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Abstract: The class of isotherm lumped process systems with constant overall mass in each
of its balance volumes is considered in this paper. It is shown that the convection and transfer
mechanisms can be described by a mass action law chemical reaction network (MAL CRN) with
only linear kinetics where the in- and outflow terms are represented using the zero complex.
This gives rise to a convection and transfer reaction sub-graph that connects atomic complexes
consisting of the components in the balance volumes of the system. The real chemical reactions in
each of the balance volumes can be described by their own CRNs, where the chemical reaction
sub-graphs may be disconnected from the convection and transfer reaction sub-graph when
nonlinear reactions occur. In the case of chemical reactions with a finite number of steady state
points, the underlying linear dynamical system enables us to construct a dynamically similar
linear overall reaction graph for the whole process system. The resulting overall reaction graph

can be used for structural stability analysis by applying its graph theoretical properties.
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1. INTRODUCTION

Process systems are often highly nonlinear with a wide
range of nonlinear phenomena that make their dynamic
analysis and control a challenging task. The major sources
of the nonlinearity in process systems are the chemical
reactions. A separate special positive nonlinear system
class, the chemical reaction networks (CRN) with mass
action law (MAL) kinetics has been formed to characterize
their nonlinear dynamic behavior. It has been shown
that the MAL CRN system class is a wide class, that is
often used to model complex biological mechanisms [9], or
even models of application fields far from chemistry such
as mechanical or electrical systems [10]. The increasing
interest for this field is shown by numerous surveys and
tutorials in different journals [11], [2] ,[1].

Motivated by the fact that MAL CRNs exhibit all the
qualitative dynamic behavior patterns (e.g. oscillations,
chaotic behavior, stable and unstable equilibrium points)
that a lumped process system with smooth nonlinearities
may show, it is interesting to study the possibility of
deriving a MAL CRN representation, i.e. a model in MAL
CRN form for them. That would enable to use the strong
structural results available in chemical reaction network
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theory for dynamic analysis (stability, controllability, etc.)
and controller design of complex nonlinear process sys-
tems.

The aim of this paper is to make the first step towards
the development of MAL CRN representation of lumped
nonlinear process systems in the simplest possible case,
when isothermal and isobaric conditions are assumed with
constant overall mass in each of the balance volumes. A
possible way of using the graph-theoretical properties of
the constructed reaction graph of the CRN representation
for structural stability analysis is also demonstrated.

2. BASIC NOTIONS

Consider a lumped process system, where each of its
balance volumes are perfectly stirred (lumped). Then
its dynamic model is in the form of a set of ordinary
differential equations (possibly equipped with algebraic
equations, but we assume that these can be substituted
into the balance equations).

In order to have the simplest possible case, the following
general assumptions are made:

(1) constant temperature, i.e. no energy balance equa-
tions are considered,

(2) constant pressure (in-compressible fluid phases),

(3) constant physico-chemical properties.



N lumped balance volumes are considered in the system
that are described using the following quantities.

e The convection between balance volumes are de-
scribed by mass flow rates ¥/ ¢ from balance volume i
to j, that are measured in units kg/s.

e The concentration (measured in mol/kg) of compo-
nent (or specie) A in balance volume j is denoted by
FA] = Jes.

e The reaction rate constants are denoted by k¢ ;, where
the pair £, is the identifier of the reaction.

e Mass transfer coefficients (including the transfer area)
are used for characterizing the transfer between bal-
ance volumes ¢ and j, that are denoted by UK, and
WK = T"K.

2.1 Dynamic model equations

Under the general assumptions above, the model equations
originate from the overall mass (‘m) and component
masses (‘ms = ‘m'cs,s = 1,...,L) balances for each
balance volume, respectively. These dynamic balances are

of the following general form for lumped balance volumes
[7]:
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The first two terms on the right-hand side of the above
equation correspond to the in- and outbound convection
terms, while in the source or sink terms may correspond
to various other mechanisms. For the sake of simplicity

we only assume to have the following most common
mechanisms:

e component mass transfer between two balance vol-
umes connected by a joint boundary,
e chemical reactions within any balance volume.

