criteria
are fulfilled: (1) the closed loop is (locally) stable; (2) if there
is no saturation, the nominal performance is guaranteed; (3)
in case of saturation the system is driven by the compensator
so that the signals leave the saturating domain and the
nominal performance is recovered as quickly as possible.

There are two large groups of model-based anti-windup
solutions ([21], [8]): Direct Linear Anti-Windup (DLAW)
and Model Recovery Anti-Windup (MRAW) methods. The
direct method considers the unconstrained feedback loop as a
special plant and the compensator as a special controller. The
compensator construction is then reformulated as a control
design problem for which the existing synthesis algorithms
- LTI [12] or LPV [2] - can be easily adapted. Since the
plant in the compensator design consists of the original plant
and the controller, the LMIs are formulated in the extended
(plant+controller dimensional) space. If the plant is a high
dimensional system and the unconstrained controller inherits
this complexity, the optimization problem may become large
and computationally demanding. On the other hand, the
DLAW concept has a significant advantage over the other
approach: as it is based on the robust control machinery, the
modeling errors and uncertainties can be easily integrated
into the design procedure [2].

This paper focuses on the other class, the model-recovery
(MRAW) solutions. In the MRAW framework the dynamics
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of the compensator is the exact copy of the plant and the
compensation is structured so that the difference between
the real plant and its copy carries all information about the
ideal (saturation-free) behavior [21] [6], [17]. If there is no
uncertainty the MRAW compensator is totally independent
of the actual controller, so it can work even with a non-
linear controller. Moreover, the computational complexity of
MRAW algorithms is generally low, because the dynamics
of the compensator are fixed and thus only a state feedback
gain has to be designed. Though all advantages of MRAW
algorithms can be exploited only if the plant is precisely
known, in particular cases the methods can be extended to
uncertain systems as well [16], [10].

Most papers addressing the anti-windup problem consider
only LTI plants. Since the LPV structure is a powerful
extensions of the LTI class, it makes sense to investigate the
possibilities of extending the LTI anti-windup solutions to
parameter varying models. In case of DLAW design the ex-
tension is a bit easier because the parameter-dependence can
be easily integrated in the general control design framework
([19], [13], [2], [20]). Although the problem is more delicate
in the MRAW framework, some approaches have already
been extended to parameter-varying plants. For example, in
[11] the anti-windup compensator structure presented in [17]
is extended to LPV systems. This method is based on the
coprime-factors of the plant, which is a conceptually different
approach than that is applied in this paper. Moreover, the
algorithm proposed in [11] is derived only for magnitude
saturation. The authors of [6] have already proposed in [3]
one possible LPV extension of the same compensator design
concept we also use in this paper. In contrast to our approach,
[3] handles only magnitude saturation and the compensator is
based on the polytopic controlled invariant set of the plant.
Due to the approach the authors chose, the method of [3]
requires the LPV plant to be embedded in a polytopic model.

In this paper the LTI-MRAW compensator scheme de-
scribed in [4] and [6] is extended to LPV plants. The
proposed method remains applicable if both magnitude and
rate saturation are present and applies quadratic Lyapunov
function with ellipsoidal level sets; both can be easily com-
puted even for large dimensional plants. To decrease the con-
servatism, the Lyapunov function is chosen to be parameter-
dependent and the saturation (dead-zone) is embedded in a
parameter-dependent sector. The design is formulated as an
LMI-based convex optimization problem. The paper also in-
vestigates the possibility of eliminating certain free variables
in order to reduce the complexity of the design procedure. It
is shown that an elimination procedure is similar to that in
[5], but the reconstruction of the compensator gain is not so
straightforward. To overcome the difficulty a novel method is
proposed, which is based on a closed formula parameterizing
all solutions of the synthesis LMIs. Both of the fully param-
eterized and the reduced complexity syntheses are presented
and their properties are analyzed. The applicability of the
methods is demonstrated on a simple LPV plant.

