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Abstract: Nontransitivity can be observed in team tournaments, voting paradoxes

or independent discrete random variables. All representations are based on the

same principle that majority rule may result in nontransitive relations. The aim of

the paper is to realize any tournament by a dice set, and the number of faces is to

be minimized. Additional properties of tournaments, e.g., rotational symmetry,

make it possible to reduce the number of faces. As a special case, the Paley

tournament on p = 8k + 7 vertices can be realized by (p − 1)/2 faces. The paper is

closed by open questions.
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1 Introduction

A nontransitive dice set is a finite set of independent discrete random variables with a finite set of values
such that prob(X > Y ) > 1/2 and prob(Y > Z) > 1/2 do not exclude prob(Z > X) > 1/2 [21, p. 69]. If
for any die X in the set there exists a die Y such that prob(Y > X) > 1/2, then an unfair game for two
players can be observed: whatever die the first player chooses, the second player will find a die in the
remaining set which wins against the first player’s die with probability greater than 1/2. Further dice
sets are given in [9, 18, 19].

Team tournaments can also be nontransitive. Let each team have a finite number of players, each one’s
strength is expressed by a real number. The comparison of two teams is determined by matching each
player of one team to each player of the other team. The team which has a higher number of individual
wins (ties are not allowed) is said to beat the other team. In an example of Moon and Moser [15], team
{1, 5, 9} beats {3, 4, 8}, {3, 4, 8} beats {2, 6, 7} and {2, 6, 7} beats {1, 5, 9}. Teams can be interpreted as
dice, with equal probabilities of all their three faces.

Beating relations can be represented by a directed graph. Vertices are associated to dice and a directed
edge goes from vertex i to vertex j if and only if die i beats die j. Given a tournament on n vertices, we
seek for a dice set that realizes it. Let f(n) denote the minimal number of faces that are necessary to
realize the tournament. A construction is organized in a table as follows:

die 1 die 2 . . . die n

face 1 . . .
face 2 . . .

...
...

...
. . .

...
face m . . .

It should be noted that constructions in the literature use the assumption that all values in row (i.e., on
face) i are larger than all values in row (on face) j if i > j. Then it is sufficient to adjust the relation
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between dice restricted to their faces of identical indices. The example of Moon and Moser [15] can be
written in its original form (left), as well as without additive terms between rows (right) as follow:

die 1 die 2 die 3

face 1 1 2 3
face 2 5 6 4
face 3 9 7 8

die 1 die 2 die 3

face 1 1 2 3
face 2 2 3 1
face 3 3 1 2

Note that the table written without additive terms is identical to the one of Condorcet’s paradox in
voting theory [4, 22]. McGarvey [10] showed that f(n) ≤ n(n−1), his solution is used as a starting point
(Construction 1) in our list. Stearns [20] and Erdős and Moser [8] proved that

c
n

log n
< f(n) < C

n

log n

with constants c, C.
If a dice set has the property that whatever the first k − 1 players choose, the k-th player will find a

die that beats all dice of the k − 1 players, then we speak of a nontransitive dice set for k players. van
Deventer [18] proposed a dice set for three players. The Schütte property for a given k, denoted by Sk, is
defined for a tournament as follows: for any choice of k vertices there exists a vertex from which directed
edges go to the k ones [7, 1].

Let p = 4m + 3 be a prime number. The Paley tournament [17], denoted by Pp, is a simple complete
directed graph of p vertices in which a directed edge goes from vertex i to vertex j if and only if j − i is
a quadratic residue modulo p.

The second author recently proposed a dice set that realizes Pp [2]. Each die has p(p−1)/2 faces with
equal probability. It is known from the theorem of Graham and Spencer [13] that if p > (k − 1)222k−4,
then Pp fulfills Sk−1, therefore, the dice set is appropriate for k players.

However, the number of dice, as well as the number of faces, which are necessary and sufficient to get
a nontransitive dice set for k players is known for small values of k only [1, p. 360].

Our contribution is a list of dice set constructions. Each one realizes a given tournament, each vertex
is associated to a die, and each directed edge corresponds to the binary relation between two dice ’greater
with probability greater than 1/2’. The number of faces of the dice is a key factor. Constructions are listed
in didactic order, starting with simpler ones but having more faces and ending with more sophisticated
ones having fewer faces. We report some constructions which are not better than the best known ones,
however, they might be of interest in order to use them for further sets.