2.2 Chemical reaction networks and the reaction graph

A CRN obeying the mass action law is a closed system
where chemical species Ag;, s = 1,...,L take part in
r chemical reactions. The concentrations of the species
denoted by ¢g, (s = 1,..,L) form the state vector c,
ie. ¢ = [Ag]. The elementary reaction steps have the
following form:
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where a; is the so-called stoichiometric coefficient of com-
ponent A, in reaction C; — Cj, and 3 is the stoichiomet-
ric coefficient of the product As. The linear combinations
of the species in Eq. (2), namely C; = Zle oA and
C = Zle BsiAs are called the complexes and are de-
noted by Cy,Cy, ..., C,,. Reactions may share complexes
in complex reaction schemes, therefore m is generally not
equal to the number of reactions. Moreover, reactions are
assumed to be irreversible in classical reaction kinetic sys-
tems, therefore the stoichiometric coefficients are always
nonnegative integers.

The reaction rates of the individual reactions C; — ()
can be described as

L L
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where kj; > 0 is the reaction rate coefficient of the
reaction.

In our computations, the following form will be used for
the description of the dynamics of CRNs obeying the mass
action law [5]:

c=Y A o(c) (4)

where as; = Y5, ¥V € REX™ gtores the stoichiometric
composition of the complexes, Ap € R™*™ contains
information about the structure of the reaction network,
and ¢ : RY +—» R™ is a monomial-type vector mapping
given by

L
pi(c) =], i=1,...,m (5)
s=1

Ap is a column conservation matrix (i.e. the sum of the
elements in each column is zero), called the Kirchhoff
matriz of the CRN, defined as

=) ke ifl=j
(=1 (6)
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It is important to note that the pair (Y, Ax) uniquely

characterizes a particular CRN with its structure and
parameters.

Apij =

To handle the exchange of materials between the envi-
ronment and the reaction network, the so-called "zero-
complex" can be introduced and used which is a special
complex where all stoichiometric coefficients are zero i.e.,
it is represented by a zero column vector in the Y matrix
[5]. Note, however, that the presence of the zero complex
may imply the openness of the reaction kinetic system.

Similarly to [5] and many other authors, the following
weighted directed graph (called reaction graph) is as-
signed to the reaction network (2). The directed graph D =
(Via, Eq) of a reaction network consists of a finite nonempty
set Vy of vertices and a finite set E; of ordered pairs of
distinct vertices called directed edges. The vertices corre-
spond to the complexes, i.e. Vg = {C1,Cy,...Cyp}, while
the directed edges represent the reactions, i.e. (C},C;) €
Eq4 if complex C; is transformed to C; in the reaction
network. The reaction rate coefficients k; j for j =1,...,m
in (3) are assigned as positive weights to the corresponding
directed edges in the graph.

An example of a reaction graph is seen in Fig. 2.

2.8 Simple example

In order to illustrate the constructions, the following
simple nonlinear example will be used.

The process system consists of a reactor and a separator
shown in Fig. 1.

In the reactor we consider a set of chemical reactions
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Fig. 1. The flowsheet of the process example
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Fig. 2. The simple reaction graph
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The reaction graph of the above chemical reaction network
is depicted in Fig. 2. It is assumed that only component
A5 enters the system from the environment, and only
component Az leaves it. The separator is ideal in the sense
that it separates A; and As to the gas phase, where Ag is
not present.

3. THE CONVECTIVE AND TRANSFER NETWORK

Besides chemical reactions, mass and component mass
convection and transfer are the major mechanisms in
an isothermal process system [7]. These are both linear
mechanisms in the simplest case, therefore an equivalent
linear chemical reaction network (CRN) model is expected.