The paper is organized as follows. After the introduction
and the definitions of notations the anti-windup compensator
design is presented for LPV systems in Section III. The
problems related to the variable elimination are discussed in
Section IV. Section V is devoted to the numerical example.
The paper is concluded in Section VI.
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II. NOTATION

The notations used in the paper are fairly standard. If x
is a vector then its i-th component is denoted by xi. The
i-th column of a matrix is indicated by [X]i. The saturation
(satR(u)) and dead-zone (dzR(u)) functions are defined in
the standard way: satR(u)i = max(min(ui, Ri),−Ri) and
dzR(u) = u − satR(u). A set is polyhedral if it is defined
as an intersection of finite number of closed halfspaces.
The polytope is a bounded polyhedral set. Polytopes and
polyhedral sets can be defined by their hyperplane represen-
tation: P(H,h) = {x : Hx ≤ h}, where ≤ is defined
element-wise. A 0-symmetric polyhedral set is defined by
P(H) = {x : |Hx|∞ ≤ 1}, where | · |∞ denotes a matrix
norm. For simplicity, the matrix sum M + MT is denoted
by He(M).

III. MRAW COMPENSATOR DESIGN FOR LPV
SYSTEMS

In this section the LTI anti-windup compensator design
method proposed by Forni et. al in [6] is extended to linear
parameter varying systems. For this, we start from an LPV
plant given in the standard state-space form:

ẋ = A(ρ)x+Bu(ρ)u+Bd(ρ)d

y = Cy(ρ)x+Dyu(ρ)u+Dyd(ρ)d

z = Cz(ρ)x+Dzu(ρ)u+Dzd(ρ)d (1)
where x ∈ Rn, u ∈ Rm and y ∈ Rp, z ∈ Rnz are the
state, the control input, the measured- and the performance
output, respectively. The external inputs r and d are the
reference and the disturbance. The external, time varying
parameter scheduling the dynamics is denoted by ρ. Let
ρ ∈ Rp and let ρ̇ be denoted by ν. We assume that ρ is
available for measurement and the upper and lower bounds
of each ρi and νi are a-priori known: ρ

i
≤ ρi ≤ ρi,

νi ≤ νi ≤ νi, ∀i = 1, . . . , p. Since the aim of the anti-
windup compensation is to improve the performance of an
existing controller, we assume that a nominal (scheduled)
controller has already been designed for the plant:

ẋc = f(xc, ρ, uc, r)

yc = g(xc, ρ, uc, r) (2)
The general form indicates that the controller can be of
arbitrary structure, even nonlinear. If there is no saturation
the nominal interconnection defined by the relation u = yc,
uc = y is assumed to provide the intended behavior: it is
globally stable and meets all performance specifications
prescribed for output z. (To distinguish the nominal system
from the saturated one the trajectory of signals generated by
the nominal closed loop will be denoted by ·̂, i.e. x̂, ẑ, etc.)

The saturated system is defined by inserting the magnitude
and rate limited actuator, defined as follows, between the
controller output and plant input:

u̇ = diag(R)sign(satM (v)− u)
.
= satMR(v), v = yc (3)

where M,R are vectors, containing the magnitude and rate
saturation limits: M = [M1, . . . ,Mm], M = [R1, . . . , Rm].
Dynamics (3) is one possible model that is able to mimic
the the actuator’s behavior. The advantages of this particular
structure are detailed e.g. in [7].

Since our anti-windup compensator follows the MRAW
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Fig. 1. The AW compensation scheme

concept ([21]), it is based on the model of the plant:

ẋaw = A(ρ)xaw +Bu(ρ)(u− yc)
δ̇ = satR(ẏc + v1)

yaw = Cy(ρ)xaw +Dyu(ρ)(u− yc)
zaw = Cz(ρ)xaw +Dzu(ρ)(u− yc)
v = satM (δ), v1 = k(ρ,

[ xaw
δ−yc

]
) (4)

In LTI case ẏc can be directly computed from the controller’s
state if the controller is strictly proper. In LPV case, the
properness is not enough for precise computation, because
the derivative generally depends also on ρ̇. In most cases
only an acceptable approximation is available by using e.g.
the proper filter F (s) = s

1+τs , τ � 1. (On the correct choice
of τ , e.g. [5] can provide further information.) In (4) k1
feedback is a free component, which will be determined later
on. The compensated closed loop consisting of (1)-(2)-(3)-
(4) is defined via the following interconnection (Fig. 1.):

u = satMR(v), uc = y − yaw (5)

The reason why the particular structure (4) is stressed
becomes clear if one computes the difference between the
states of the compensator and the plant:

ẋ− ẋaw = A(ρ)(x− xaw) +Bu(ρ)yc +Bd(ρ)d

y − yaw = Cy(ρ)(x− xaw) +Dyd(ρ)d

z − zaw = Cz(ρ)(x− xaw) +Dzu(ρ)yc +Dzd(ρ)d

ẋc = f(xc, ρ, y − yaw, r)
yc = g(xc, ρ, y − yaw, r) (6)

It is easy to see that (6) describes the same dynamics as the
nominal closed loop, so in case of (x − xaw)(0) = x(0),
(i.e. xaw(0) = 0) the trajectory of (6) coincides with the
trajectory of the nominal closed loop system, i.e. yc = û =
ŷc, (x− xaw)(t) = x̂(t), (z − zaw)(t) = ẑ(t).