In subsection 2.1 a dice set is constructed for an arbitrary tournament on n vertices, each die has
n(n − 1) faces, followed by another dice set with 2n faces and by two dice sets, one for an arbitrary
tournament on 2n vertices, each die has 4n − 4 faces and another one on 2n + 1 vertices, each die has
4n + 2 faces (being different from the previous one). Subsection 2.2 deals with the addition of a new die
to a given dice set and discusses the number of new faces to be added. It is proven that any tournament
on n vertices can be realized by a dice set, with at most ⌊ 6

5
n⌋ faces per die.

We focus on special tournament, too. A tournament is called to have rotational symmetry if the
direction of edge i → j implies the direction of edge i + k → j + k for all values of k = 1, 2, . . . , n (if
i + k > n, then i + k − n is considered). Any tournament on n vertices with rotational symmetry can be
realized by n faces (subsection 2.3). The Paley tournaments are discussed in two parts (subsection 2.4).
For p = 8k + 7, a dice set having (p − 1)/2 faces per die is written and shown to realize Pp. We are still
working on a general construction for p = 8k + 3 also with p−1

2
faces, however, we have results for values

11, 19 and 59 at the moment. Section 3 concludes and summarizes possible extensions including ties and
open questions.

2 Results

Given an arbitrary tournament on n vertices, the aim is to find a dice set that realizes it. Henceforward
the assumption that all tables contain additive terms is kept, but we do not write them.
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2.1 Dice sets with n(n − 1), 2n and 2n − 2 faces

Let us have a tournament on n vertices to be realized.

Construction 1 For every edge of the graph we make two faces in the following way: for the i → j edge,
the i-th die has two 1’s, the j-th has two 0’s, the k-th (k 6= i, j) has −k and k + 1. Each die has n(n− 1)
faces.

Construction 1 is given by McGarvey [10] and Bumbacea [3, 11, 12] recently followed the same idea.

Construction 2 For every die we make two faces. The i-th die has two 0’s. If die i beats die j, then
−j and −n − 1 + j are written on two faces of die j. If die j beats die i, then j and −n − j are written
on two faces of die j. Each die has 2n faces.

Construction 2 is a less efficient variant of the one proposed by Stearn [20], which realizes any tour-
nament on n vertices with n + 2 faces if n is even and with n + 1 faces if n is odd.

Construction 3 We make a round robin tournament (n rounds if n is odd and n − 1 rounds if n is
even). For every round we make two faces: in every round the winner of the i-th gets i and −i + 1, the
other die gets i − 1 and −i. Each die has 2n faces if n is odd and 2n − 2 faces if n is even.

Proposition 1 Constructions 1, 2 and 3 realize the tournament.

Proof:

1. The result between die i and j is 1 : 1 in every pair except the pair belonging to the i → j edge,
where the right die wins to 2 : 0.

2. The result between die i and j is 1 : 1 in every pair except the pair belonging to the die i if die i
beats die j or the pair belonging to the die j if die j beats die i. In this pair the right die wins to
2 : 0.

3. The result between die i and j is 1 : 1 in every round except in which i and j is matched. In this
round the right one wins to 2 : 0.

�

2.2 Addition of new dice

In this subsection the idea of building a tournament, vertex by vertex, is followed.

Proposition 2 Let us have a dice set realization of a tournament on n vertices that uses 2k+1 faces. If
we add a vertex (and n directed edges) to the tournament, then the new tournament can be realized with
2k + 3 faces.

Construction 4 Let M and m denote the maximal and minimal values that are written on the faces of
the first n dice. Write M + 1 on k faces and m− 1 on k + 1 faces of the (n + 1)-th die. Let the (n + 1)-th
die have two 0’s on its (2k + 2)-th and the (2k + 3)-th faces and let the i-th die (1 ≤ i ≤ n) have n + i
and −i if it is beaten by the (n + 1)-th one, and i, n − i otherwise.

Proof: Construction 4 realizes the augmented tournament: since the result between two original dice
on the new faces is 1 : 1, the result in the new construction is not changed. The (n + 1)-th die wins
against the others on the first (2k + 1) faces to k + 1 : k, and on the new faces the result is 1 : 1 or the
original die wins to 2 : 0. �

Lemma 3 Every tournament on five or less vertices can be realized with 3 faces.

