
Analysis of myoelectric signals using a Field
Programmable SoC

Bence J. Borbély∗, Zoltán Kincses†, Zsolt Vöröházi‡, Zoltán Nagy∗§, Péter Szolgay∗§
∗Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, H-1083

†Institute of Informatics, University of Szeged, Szeged, H-6701
‡Dept. of Electrical Engineering and Information Systems, University of Pannonia, Veszprém, H-8200

§Cellular Sensory and Optical Wave Computing Laboratory, Hungarian Academy of Sciences, Budapest, H-1111

Abstract—A platform design for the analysis of human
myoelectric signals (MES) is presented. Offline recorded multi-
channel signals of forearm muscles are processed with a Field
Programmable SoC in order to classify different movement pat-
terns to control human-assisting electromechanical systems with
multiple degrees of freedom (e.g. a prosthetic hand). Benchmark
results of an ANSI C implementation are shown to assess the
raw performance of the built-in ARM cores of the SoC. Possible
computational bottlenecks are located based on the results and
custom hardware implementations are shown to fully utilize the
flexibility and performance of the used hardware platform.

I. INTRODUCTION

The non-invasive measurement and analysis of human
bioelectric signals has been an emerging field in the last
decades. Electric signals measured at different skin surface
locations have different characteristics. They can carry impor-
tant features of an individual’s current state of health via heart
monitoring (electrocardiogram, ECG), they can drive Brain-
Computer Interfaces if measured from the surface of the head
(electroencephalogram, EEG) or can tell specific movement
intents of patients with limb amputations if measured from the
covering skin of residual muscles (myoelectric signal, MES),
especially in the case of upper limb amputations.

In this study we focus on the processing and classification
of MES data to utilize the flexibility and performance of a Field
Programmable platform in a test environment for embedded
prosthesis control. As a prototype system a widely recognized
pattern recognition scheme was implemented to process four to
eight forearm MES channels using time-domain signal features
and an LDA classifier.

II. METHODS

A. The pattern recognition method

The idea behind the standard pattern recognition based
myoelectric control is to measure signals from multiple chan-
nels during different predefined isometric contractions of mus-
cles (different states) and store specific features of these
recordings as separate state descriptors (offline, supervised
learning). After this stage an online stream of data from the
same recording sites can be obtained and classified to cate-
gorize the actual signals into one of the trained classes. MES
data is non-stationary and stochastic in nature therefore most
of the related analyses apply processing windows to extract
descriptive features of the signal. In the current implementation
a 150 ms long processing window was used because it has

been shown that this length enables optimal performance for
this type of classifiers [1].

The spatial selectivity (the number of separable movement
classes) in the system is highly determined by the number
of separate recording channels. Previous studies justified that
in the case of lower arm recordings four channels of MES
are suitable to classify online measured data into one of six
separate classes with high efficiency [2]. Based on these results
we implemented a four-channel system as the basis of the test
environment, but for testing reasons we extended it to have
five, six and eight virtual channels to estimate performance in
more complex recording environments. Because we had only
four real channel recordings, six possible output classes were
used in every case.

In real prosthetic applications overall latency and response
time are critical factors of device acceptance which are de-
termined by the processing window length and the amount of
processing window shift (or sampling delay) during operation.
Among these two factors window shift value can be varied
to obtain different temporal resolutions, resulting that shorter
shifts yield better response times at the cost of computational
overhead.

1) Signal features: To characterize signal windows and to
reduce data dimension the standard four element time-domain
feature (TDF) set was calculated for each data window (150
ms) and channel in the performed simulations. These features
were the mean absolute value (MAV), number of zero cross-
ings (NZC), number of slope sign changes (NSSC) and the
waveform length (WL) as described in previous studies [3], [4].
It is important to note that these features give only estimations
of specific signal properties (e.g. NZC ∼ frequency) but it
has been shown that they provide as good basis as frequency-
domain features for classification of stationary signals for less
computational cost and induce lower latency in the system [2].