If the actuator saturates and consequently the state of the
system starts to diverge from the ideal behavior, the state
difference will still evolve along the desired, unsaturated
trajectory. Exploiting this property, the saturation effect can
be compensated for and the ideal behavior can be recovered
if z is forced to converge to the ideal output z− zaw, i.e. to
make zaw → 0. This is the goal, which has to be achieved
by suitably choosing the conditioning signal v1.

To design v1 we start from the dynamics of the AW-
compensator

ẋaw = A(ρ)xaw +Bu(ρ)(u− yc)
= A(ρ)xaw +Bu(ρ)satMε(δaw) +Bu(ρ)σM

δ̇aw = δ̇ − ẏc = satR(ẏc + v1)− ẏc
= satRε(v1) + σR (7)

where the final formulas are obtained by applying the fol-
lowing lemma proven in [6]:

Lemma 1. Given any pair v, y ∈ R and ε ∈ (0, 1), there
exists ε ∈ [ε, 2− ε] s.t. the following equality holds:

satS(y + v)− y = satSε(v) + σS

where |σS | ≤ |2dzS(1−ε)(y)|.
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In our case, |σM | ≤ |2dzM(1−ε)(yc)| = |2dzM(1−ε)(û)|,
|σR| ≤ 2dzR(1−ε)(ẏc)| = |2dzR(1−ε)( ˙̂u)|, that is the
”external”, disturbance-like signals σM , σR are proportional
to the difference between the saturated and the unsaturated
(ideal) control inputs, so they measure the effect of
saturation.

If the compensator feedback is chosen to be linear,
but parameter-dependent, i.e. k(·) = K(ρ)

[ xaw
δaw

]
=

[Kx(ρ) Kδ(ρ)]
[ xaw
δaw

]
then we get equations (8), which are

similar to those obtained in the LTI case. In (8), Si = Mi,
Sm+i = Ri, i = 1 . . .m and

qε
.
= dzSε

((
0 Im

Kx(ρ) Kδ(ρ)

) [
xaw
δaw

])
= [dzTMε(δaw) dzTRε(Kxxaw +Kδδaw)]T

Following the concept of [6], we assume that the actuators
spend only finite time in saturating mode, i.e. σM and σR
have compact support [0, T ]. The effect of saturation can be
described as short-term disturbance (realized by σM and σR),
which pushes the state of (8) from the origin to some nonzero
value (xaw(T ), δaw(T )) in T seconds. Then, by assumption,
σM and σR drop back to zero. Clearly, if (xaw(T ), δaw(T ))
is inside the domain of attraction of (8), (where the domain
of attraction is defined at σM = σR = 0), then the states
(xaw, δaw) will return to zero, i.e. the closed loop dynamics
returns to the intended behavior.

It is now clear, if we maximize - via the state feedback
gain K(ρ) - the domain of attraction of (8), then we
can improve the applicability of the AW compensator: the
larger the domain of attraction is, the longer and larger the
”disturbance” signals (σR, σM ) the system tolerates.

The most straightforward way to characterize the domain
of attraction of (8) is to consider the level set of the Lyapunov
function:

E(P (ρ), 1) =
{[ xaw

δaw

]
| V

(
ρ,
[ xaw
δaw

])
≤ 1
}

In this paper the Lyapunov function is chosen to be
parameter-dependent and quadratic:

V
(
ρ,
[ xaw
δaw

])
=
[ xaw
δaw

]T
P (ρ)

[ xaw
δaw

]
,

P (ρ) ∈ Rn+mP (ρ) > 0,∀ρ

The stability is guaranteed if V̇ < −2αV for all qε with
some α > 0. As long as the state is inside the parameter-
dependent polyhedral set H(ρ) :

∣∣(εS)−1H(ρ)
[ xaw
δaw

]∣∣
∞ ≤

1, qε satisfies the modified sector condition [9]:

qTε U

(
qε −

[
0 Im

Kx(ρ) Kδ(ρ)