Proof: If the graph is transitive then one face is enough. On three vertices there is only one nontransitive
tournament which is realized by following dice set:
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1 2

3
die 1 die 2 die 3

1 2 3
2 3 1
3 1 2

The reader may identify Condorcet’s paradox again. There is only one nontransitive dice set on 4
vertices in which there is no vertex which beats or which is beaten by all other vertices. This tournament
is realized by the following dice set:

1 2

3 4

die 1 die 2 die 3 die 4

2 3 4 1
3 1 2 4
3 4 1 2

There are five nontransitive dice sets on 5 vertices in which there is no vertex which beats or which
is beaten by all other vertices. These tournaments are realized by the following dice sets:

1

2

3

4 5

die 1 die 2 die 3 die 4 die 5

1 2 3 4 5
4 2 1 5 3
3 4 5 1 2

1

2

3

4 5

die 1 die 2 die 3 die 4 die 5

3 1 2 4 5
3 4 2 5 1
3 4 5 1 2

1

2

3

4 5

die 1 die 2 die 3 die 4 die 5

2 1 3 4 5
2 3 5 4 1
4 5 1 2 3

1

2

3

4 5

die 1 die 2 die 3 die 4 die 5

1 4 3 5 2
4 3 5 1 2
3 2 1 4 5
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1

2

3

4 5

die 1 die 2 die 3 die 4 die 5

2 4 1 3 5
3 1 5 4 2
5 4 3 1 2

�

Corollary 4 A tournament on n ≥ 5 vertices can be realized with 2n− 7 faces.

Lemma 5 Consider the following dice set with 5 dice and 3 faces:

die 1 die 2 die 3 die 4 die 5

1 2 3 4 5
4 5 2 3 1
5 1 4 2 3

For every subset of these five dice there exists a die which beats exactly this subset.

Proposition 6 Let us have a dice set realization of a tournament on n vertices that uses 2k + 1 faces
(k ≥ 1). If we add 5 vertices (and the related edges) to the tournament, then the new tournament can be
realized with 2k + 7 faces.

Construction 5 Let M denote the maximal absolute values of the numbers written on the faces of the
first n dice and let M := M + 1. On the first three new faces of the five new dice there are the five
dice from Lemma 5 (A). On the other three new faces there is −A and the ’large number’ M is added
elementwise, denoted by −A + M . On three of the original faces there is the 3-face construction which
realizes the subtournament on the new vertices minus (elementwise) M , together denoted by C −M . On
the half of the rest of the original faces there is an arbitrary construction plus (elementwise) M , (D+M).
On the other half there is −D − M . On the first three new faces of the original dice there is the right
vector from Lemma 5 (B). On the other three faces there is −B.

Original dice New 5 dice

Original Construction
−D − M
D + M
C − M

B A
−B −A + M

Proof: Construction 5 realizes the augmented tournament. Since the result between two original dice
on the new faces is 3 : 3, the result in construction 5 remains the same as in the original tournament.
The result between two new faces is the same as in the construction C. The result between an original
and a new one is the same as in the first three new faces. �

Corollary 7 A tournament on n vertices can be realized with ⌊ 6

5
n⌋ faces.

2.3 Tournament with rotational symmetry

Construction 6 Consider a tournament with rotational symmetry. In this construction every die has n
faces. On the i-th face the i-th die has a 0, on the i-th face of die k there is l if die k beats die i and −l
if die i beats die k where i + l ≡ k (mod n), 1 ≤ l ≤ n − 1.
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Proposition 8 Construction 6 realizes the tournament with rotational symmetry.

Lemma 9 If we take the sign in the construction 6, this new construction realizes the tournament with
rotational symmetry.

Proof: (of Lemma 9) We compare dice i and j. Since the number on the k-th face of die i is equal to
the number written on (k + j − i)-th face of die j, we can make one or more cycles in the following way:
take the first face of die i, then the first face of die j(= i+ j− i), then the first face of die i+2(j− i) and
so on. The number of die i’s wins against die j is equal to the wins when a vertex of this cycle beats the
next one. Suppose that die i beats die j. Along the cycle there are one 1 : 0 change, one 0 : −1 change
and one more −1 : 1 changes than 1 : −1. It means that die i beats die j in this construction. �

Proof: (of Proposition 8) We make the cycles similarly to the ones in Lemma 9. We need that along the
cycle the result between two positive and between two negative numbers is draw. This is true because if
there is a change k : l between two positive numbers, then there is also an l − n : k − n change between
two negative numbers and vice versa. �

2.4 Paley tournament

Construction 7 Consider tournament Pp for p = 8k + 7. It is known that the multiplicative group of
nonzero quadratic residues is cyclic. Let q be a generator of this group. We give a construction with p−1

2

faces. On every faces of die 0 there are p
2
’s. On the first face of die i there is k ≡ p+1

2
− i (mod p)

(1 ≤ k ≤ p). The j-th face of the i-th die is equal to the number written on the first face of the die iqj−1

(mod p).