3.1 Mass convection and transfer terms for a single
balance volume

Further we assume that the overall mass ‘m of each balance
volume (i =1,...,N ) is constant. This implies

Z”q = ”q (8)

7=0

The component mass conservation equations can be writ-
ten separately for each component (no cross-effects be-
tween the convection-transfer processes of the individual

components) with concentration ‘c in the ith balance vol-
ume in the following form

i, d(l Zﬂ JC_ZUqZC—FZﬂ

where /'K is the mass transfer coefficient and “R is the
overall reaction rate for the component. The mass transfer
coefficients obey the identity /'K = 'K

Je=te)+ 'miR (9)

The reaction-kinetic analogue form of the above conserva-
tion equation is then obtained in the following form
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(10)

Model properties Consider the case when no reaction
occurs, i.e. "R = 0. Then the equations (10) have the
following properties.

(1) The equations correspond to an open system model,
since the summation starts at j = 0, therefore the
convection and transfer to and from the environment
(the balance volume with index 0) are also taken into
account.

(2) No balances are written for the environment, and the
concentration of any component in the environment
Y¢ is considered as a constant.

(3) The above model is linear and of reaction kinetic
type, since the coefficient of ‘c is negative, while the
cross-effect terms are always positive.

(4) One can construct dynamic equations of the form of

(10) separately for each component, i.e. for ‘c €
{ ¢1,..., ¢} in the balance volume ¢ with the same
coefﬁcients but with a different inlet concentrations
Je,5=0,...,N, since only the chemical reactions can
transform the components to each other.

3.2 Connecting balance volumes

In order to investigate the reaction kinetic model of the
convection and transfer network only, we assume that
no chemical reaction is taking place. Since the dynamic
equations for the components are independent of each
other (see property (4) above), we only consider a general
component with concentration ?c in the ith balance volume
when developing the overall model of the convection and
transfer network.

Let us denote the combined coefficient of convection and
transfer from the jth balance volume to the ith balance

volume by 7Q - - -
iQ = (gt K) (11)

with /K = %K. Then the overall dynamic model of
the convection and transfer network is the following set

of linear in-homogeneous ordinary differential equations
(ODES)

N i ij
ZrQ jc] ng e, i=1,..,N (12)

7=0



where %¢ is constant.

3.3 The reaction kinetic model of the convective and
transfer network

The reaction graph of a single component The reaction
kinetic model of the convective and transfer network of
a given component will be constructed from the ODE
model (12) in the form of % = Y Ayp(z), where z is
the component concentration vector of the CRN, Y is the
stoichiometric matrix, Ay is the Kirchoff-matrix, and ¢(x)
is the vector of the reaction monomials.

Because the system is not closed, we need to use the zero
complex that corresponds to the environment. Then we
have N + 1 pseudo-components in the systems that form
the set of complexes, such that

z=[te,.., Ve, 1IT  pi(x) =24, i=1,...,N+1 (13)
I | o

Y=|-—+—— (14)
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where I is an N x N unit matrix and Y € RV +IxN+1

We can construct the upper block of the Kirchhoff matrix
Ay, from Eq. (12)

N 1jQ NlQ 01Q 0
2T, Ty Loy
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The last row in Ay with elements aq, ...,an+1 can be used
to ensure the column conservation property, such that

a; = Zz - Z
m Im

=0 j=1

(16)

The actual value of the ith last row element depend on the
sign of a; above:

e if a; > 0 then a; = a; (this induces a pseudo
convection-reaction to the environment from the ith
balance volume),

e if a; < 0 then a; = 0 and Ak,ii = A” — (NIZ', that means
a pseudo-convection reaction from the environment
to the balance volume.

The overall reaction graph Because both the convection
and the transfer of any component depends only on the
concentration of this component in a certain balance
volume, therefore the sub-graph in the reaction graph that
describes its convection and transfer network are disjoint
from the sub-graphs belonging to any other component,
except for the pseudo-component that corresponds to the
zero complex, that corresponds to the environment.

The structure of the graph is then partitioned into sub-
graphs G;, where the nodes in G; correspond to the
concentration of the ith component in the balance volumes
of the process system, i.e. Vg, = { J¢; | j = 1,...,N }
The zero complex that corresponds to the environment
connects these sub-graphs together.