] [
xaw
δaw

]
+H(ρ)

[
xaw
δaw

])
≤ 0 ∀

[
xaw
δaw

]
∈ H(ρ) (9)

Note that, in LPV case it is possible to choose parameter-
dependent polyhedral sets to follow the variation of the un-
derlying system. By applying the S-procedure this condition
can be added to V̇ < −2αV , which yields the following
sufficient condition of stability:

V̇ (ρ)− 2qTε U
(
qε −

[
0 Im

Kx(ρ) Kδ(ρ)

] [ xaw
δaw

]
+ H(ρ)

[ xaw
δaw

])
≤ −2αV

(
ρ,
[ xaw
δaw

])
(10)

Performing the time derivation and substituting the dynamics
of the compensator we obtain the following matrix inequal-
ity: [ xaw

δaw
qε

]T
Ω
[ xaw
δaw
qε

]
≤ 0 (11)

where Ω is given by (12). Multiplying Ω from left and
right by

[
P (ρ)−1 0

0 U−1

]
=
[
Q(ρ) 0
0 diag(WM ,WR)

]
the terms

H(ρ)Q(ρ) and 1
2

∑p
i=1Q(ρ)∂P (ρ)

∂ρi
Q(ρ)νi appear. The first

term can be replaced by a new variable X(ρ) = H(ρ)Q(ρ) ∈
R2m×(m+n), while the equality

∂Q(ρ)

∂ρi
= −Q(ρ)

∂P (ρ)

∂ρi
Q(ρ)

can be applied to the second. With ∂Q(ρ, ν) =

− 1
2

∑p
i=1

∂Q(ρ)
∂ρi

νi we can rewrite (11) to (13), where L(ρ) =

[Kx(ρ) Kδ(ρ)]Q(ρ) ∈ Rm×m+n. Note that, inequality (13)
is linear in L(ρ), Q(ρ) X(ρ) and ν, but it is not linear
in ρ. In order to convert the infinite number of constraints
in (13) into a numerically tractable form, the structure of
the parameter dependent variables has to be fixed. One
possible choice is the affine form: Q(ρ) = Q0 +

∑p
i=1 ρiQi,

X(ρ) = X0 +
∑p
i=1 ρiXi, L(ρ) = L0 +

∑p
i=1 ρiLi. The

next step is defining a suitably dense grid over the domain
of ρ, which together with the corner points of the domain of
ν gives the following finite set of parameter values:

G = {(ρ(k1)1 , . . . , ρ(kp)p , ν
(l1)
1 , . . . , ν(lp)p ) |

ρ
(ki)
i = ρ

i
+ ki

ρi − ρi
Ni

, ki ∈ {1, . . . , Ni}, ν(li)i ∈ {νi, νi}}

The number of grid points is 2p
∏
iNi. Evaluated at each

grid point, inequality (13) generates a finite set of linear
matrix inequalities, which have to be simultaneously solved
for variables Qi, Xi, Li, WM ,WR.

The next group of synthesis inequalities comes from the
containment relation E(P (ρ), 1) ⊂ H(ρ), which can be
expressed in the following way [1]:

0 ≤
[
ε2S2

iQ(ρ) [X(ρ)]Ti
[X(ρ)]i 1

]
, i = 1, . . . , 2m (14)

To maximize the parameter-dependent level-sets a ball of
radius β is placed inside E(P (ρ), 1) and β is maximized. If
B = {x|xTx ≤ β} then B ⊂ E(P (ρ), 1) holds if

βI ≤ Q(ρ) (15)

In practical applications it is worth limiting the compen-
sator input v1 in order to avoid large jumps in the control
signal. Prescribing a direct gain limit K(ρ)TK(ρ) ≤ k2maxI
([6]) cannot be applied in LPV case because it leads to
nonlinear constraints in the free variables. Instead, the norm
of v1 is limited over E(P (ρ), 1) by involving an additional
LMI condition [1]:[

v2maxI L(ρ)
L(ρ)T Q(ρ)

]
> 0 (16)

Summarizing the results, we get a similar optimization
problem as in LTI case:

max
Qi,Xi,Li,WM ,WR

β

subject to (13), (14), (15), (16), for all (ρ, ν) ∈ G (17)
From the obtained parameters the compensator gain can be
computed as K(ρ) = L(ρ)Q(ρ)−1.