2) LDA classifier: To partition the feature space into six
subspaces (or classes) for pattern classification, linear discrim-
inant analysis (LDA) was applied as described in [5]. The
reason for using LDA is that it can reduce feature space
dimensionality taking the separate subspaces into account.
More specifically it finds those projection vectors in the
complete feature space (in this case with dimension of (4 TDF
× num. of channels)) which best separate the individual classes
when the dataset is projected. After the projection vectors are
calculated (num. of projection vectors � num. of feature space
dimensions) data points from the complete feature space are
projected to get a more separable set of target classes having



lower dimension (num. of projection vectors).
During online operation the actual recorded data is first

transformed into the feature space (by calculating its time-
domain features) followed by the projection to the same vectors
obtained with the LDA algorithm. The classification takes
place when these projected values are compared to the stored
projections of the target classes and class labels are assigned to
the data based on its distance (e.g. Euclidean geometry) from
the stored class values.

B. Recorded and simulated data

Four channels of MES were recorded (Fs =1 kHz, reso-
lution: 16 bit) from one subject during six different isometric
muscle contraction classes following the method described in
[6]. The recordings were performed independently from the
processing system. The recording electrodes were placed on
the forearm above the wrist flexors and extensors and on each
side of the forearm, roughly at middle length. Separate data
sets were recorded to train and test the classifier (with average
length of 25 s for each class). Testing was performed using
an appended array of test recordings in pseudo-random order
as the input stream. For simulation reasons the measured MES
data were extended to five, six and eight virtual channels using
a perturbed version of the original recordings.

C. Algorithm

The practical realization of the computational steps as
described previously is shown in Algorithm 1. It is important
to note that this implementation is used for offline testing
with previously measured training and test data, not for online
streaming and processing of the input signals. However, the
algorithmic design allows the extension of the system to have
real-time functionality with only minor modifications.

Algorithm 1 Offline EMG classification
1: procedure EMGCLASSMAIN(Nchannels,WinShift)
2: // Calculate and store the time-domain features of the

training dataset
3: PreprocessTrainingData(Nchannels,WinShift)

4: // Calculate and store the LDA projection vectors
which best separates the training dataset

5: TrainLDAClassifier(preprocessedData)

6: // Assign class labels to the test signal windows based
on the the separated training dataset

7: ClassifyTestData(inputData, LDAdata)
8: end procedure

The three main parts of the system were devel-
oped to allow easy separation of the main processing
steps. PreprocessTrainingData(Nchannels,WinShift) calcu-
lates and stores all time-domain features of the training data
based on the number of channels and the amount of processing
window shift, decreasing the dimensionality at the first place.
The second function, TrainLDAClassifier(preprocessedData)
calculates and stores the LDA projection vectors, which best
separates the training dataset in the time-domain feature space.
After these vectors are calculated, the training dataset is pro-
jected to reduce its dimension and prepare it for classification.

The practical procedure of LDA vector calculation involves
covariance and inverse matrix calculations, and determining
eigenvalues and eigenvectors of matrices of size N2

channels.
The last part, ClassifyTestData(inputData, LDAdata)

performs the classification of all input data window using LDA
projection vectors calculated during classifier training.

III. IMPLEMENTATION

1) The Zynq-7000 platform: To implement the EMG pro-
cessing system (Section II. A.) in hardware the Digilent
Zedboard [7] was chosen, which is based on a Xilinx Zynq
7020 SoC architecture [8]. The Zynq 7000 family integrates
the ARM Cortex-A9 dual core PS (Processing System) and the
28nm Xilinx Series-7 PL (Programmable Logic) fabric. The
unique features of this system are the tight integration of the
embedded microprocessor and the FPGA using standard AXI4
bus interfaces and the so-called processor centric approach,
where the PS is initialized in the first step and the PL is
configured in the second step during the startup sequence.