8.4 The CRN representation of the convective and transfer
network in the simple example

The reaction graph of the convective and transfer network
in the simple example without the pseudo convection-
reactions to and from the environment is seen in Fig.
3. The sub-graphs G;, ¢ = 1,2,3 of the components
A;, i =1,2,3 are also indicated by rectangles.
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Fig. 3. The reaction graph of the convection and transfer
network in the simple example

4. THE CHEMICAL REACTION NETWORK

We consider CRNs with mass action type kinetics, that are
taking place in each of the balance volumes of the process
system. The structure of these CRNs can be conveniently
described by reaction graphs (we shall call them chemical
reaction graphs), that will not be connected to each
other and may not be connected to the convection and
transfer reaction graph.

4.1 The reaction graph of the CRNs

The components and complexes of a chemical reaction
network that belong to the ith balance volume (denoted by
‘Ag,s=1,...,Land ‘C;,l = 1,...,m) are all different from
the components and complexes of any other balance vol-
ume, because convection or transfer is needed to "produce"
‘A from A, (or vice versa) that are described as linear
pseudo-reactions in our framework. This implies, that any
pair of the chemical reaction graphs ‘Dg and 7 Dg
of the CRNs are vertexr and edge disjoint. These
chemical reaction graphs are the reaction sub-graphs of
the overall reaction graph of the process system.

Furthermore, there exists a joint vertex between the overall
convection and transfer network and any of the chemical
reaction graphs ‘D¢ if there exists a linear reaction in
the corresponding CRN, i.e. a complex ‘C; such that
iC; = A, for some s and [. Otherwise, the chemical
reaction graph ‘D¢ will be vertex and edge disjoint from
any other reaction sub-graphs of the system, and therefore
it will be a connected component in itself.



The overall reaction graph of the simple example As the
chemical reactions considered in the simple example are all
nonlinear, the overall reaction graph of this process system
is a union of two disjoint sub-graphs

e the chemical reaction graph shown in Fig. 2, and
e the convection and transfer reaction graph depicted
in Fig. 3.

The reaction graphs with non-connected sub-graphs do not
exhibit the key structural dynamical properties of the over-
all system (for example its structural controllability or ob-
servability), and require to combine the structural analysis
of the graph (for example to detect if it is reversible) with
algebraic analysis of the characterizing matrices A, and
Y (for computing the deficiency). Therefore, we construct
the structure graph of a dynamically similar linear CRN
instead.

4.2 The underlying dynamically similar linear CRN

First we recall that the convective and transfer network of
any isotherm process system is a classical linear compart-
mental system and thus it is equivalent to a linear CRN,
where the complexes, i.e. the nodes of the reaction graph,
are the components A; in a balance volume. Then, there
will be any joint complex between the reaction graph of the
chemical reaction and that of the convection and transfer
network, if there are linear chemical reactions taking place
in that balance volume.

In order to overcome this difficulty and to be able to join
the reaction graphs originating from the chemical reaction
and the convection and transfer network, we will replace
the original nonlinear CRN with its dynamically similar
linear CRN [8]. The following additional assumptions are
needed for this purpose.

(1) The original nonlinear CRN has a single equilibrium
point within each stoichiometric compatibility class
in the positive orthant.

(2) The number of complexes m is greater than the num-
ber of components L (m > L), and the stoichiometric
matrix Y is of full rank.

Constructing the dynamically similar linear CRN Under
the above conditions on a nonlinear CRN, its dynamically
similar linear CRN can be constructed as follows [8].

First we decompose Y7 € R™*L by possibly permuting
its rows to get its block-matrix form

Y*T

NEYy T

where Y* is a square (L x L) invertible matrix.

vy = (17)

Then we decompose the rectangular matrix Y Ay into two
blocks as YA = [ W, | W,]. Then the square (L x L)
matrix

My =Y*" (W, + WLNY) (18)
determines the reduced linear mapping. Note that this
matrix is not of full rank, because its second factor, (W, +
W, N{) is rank-deficient.