IV. ELIMINATION OF VARIABLES

In this section an approach is proposed for decreasing
the complexity of the design procedure (17). The method
is based on eliminating unknowns L(ρ) and WR from the
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[
ẋaw
δ̇aw

]
=

(
A(ρ) Bu(ρ)
Kx(ρ) Kδ(ρ)

)[
xaw
δaw

]
−
(
Bu(ρ) 0

0 I

)
qε +

(
Bu(ρ) 0

0 I

)[
σM
σR

]
(8)

zaw = Cz(ρ)xaw +Dzu(ρ)satMε (δaw) +Dzu(ρ)σM

Ω = He


1
2

∑p
i=1

∂P (ρ)
ρi

νi + P (ρ)

[
A(ρ) + αIn Bu(ρ)
Kx(ρ) Kδ(ρ) + αIm

]
P (ρ)

[
−Bu(ρ) 0

0 −Im

]
U

([
0 Im

Kx(ρ) Kδ(ρ)

]
−H(ρ)

)
−U

 (12)

He

 ∂Q(ρ, ν) +

[
A(ρ) + αIn Bu(ρ)

0m×n αIm

]
Q(ρ)[

0m×n Im
0m×n 0m

]
Q(ρ)−X(ρ)

[
−Bu(ρ)WM 0

0 −WR

]
[
−WM 0

0 −WR

]
+ He


0n×m

Im
0m
Im

L(ρ)
[
Im+n 0(m+n)×2m

] ≤ 0

= Φ(ρ, ν) + Y TL(ρ)Z + ZTL(ρ)TY ≤ 0 (13)

synthesis inequalities. To derive the modified procedure we
prove first the following lemma:

Lemma 2. Consider the following matrix inequality P11 P12 +XT P13

PT12 +X P22 0
PT13 0 P33

 < 0 (18)

in free variable X . This inequality has an unstructured
solution X if and only if(

P11 P13

PT13 P33

)
< 0 and

(
P22 0
0 P33

)
< 0 (19)

Moreover, if the conditions above hold then all solutions of
(18) can be expressed in closed form as follows:

X = −PT12 + (−P22)1/2K(P13P
−1
33 P

T
13 − P11)1/2 (20)

where K is an arbitrary contraction matrix, i.e. KTK < I .

Proof. The proof of the solvability conditions (19) can be
found e.g. in [14] or can be easily checked as follows. The
necessity of (19) is trivial: it is enough to cancel the first
or second block row/column of (18). For sufficiency, note
that P33 < 0 (consequence of the second inequality of (19))
and thus (18) is equivalent to the following inequality (Schur
complement)(

P11 P12 +XT

PT12 +X P22

)
−
(
P13
0

)
P−133

(
PT13 0

)
< 0 (21)

If (19) holds then the diagonal blocks are negative. Any X
rendering the off-diagonal block zero (e.g. X = −PT12) is a
suitable solution of (18).

Now we can prove formula (20). For this, (21) is rewritten
first as follows(

P11 − P13P
−1
33 P

T
13 P12 +XT

PT12 +X P22

)
< 0

Since P22 < 0 (second inequality of (19)) the Schur theorem
can be applied again. The inequality above is thus equivalent
to

P11 − P13P
−1
33 P

T
13 − (P12 +XT )P−1

22 (PT12 +X) =

= Π− P12P
−1
22 P

T
12 − P12P

−1
22 X −X

TP−1
22 P

T
12 −XTP−1

22 X

=
(
I
X

)T (Π− P12P
−1
22 P

T
12 −P12P

−1
22

−P−1
22 P

T
12 −P−1

22

)(
I
X

)
< 0

where Π = P11 − P13P
−1
33 P

T
13. The solvability conditions

imply that Π < 0. So, we can perform the following
factorization:(

Π− P12P
−1
22 P

T
12 −P12P

−1
22

−P−1
22 P

T
12 −P−1

22

)
= MT

(−I 0
0 I

)
M

where

M =

(
(−Π)1/2 0

(−P22)−1/2PT12 (−P22)−1/2

)
By applying the matrix inverse lemma the inverse of M can
be expressed as follows:

M−1 =

(
(−Π)−1/2 0

−(−P22)1/2(−P22)−1/2PT12(−Π)−1/2 (−P22)1/2

)
=

(
(−Π)−1/2 0

−PT12(−Π)−1/2 (−P22)1/2

)
=
(
N11 N12
N21 N22

)
From M−1 all solutions of (18) can be generated by Möbius

transformation [15]:

X = (N21 +N22K)(N11 +N12K)−1

= −PT12 + (−P22)1/2K(−Π)1/2

where K is an arbitrary contraction.