The Programmable Logic, which is based on the Xilinx’s
Artix FPGA family, is connected to the PS via several AXI4
interconnects; four 32-bit wide interfaces are dedicated to low
latency access to the registers of the peripherals implemented
in the PL. Four 64-bit wide high performance AXI4 buses are
available for fast transfer of large amounts of data between
the PL and the different memories. For tightly integrated co-
processors, which should share data with the software part
running on the PS, a specialized 64-bit wide coherent AXI4
bus connected to the snoop protocol of the L2 cache is also
available.

2) ANSI C implementation: The algorithm described in
Section II. C. was implemented in ANSI C on a lap-
top computer having an Intel Core i5-540M CPU run-
ning at 2.53 GHz. The extracted time-domain features were
MAV,NZC,NSSC,WL. Self-written implementations were
used for all numerical methods. Inverse matrix calculation was
performed based on Gauss-Jordan elimination. Because LDA
vector calculation needs only eigenvectors, but not eigenvalues
accurately, eigenvalues were only estimated using the QR
iteration with limited number of steps. The eigenvectors were
then accurately calculated applying the Inverse Iteration to the
estimated eigenvalues.

The development system was running Ubuntu Linux 12.04
LTS operating system and the gcc compiler was used to
generate executables. To compile the source onto the ARM
cores of the Zynq processor, gcc’s cross compiler version (arm-
linux-gnueabi-gcc) was used. For optimal performance the -O3
compiler option was applied in both situations.

3) The implemented architecture on FPGA: The proposed
architecture contains five main parts implemented on two
different places: on the hard-processor system (PS) fabric, and
on the PL (FPGA fabric) of the Zynq SoC. The ARM Processor
Core and the Memory Controller are located in the PS part of
the SoC, while the Vector Processor, the Preprocessor and
the Sensor Interface are implemented on the PL part of the
Zynq SoC. The high-level steps of the algorithm (described in
Section II. C.) are executed by the ARM Processor Core, while
the vector operations are performed by the Vector Processor.
These vector operations are required in the classification part
of the algorithm. The Preprocessor part is responsible for



ARM Processor 
Core 

Preprocessor 
unit 

Vector 
Processor 

Sensor Interface 

PL (FPGA fabric) 

Memory 
Controller 

Sensor 
data 

AXI Bus 

AXI Bus 

AXI Bus 

AXI Bus 

PS (Hard Processor System) 

E
xte

rn
a

l M
e

m
o

ry 
(se

n
so

r d
a

t a
 

sto
re

d
) 

Fig. 1. The overall system implemented on the Xilinx Zynq AP SoC

the calculation of the time-domain properties. The sensors
attached to the system are connected through the Sensor
Interface. Incoming data received from these sensors are stored
in the external DDR3 memory. The control of this external
memory and the load / store operations are handled by the
Memory Controller. All of the units communicate to each other
using AXI-4 Interconnect. The block diagram of the proposed
architecture is depicted in Figure 1.

4) The Preprocessor unit: Time-domain properties of the
measured signal is computed by using specialized processing
elements. Using these properties the actual EMG interval can
be characterized by less data than using the whole data window
(as described previously in Section II. A.). This unit contains
eight main components that utilize data of the same processing
window. The components of the Preprocessor unit are:

The MAV (Mean-of-Absolute Value) Unit calculates the
average of the summed-absolute values inside a processing
window.

The MAVS (Mean of Absolute Value Slope) Unit utilizes
the former results carried out by the MAV Unit, and it will
simply make the difference of the average of absolute values on
each successive window. Therefore this value can be calculated
as a difference of two consecutive MAV values [3]

The RMS (Root Mean Square) Unit is responsible for
computing the average (mean) of squared data which are
located within a processing window.

The WAMP Unit is responsible for calculating the Willison
amplitude. This component counts all amplitude changes of
incoming signals within a processing window, which are higher
a given threshold level [9].

The NZC (Number of Zero Crossings) Unit determines all
possible zero-crossings on an incoming signal, at these points
the difference between the values with opposite signs are larger
than a pre-defined threshold. In these cases, the threshold is
necessary to eliminate false zero-crossings, which may arise
from environmental noise [4].