The above construction gives rise to the construction of
a dynamically similar L dimensional linear CRN with the
reduced stoichiometric matrix Y = I and A, = My in Eq.
(18).

4.8 The linear CRN representation of the simple example

The reaction graph of the dynamically similar linear chem-
ical reaction network of the nonlinear CRN in Fig. 7 is
depicted in Fig. 4. The details of the construction can be

Fig. 4. The reaction graph of the dynamically similar linear
CRN

found in [§].

5. THE CONNECTED CONVECTIVE-TRANSFER
AND CHEMICAL REACTION NETWORK AND ITS
USE FOR STABILITY ANALYSIS

5.1 The connection method

The overall reaction graph of an isotherm lumped process
system with constant overall masses in its balance volumes
are constructed in the following steps.

(1) Construct the convection and transfer network of each
component over each of the balance volumes in the
system: this results in a reaction graph with single-
component complexes.

(2) Construct the dynamically similar linear CRN for
each of the chemical reaction systems within its
respective balance volume and draw its reaction
graph. This will also be a reaction graph with single-
component complexes.

(3) Join the above obtained graphs along their joint
single-component complexes. This will increase the
connectivity of the overall reaction graph, that will
possibly lead to a connected weakly reversible (defi-
ciency zero) reaction graph proving the global struc-
tural stability of the original process system.

5.2 Structural stability analysis

Given the overall reaction graph of the connected convec-
tive-transfer and reaction network, one can use the cele-
brated Deficiency Zero theorem [6] for structural stability
analysis. This states that for a weakly reversible MAL CRN
of deficiency zero - but regardless of the positive values the
reaction rate coefficients take - the differential equations
of the corresponding reaction system have the following
properties: There exists within each positive stoichiometric
compatibility class precisely one steady state; that steady
state is asymptotically stable; and there is no nontrivial



cyclic composition trajectory along which all species con-
centrations are positive.

In the case of the overall reaction graph of the connected
convective-transfer and reaction network, one has an un-
derlying linear CRN to analyze, where the number of
complexes m is equal to the number of pseudo-species
L = m. Therefore, the CRN is deficiency zero, if the
reaction graph is connected, i.e. it has a single linkage class.
Furthermore, the CRN is weakly reversible, if whenever
there exists a directed path from complex C; to C; then
there also exists a directed path from Cj to C;. Therefore,
structural stability (i.e. stability for each possible reaction
rate coefficient value) of the system holds for connected
weakly reversible reaction graphs.

5.3 The reaction kinetic representation and structural
stability of the simple example

The overall reaction graph of the simple example is de-
picted in Fig. 5. The solid lines represent the convection

Fig. 5. The reaction graph of the simple example

and transfer edges, while the dashed lines originate from
the edges of the reaction graph of the dynamically similar
linear CRN.

The overall graph is clearly connected and weakly re-
versible, therefore the underlying process system is struc-
turally stable.

6. CONCLUSION

The class of isotherm lumped process systems with con-
stant overall mass in each of its balance volumes is con-
sidered in this paper. It is shown that the convection and
transfer mechanisms can be described by a mass action law
chemical reaction network (MAL CRN) with only linear
kinetics where the in- and outflow terms are represented

using the zero complex. This gives rise to a reaction sub-
graph connecting atomic complexes consisting of the com-
ponents in the balance volumes of the system.

The real chemical reactions in each of the balance volumes
can be described by their own CRNs, where the reac-
tion sub-graphs may be disconnected from the convection-
transfer reaction sub-graph in the case of nonlinear re-
actions. In the case of chemical reactions with a finite
number of steady state points within each stoichiometric
compatibility class, the underlying dynamically similar
linear system enables us to construct a linear overall CRN
for the whole process system.

Finally, the structural stability of the process system can
be shown using the deficiency zero theorem for this case,
if the overall reaction graph of the connected convective-
transfer and reaction network is connected and weakly
reversible.
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