Remark 1. The solvability conditions (19) of Lemma 2. have
already been proved in several papers and books (e.g. [14]).
The novelty in Lemma 2. is formula (20) describing all
solutions of the LMI.

Remark 2. Note, the solution X is linear in K. This makes
it possible to use K as a decision variable in a linear matrix
inequality.

To apply Lemma 2. to the synthesis inequalities, (13) has
to be transformed first to the required form. For this, con-
sider the following nonsingular, linear transformation S =
(S1 S2 S3 S4) with S3 = Y⊥

⋂
Z⊥, (S1 S3) = Y⊥,

(S2 S3) = Z⊥, where Y⊥ and Z⊥ denote the orthogonal
complements of Y and Z, respectively. In our case S takes
the following form:

S = (S1 S2 S3) =

 In 0 0 0
0 Im 0 0
0 0 0 Im
0 −Im Im 0

 , S4 = ∅

Then, instead of (13), we can consider the transformed
inequality ST (13)S < 0:

(Y S)TL(ρ)(ZS) + (ZS)TL(ρ)Y S + STΦ(ρ, ν)S < 0 (22)
By using (23), (22) can be rewritten as follows:

He

 Φ11(ρ, ν)
Φ21(ρ, ν)− Φ41(ρ)
Φ41(ρ) + L11(ρ)

Φ31(ρ)

Φ12(ρ, ν) 0 −BuWM
Φ22(ρ, ν)− Φ42(ρ) 0 0

Φ42(ρ) +WR + L22(ρ) −WR 0
Φ32(ρ) 0 −WM

 < 0 (24)

Now we can apply Lemma 2. to the set of linear matrix
inequalities generated by (24) at grid points (ρ, ν) ∈ G. In
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(Y S)TL(ρ)(ZS) =

0n×m
0m
Im
0m

L(ρ)

[
In 0 0 0
0 Im 0 0

]
=

 0n 0 0 0
0 0m 0 0

L11(ρ) L12(ρ) 0m 0
0 0 0 0m



STΦ(ρ, ν)S = He

 Φ11(ρ, ν) Φ12(ρ, ν) 0 −BuWM

Φ21(ρ, ν)− Φ41(ρ) Φ22(ρ, ν)− Φ42(ρ) 0 0
Φ41(ρ) Φ42(ρ) +WR −WR 0
Φ31(ρ) Φ32(ρ) 0 −WM

 (23)

our case the solvability conditions amount to the following
inequalities:

He

(
Φ11(ρ, ν) Φ12(ρ, ν) −BuWM

Φ21(ρ, ν)− Φ41(ρ) Φ22(ρ, ν)− Φ42(ρ) 0
Φ31(ρ) Φ32(ρ) −WM

)
< 0

for all (ρ, ν) ∈ G and He
(−WR 0

0 −WM

)
< 0

The second inequality always holds by definition, while
the first is equivalent to (25) Thus, WR and L(ρ) have
been successfully eliminated. The synthesis procedure will
consist of two steps. In the first step, the domain of attraction
(β) is maximized subject to the solvability condition (25)
(and (14), (15)), then, in a second step, the formula (20) is
applied to reconstruct and shape the compensator gain K.
More formally, the following optimization problem has to
be solved first:

max
Qi,Xi,WM

β

subject to (25), (14), (15) for all (ρ, ν) ∈ G

By applying formula (20) the missing variable L (containing
the compensator gain) can be expressed by using the obtained
Q,X,WM matrices: the formula can be seen under reference
(26). The free parameters in (26) are only the contraction K
and the positive definite diagonal matrix WR; they will be
used to shape the feedback gain in a second step. For this,
define the following LMI feasibility problem:

Find K̄,WR s.t.[
v2maxI La +

√
2K̄Lb

LTa + LTb K̄
T
√

2 Q(ρ)

]
> 0,∀(ρ, ν) ∈ G, (27a)

and
[
WR K̄
K̄T I

]
> 0,(27b)

The first inequality limits v1 inside E(P (ρ), 1) and is
obtained by introducing K̄ = W

1/2
R K and substituting (26)

into (16). The second inequality is equivalent to KTK < I ,
which prescribes for K to be a contraction. (Note that,
the number of free variables in (27a) and (27b) can be
further increased if K̄ is defined in parameter-dependent,
- e.g. affine - form.) Having determined K and WR the
parameter-dependent feedback gain can be computed as
follows: K(ρ, ν) = L(ρ, ν)Q(ρ)−1.