The NSSC (Number of Slope Sign Changes) Unit will
determine the number of direction of changes, in which cases
the first or the last changes among three consecutive values are
larger than a predefined limit [4]. This limiting factor comes
from the filtering out of external environmental noise.

The VAR (Variance) Unit gives the variance within a
processing window, which is considered to be proportional to
the force produced by the muscle [9].

Finally, the role of the WL (Waveform Length) Unit is to

calculate the length of the waveform, which is a characteristic
feature of signal complexity [3]. As it can be seen, more
time-domain feature are calculated in the Preprocessor Unit
than in the C implementation. The reason for this is the higher
computational efficiency of the custom PL implementation
compared to the ARM cores and to allow better flexibility
of the system for later testing conditions. The implementation
and simulation process of Preprocessor unit was completed
in Xilinx ISE Design Suite 14.2 [8]. Both the general (6-
input LUTs, D Flip-Flops, Slices) and the dedicated (DSP48
multiplier slices, 36Kbit Block RAMs) resource requirements,
and the maximal reachable clock frequency of the implemented
Preprocessor unit were investigated. Moreover, it has been ex-
amined how the number of parallel analysis windows changes
if the size of sampling windows increases.

The resource utilization (Table I) shows that increasing
the size of sampling windows will only moderately increase
the resource requirements of the Preprocessor unit. Because
a sampling window typically contains N samples (between
50 and 250 elements) in practice, the general and dedicated
resource utilization of the Preprocessor unit was investigated
between 50 and 300 samples, where sample number increased
by 50 in each step. The available resources and the device
utilizations for Xilinx Zynq 7020 AP SoC are summarized
below on Table I.

The maximum reachable operating frequency (∼ 140 MHz)
was also measured by using the Static Timing Analyzer tool in
the Xilinx ISE Design Suite. This means that the Preprocessor
unit is capable of processing one sample in each analyzing
window within 7.28 ns. The incoming sensor data are sampled
at 1 KHz for each channel, therefore a sample should be stored
in the external memory in every 1 ms. Processing of each
analysis window requires at the maximum of 2 x N clock
cycles, because the MAVS Unit computes the MAV value from
the actual and the previous processing windows. The number
of real-time processable channels are in the range of 1389 and
231 depending on the sampling period which is usually in the
range of 50 ms to 300 ms.

5) The Vector Processor: As described previously in the
proposed EMG processing system, a substantial part of the
algorithm is the classification phase, where double precision
floating-point vector-, and matrix operations are required.
Unfortunately, in one hand, the built-in Neon SIMD engine in
the ARM Cortex-A9 Core does not support double precision
vector floating-point operations. On the other hand, scalar
floating-point computing performance is not high enough to
perform the required operators at acceptable speed. The Vector
Processor [10] can be built-up from a scratch-pad memory,
several vector registers, and a floating-point adder and mul-
tiplier (because the majority of the required operations are
multiplications and additions). The matrices are stored in the
scratch-pad memory, where the high-speed memory access by
the ARM Processor Core is critical. The Vector Processor
is capable of computing simple addition, multiplication and
multiply-addition operations. Moreover, an addition and a
multiplication operation can be computed in parallel when
separate result registers are used. The length of the vectors
is limited by the depth of the vector registers, and they can
be configured on-the-fly to adapt to the requirements of the
classification algorithm. The schematic block diagram of the
Vector Processor can be seen in Figure 2.