Proposition 10 Construction 7 realizes Pp.

Lemma 11 If p = 8k + 7, then the number of quadratic nonresidues minus the quadratic residues less
then p

2
is equal to the sum of quadratic residues minus the sum of quadratic nonresidues divided by p.

Proof: (of Lemma 11) Let dp denote this difference. Since 2 is a quadratic residue [16, Problem 10
on p. 67], the sum of the quadratic residues divided by p is equal to number of quadratic nonresidues
between 1 and p

2
and the sum of the quadratic nonresidues divided by p is equal to the number of

quadratic residues between 1 and p

2
. The equation in the lemma is the difference of these two equations.

�

Proof: (of Proposition 10) We make the proof in three parts.

• Between two quadratic residues (or quadratic nonresidues): Suppose that i and j are quadratic
residues and j − i is also a quadratic residue. Note that the difference between the value on die j
and i is a quadratic nonresidue on each face, and we get every nonresidue as a difference. Similarly
to the proof of Proposition 8, when we compare the two dice we can make cycles. The number of
die i’s wins is the sum of the quadratic nonresidues divided by p. The number of die i’s losses is
the sum of the quadratic residues divided by p. We have that die i has dp more wins than losses.
Since Dirichlet’s theorem [5, 6] states that dp > 0, die i beats die j.

• Between a quadratic residue and a quadratic nonresidue: in this part first we prove that the result
between a quadratic residue i and a nonresidue j depends only on the difference j − i is quadratic
residue or not. Then we show that a quadratic residue i has dp more wins against quadratic
nonresidue j if j − i is a quadratic residue then it is a quadratic nonresidue. In the last step we
show that die p − 1 beats die 1 and the difference of the wins and losses is dp.
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– Suppose that i is a quadratic residue and j is a nonresidue. By comparing the two dice we can
make cycles: 1-st face of die i, 1-st face of die j, (k + 1)-st face of die i, (k + 1)-st face of die j,
(2k + 1)-st face of die i, (2k + 1)-st face of die j and so on. Now we have one (or more) cycles
and every second edge of this cycle counts in the comparison of i and j, the others are from
the comparison between j and iqk. Since the total number of wins along the big cycle depends
only on that if the difference between j and iqk is a quadratic residue, the result between dice
j and iqk also depends only on that.

– In the previous step when we made the bigger cycles the total number of wins by die i against
die j was the sum of the differences along the cycle divided by p. It is dp more if the difference
j − i is a quadratic residue, then it is not in the bigger cycle which means it is also dp more if
we delete the added edges.

– When we compare the 1-st and the (p−1)-th die 1 meets p, 2 meets p−1, . . ., s meets p−s+1,
. . ., p−1

2
meets p+3

2
. If we take the absolute value of the difference of these pairs we get all the

even numbers between 1 and p − 1 and die 1 wins the comparisons if and only if the absolute
value of the difference is a quadratic residue. This means that the number of die 1’s wins is
equal to the number of even quadratic residues between 1 and p. Since 2 is a quadratic residue,
it is equal to the number of quadratic residues between 1 and p

2
. The difference between the

win and losses of 1 is equal to the difference between the number of quadratic residues and
nonresidues less then p

2
is equal to dp.

• Die 0 versus a quadratic residue (the nonresidue case is analogous): the number of die 0’s wins
against a quadratic residue is equal to the number of quadratic residues less then p

2
and the number

of losses is equal to the number of quadratic nonresidues. Applying Lemma 11 and Dirichlet’s
theorem, we get that die 0 beats the quadratic residues.

�

3 Extensions and open questions

We proposed constructions for dice sets that realize tournaments on n vertices.
If the simple directed graph is not complete, then we can assume that the relation between two vertices

without an edge between them is a tie. Appropriate modifications of Constructions 1, 2 and 3 make it
possible to realize any simple directed graph. It is to be verified whether other constructions can be
extended to the incomplete case.

The minimal number of vertices such that there exists a tournament having the Schütte property is
open, as it is mentioned in the introduction. The Schütte property of the Paley tournaments is also open
for the general case.

Research on finding a dice set for p = 8k + 3 is continued, as well as to get closer to the original
problem: find the most efficient realization, i.e., with minimal number of faces, of a given simple directed
graph. According to Mala [14, p. 40] the question that if

lim
n→∞

f(n) log n

n

exists is also open.
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