Remark 3. Note that, the solution L above depends on both
ρ and ν. This is not surprising if one compares this result
with other LPV (control-) design methods, see e.g. [18],
where the controller reconstructed from the solution of the
reduced synthesis LMIs depends on the time derivative of the
scheduling parameter as well. If ρ̇ is difficult to measure or
estimate one can choose K ≡ 0, since La does not depend on
ν. An other, rather practical solution could be the following:
after solving (25), all or some of the variables Qi, Xi and
WM can be fixed and then the original inequality (13) can
be re-solved for K and WR. In this case the parameter-
dependence of K has to be a-priori fixed (e.g. in affine form).
Since (25) does not guarantee that (13) has a solution in
the fixed, specific structure, therefore this practical feedback
construction procedure may fail.

Remark 4. If one compares our approach to other methods,
(see e.g. [18] or [14]) one significant difference can be found:
although all approaches eliminate the controller variable
from the synthesis inequalities, the methods in the cited
papers construct then only one, particular controller from
the solution of the reduced LMIs. In our case there is a
parameterized set of possible feedback gains from which the
designer can select the ”best one” via optimization ((27)).

Remark 5. By applying variable elimination we might ex-
pect larger domain of attraction, because in this case the
structure of L and K is not a-priori fixed.

V. NUMERICAL EXAMPLE
The AW design procedure and the applicability of the

parameter-dependent compensator are demonstrated on a
simple LPV plant:

A(ρ) =
[ −0.5 1

0.8 −0.4

]
+ ρ

[ −0.4 1
0.9 −0.4

]
Bu(ρ) =

[ −0.2
−5

]
+ ρ

[ −0.6
2

]
, Cz = [1 0], Dzu = 0;

We assume −0.2 ≤ ρ ≤ 0.8, −5 ≤ ν ≤ 5 and both states
are available for measurement. The aim of the control is to
track a given reference signal with output z. For this, the
following servo controller has been designed:

yc = Kc(ρ)
[
x1
x2
eI

]
, eI =

∫
r − z dt

Between the controller output and plant input there is an
actuator with magnitude and rate limits: M = 1 and R = 10.
The scheduling parameter is varying according to Figure
2. The nominal and the saturated closed loop responses
are depicted in Figure 3. It can be seen, the saturation
results in the loss of stability, so the design of anti-windup
compensation makes sense. At first the design with the full
parameter set (Section III) was performed. This was followed
by the 2-step procedure using reduced complexity LMIs
(Section IV). In both cases the decay rate was α = 2. We
obtained βfull = 0.0369 with the first and βelim = 0.0372
with the second algorithm. The closed loop responses are
plotted also in Figure 3. (The time derivative of the controller
output (ẏc) was computed approximately by using the filter
s/(0.01s + 1)). It can be seen, that both algorithms gave
acceptable solutions, but the compensator generated by the
2-step procedure provided better performance. The reason of
the better transients is that the structure of the compensator
gain was not fixed a-priori. (In the 2-step procedure the
contraction K was determined via optimization (27) so
the compensator gain depended also on ν). The difference
between the fully parameterized and the reduced complexity
synthesis is more straightforward if one decrease α to 0.01
e.g. to increase the domain of attraction. In this case the
fully parameterized design fails with numerical problems,
while the reduced complexity synthesis still provides a
feasible solution. (We obtained β = 3.0320, which indicates
significantly larger domain of attraction.)