TABLE I. THE GENERAL AND DEDICATED RESOURCE REQUIREMENTS OF THE PREPROCESSOR UNIT

N (samples) General Resource Requirement Dedicated Resource Requirement
6-input LUTs (max: 53200) Flip-Flops (max: 106400) Slices (max: 13300) DSP48 Slice (max: 220) 36Kb BlockRAM (max: 140)

50 1120 / 5320 1477 399 19 0

100 1132 1495 368 19 0

150 1161 1548 371 21 0

200 1149 1547 377 21 0

250 1175 1548 384 21 0

300 1163 1566 376 21 0

64×64
bit 

Vect_0 

× 

+ 

D 

A DI 

DO 

ReadAddr WriteAddr 

64×64
bit 

Vect_1 

A DI 

DO 

64×64
bit 

Vect_n 

A DI 

DO 

Scratchpad 
memory 

DI DO 

A DI DO 

PS domain 

Fig. 2. The Vector Processor unit

IV. RESULTS AND CONCLUSION

The system using the proposed hardware blocks (Prepro-
cessor unit and Vector Processor unit) were implemented.
Tests with various channel numbers and processing window
shift values were performed on the development PC described
in Section III. 2. and on the Zedboard itself. In addition,
computing times were estimated on a system where all vector
operations would be performed with the described Vector
Processor. 20 different test conditions were analyzed using
4 different channel numbers (4, 5, 6, 8) and 5 different
processing window shift values (50 ms, 25 ms, 10 ms, 5 ms,
1 ms). Computing times on the three different platforms are
summarized in Figure 3. The results show that the processing
times increase exponentially when window shift value and
the number of analyzed channels are increased. In addition,
approximately one order of magnitude speed-up can be reached
on the ARM processors based on the running times. It is
promising that using only the Vector Processor unit the Zynq
platform is capable for the same performance as the Intel Core
i5 processor, consuming one order of magnitude less power
(the measured power consumption of the whole Zedboard was
∼4 W during operation).

The final system that uses both the ARM cores and custom
hardware elements implemented in the FPGA fabric provides
real-time measurement and processing of bio-signals in a high
performance embedded environment.

ACKNOWLEDGMENT

This research project was supported by the OTKA
Grant No. K84267. The publication and research has been
supported by the European Union and Hungary and co-
financed by the European Social Fund through the project

Execution times of classifier training

Processing window shift

P
ro

ce
ss

in
g 

tim
e 

(m
s)

50 ms 25 ms 10 ms 5 ms 1 ms
10

1

10
2

10
3

10
4

10
5

PC
ARM
VEC
4 ch
5 ch
6 ch
8 ch

Fig. 3. Off-line runtime results of the C implementation

TÁMOP-4.2.1.B-11/2/KMR-2011-0002 and TÁMOP-4.2.2.C-
11/1/KONV-2012-0004.

REFERENCES

[1] L. H. Smith, L. J. Hargrove, B. a. Lock, and T. a. Kuiken, “Determining
the optimal window length for pattern recognition-based myoelectric
control: balancing the competing effects of classification error and
controller delay.” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 2,
pp. 186–92, Apr. 2011.

[2] L. J. Hargrove, K. Englehart, and B. Hudgins, “A comparison of sur-
face and intramuscular myoelectric signal classification.” IEEE Trans.
Biomed. Eng., vol. 54, no. 5, pp. 847–53, May 2007.

[3] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunc-
tion myoelectric control.” IEEE Trans. Biomed. Eng., vol. 40, no. 1,
pp. 82–94, Jan. 1993.

[4] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control.” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848–54, Jul. 2003.

[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[6] B. Borbély, “Design and simulation of a processing system for myo-
electric data,” in Hungarian, Pázmány Péter Catholic University, 2012.

[7] “Digilent Zedboard (official webpage - 2013).” [Online]. Available:
http://www.zedboard.org

[8] “Xilinx official webpage (2013).” [Online]. Available:
http://www.xilinx.com

[9] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario,
“Control of multifunctional prosthetic hands by processing the
electromyographic signal.” Critical reviews in biomedical engineering,
vol. 30, no. 4-6, pp. 459–85, Jan. 2002. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/12739757

[10] Z. Nagy, A. Kiss, A. Zarándy, T. Zsedrovits, B. Vanek, and T. Péni,
“Volume and power optimized high-performance system for UAV
collision avoidance,” in IEEE International Symposium on Circuit and
Systems, ISCAS 2012, Seoul, 2012.