VI. CONCLUSION
In this paper the LTI anti-windup compensator design pre-

sented in [6] has been extended to parameter-varying plants.
Two synthesis method have been derived: in the first case
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He

∂Q(ρ, ν) +

(
A(ρ) + αIn Bu(ρ)

0 αIm

)
Q(ρ)−

(
0 0

X21(ρ) X22(ρ)

)
−BuWM

0

[0 Im]Q(ρ)− [X11(ρ) X12(ρ)] −WM

 < 0 for all (ρ, ν) ∈ G (25)

L(ρ, ν) = −[Φ41(ρ) Φ42(ρ) +WR] +
√

2W
1/2
R K ·

([
Φ31(ρ)T −BuWM

Φ32(ρ)T

]
(−2WM )−1

[
Φ31(ρ)T −BuWM

Φ32(ρ)T

]T
−He

[
Φ11(ρ, ν) Φ12(ρ, ν)

Φ21(ρ, ν)− Φ41(ρ) Φ22(ρ, ν)− Φ42(ρ)

])1/2

= La +
√

2W
1/2
R KLb (26)
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Fig. 3. Simulation results with α = 2: output (top) and control input
(bottom). 4 simulations are plotted: nominal closed loop (black), the effect
of saturation (red), compensator of Section III (magenta), compensator of
Section IV (blue).
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Fig. 4. Simulation results in case of α = 0.01: output (top) and control
input (bottom). Nominal closed loop (black) and compensator of Section
IV (blue). (The fully parameterized design (Section III) has failed.)

more free variables are involved and the structure of the com-
pensator is fixed. In the second algorithm the compensator
gain is eliminated from the synthesis; only the Lyapunov
function and the domain of attraction is determined first.
The compensator gain is computed in a second step, from
the parameterized set of all solutions of the synthesis LMIs. It
was shown that this second approach has notable advantages
over the first method: it is less conservative, as the parameter

dependence of the feedback gain is not fixed a-priori and it
is computationally more attractive, because it involves less
free variables. The approaches are compared on a simple
LPV plant.

ACKNOWLEDGMENT
The research leading to these results has received funding from the

European Union Seventh Framework Programme (FP7/2007- 2013) under
grant agreement n 2314544. Reconfiguration of Control in Flight for Integral
Global Upset Recovery (Reconfigure) project, Andres Marcos coordinator.

REFERENCES

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory, volume 15 of Studies in
Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), 1994.

[2] G. Ferreres and J.-M. Biannic. Convex design of a robust antiwindup
controller convex design of a robust antiwindup controller for an LFT
model. IEEE Transactions on Automatic Control, 52(11):2173–2177,
2007.

[3] F. Forni and S. Galeani. Gain-scheduled, model-based anti-windup for
LPV systems. Automatica, 46:222–225, 2010.

[4] F. Forni, S. Galeani, and L. Zaccarian. Model recovery anti-windup
for plants with rate and magnitude saturation. In Eurpean Control
Conference (ECC), pages 324–329, 2009.

[5] F. Forni, S. Galeani, and L. Zaccarian. An almost anti-windup scheme
for plants with magnitude, rate and curvature saturation. In American
Control Conference, pages 6769–6774, 2010.

[6] F. Forni, S. Galeani, and L. Zaccarian. Model recovery anti-windup
for continuous-time rate and magnitude saturated linear plants. Auto-
matica, 48:1502–1513, 2012.

[7] S. Galeani, S. Onori, A.R.Teel, and L. Zaccarian. A magnitude and
rate saturation model and its use in the solution of a static anti-windup
problem. Systems & Control Letters, 57:1–9, 2008.

[8] S. Galeani, S. Tarbouriech, M. Turner, and L. Zaccarian. A tutorial on
modern anti-windup design. In European Control Conference (ECC),
pages 306–323, 2009.

[9] J. M. Gomes and S. Tarbouriech. Antiwindup design with guaranteed
regions of stability: An lmi-based approach. IEEE Transaction on
Automatic Control, 50:106–111, 2005.

[10] A. Marcos, M. C. Turner, and I. Postlethwaite. An architecture for
design and analysis of high-performance robust antiwindup compen-
sators. IEEE Transactions on Automatic Control, 52(9):1672–1679,
2007.

[11] E. Prempain, M. C. Turner, and I. Postlethwaite. Coprime factor based
anti-windup synthesis for parameter-dependent systems. Systems &
Control Letters, 58:810–817, 2009.

[12] C. Roos and J.-M. Biannic. A convex characterization of dynamically-
constrained anti-windup controllers. Automatica, 44:2449–2452, 2008.

[13] C. Roos, J.-M. Biannic, S. Tarbouriech, C. Prieur, and M. Jeanneau.
On-ground aircraft control design using a on-ground aircraft control
design using a parameter-varying anti-windup approach. Aerospace
Science and Technology, 14(7):459–471, 2010.

[14] C. Scherer and S. Weiland. Lecture Notes DISC Course on Linear
Matrix Inequalities in Control. 1999.
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