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ABSTRACT

In this paper we introduce a probabilistic approach for extract-
ing complex hierarchical object structures from digital im-
ages. The proposed framework extends conventional Marked
Point Process models by (i) admitting object-subobject en-
sembles in parent-child relationships and (ii) allowing corre-
sponding objects to form coherent object groups. The pro-
posed method is demonstrated in three application areas: op-
tical circuit inspection, built in area analysis in aerial images,
and traffic monitoring on airborne Lidar data.

Index Terms— marked point process, hierarchy

1. INTRODUCTION

Nowadays various imaging technologies, from remote sens-
ing data acquisition until microscopic imaging, provide very
high resolution visual data. As a result a single digital image
may encapsulate multi-scale information from the scene, en-
abling us to simultaneously analyze the crowds of entities at a
macro level, and small details of the individual field objects.

Marked Point Processes (MPP) [1, 2, 3] have recently
been widely used for analyzing object populations, however
they usually implement a single layer scene model, support-
ing the extraction of configurations of similar entities such as
birds [4], or buildings [5] in aerial images. Simple prior inter-
action constraints such us non-overlapping or parallel align-
ment are also utilized there to refine the accuracy of detection,
but in this way only very limited amount of high level struc-
tural information can be exploited from the global scenario.

Previous attempts for multi-level image understanding
followed either region based [6], object based [7, 8] or hybrid
[9] approaches. However, the above models were suited to
a specific application areas with specific inputs: remotely
sensed optical images [6, 9] or Lidar point clouds [8], and
Automatic Optical Inspection (AOI) of Printed Circuit Boards
(PCB), using µm resolution images [7]. Experiences show
that for such complex, application dependent models, the
adaption to another application domain is rarely straightfor-
ward, needing a significant modeling and implementation
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work. Following a reverse approach, we introduce in this
paper a novel general three-level MPP framework which can
handle a wide family of applications. The structure elements
and the energy optimization algorithm of the complex model
are defined and implemented at the abstract level, while we
keep focus on ensuring very simple interfaces to the differ-
ent applications, enabling efficient domain adaption. Key
contributions of the proposed methodology are as follows:

(i) We describe the hierarchy between objects and object
parts as a parent-child relationship embedded into the MPP
framework. The model of a child is affected by its parent
entity, considering geometrical and spectral constraints.

(ii) We partition the (parent) entity population population
into object groups, called configuration segments, and extract
the objects and the optimal segments simultaneously by a
joint energy minimization process. We create adaptive object
neighborhoods by segment driven object interactions.

In this paper, we propose a composite three-layer Embed-
ded MPP (EMPP) model, which extends our earlier two-layer
approach [10] with embedding the subobject (child) layer. We
introduce a three-level modification of the Multiple Birth and
Death (MBD) optimization algorithm [3, 4], and demonstrate
that the proposed technique finds efficient configuration in the
increased dimensional populations space. Finally, we show
three different applications from the remote sensing and AOI
domains, which can use the advantages of the EMPP model.

2. PROBLEM FORMULATION AND NOTATIONS

To model the hierarchical scene content, the proposed Em-
bedded Marked Point Process (EMPP) framework has a mul-
tilayer structure, as shown in Fig. 1. At the top, we have a
super node, called the population or the configuration, which
is a high-level model of the imaged scene. The population
consists of an arbitrary number of object groups, where each
group is a composition of one or many super (or parent) ob-
jects. Finally, the super objects may encapsulate any number
of subobjects (or child objects).

The input of EMPP is an image over a pixel lattice S. Let
u be a parent object candidate of the scene, which is repre-
sented by a plane figure from a preliminary fixed shape li-
brary, such us ellipses and rectangles. For each object, we
define the coordinates of a reference point, the global orien-
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Fig. 1. A sample EMPP population with three object groups,
and various object shapes both at parent and child layers.

tation, and further geometric parameters such as axes or side
lengths. Each parent object u may contain a set of child ob-
jects Qu = {q1u . . . q

m(u)
u } where m(u) ≤ mmax, and each

child is a sample from the previously defined geometric fig-
ure library. Qu = ∅ marks that u has no child.

We continue with the object grouping process. A given
population ω is a set of k object groups or (also referred
later as configuration segments), ω = {ψ1, . . . , ψk}, where
each group ψi (i = 1 . . . k) is a configuration of ni objects:
ψi = {ui1, . . . , uini

}. Here we prescribe that ψi ∩ ψj = ∅ for
i ̸= j, while the k set number and ni set cardinality values
may be arbitrary integers. We mark with u ≺ ω if u belongs
to any ψ in ω, and let Nu(ω) be the neighborhood of u ≺ ω,
using a u ∼ v proximity relation. Finally, we denote by Ω
the space of all the possible global configurations, consider-
ing that each population ω ∈ Ω may include any number of
groups composed of any number of objects and child objects.

3. EMPP ENERGY MODEL

The EMPP framework uses an energy function Φ(ω), which
can evaluate each ω ∈ Ω configuration based on the observed
data and prior knowledge. Therefore, the energy can be de-
composed into a unarY term (Y ) and an Interaction term (I):
Φ(ω) = ΦY (ω) + ΦI(ω), and the optimal ω̂ configuration is
obtained by minimizing Φ(ω) over Ω.

3.1. Unary object appearance terms

We use an energy term φY (u) which characterizes u depend-
ing on the local image data, but independently of other ob-
jects. φY (u) is decomposed into a parent term φpY (u) and for
each child object qu a child term φcY (u, qu). The child term
may depend on both the image and the geometry of the parent
(e.g. an intensity histogram within the parent region).

At parent level, first we define different f(u) fitness fea-
tures, which evaluate an object hypothesis for u in the image.
Then we construct φpY,f (u) data driven energy subterms for
each feature f , so that we project the feature domain to [−1, 1]

with a monotonously decreasing nonlinear M(f, df0 ) func-
tion [5]: φf (u) = M(f(u), df0 ) where M(.) = 1 − 1/f(u)

if f(u) < df0 , otherwise: M(.) = exp(−f(u) + df0 )− 1. df0
is the object acceptance threshold for feature f , which can be
set based on annotated training data in a straightforward way.

The φpY (u) parent energy of u is calculated from the
φpY,f (u) subterms. First we construct object prototypes, pre-
scribing the fulfillment of one or many feature constraints,
whose φf -subterms are connected with the max operator in
the prototype energy term (logical AND in the negative like-
lihood domain). Several object prototypes can be detected
simultaneously in a given image, if the prototype-energies
are joined with the min (logical OR) operator. Thus φpY (u)
is derived by a logical function, which expresses application
dependent knowledge, chosen on a case-by-case basis.

The construction of the child’s unary term φcY (u, qu) is
based on similar principles: it is obtained using different fea-
tures mapped by the M function. The complete unary term of
u is the sum of the parent level terms and the child level terms:
φY (u) = φpY (u) +

∑
qu∈Qu

φcY (u, qu). The data term of the
whole configuration is obtained as the sum of the individual
object energies: ΦY (ω) =

∑
u≺ω φY (u).

3.2. Interaction terms

The interaction terms implement geometric or feature based
interaction constraints between the elements of ω:

ΦI(ω) =
∑
u,v≺ω
u∼v

I(u, v) +
∑
u≺ω

J(u,Qu) +
∑

u≺ω,ψ∈ω

A(u, ψ).

The I(u, v) terms provide classical pairwise interaction con-
straints, in our later examples they penalize overlapping ob-
jects within the ω configuration: I(u, v) = Area{u∩v}

Area{u∪v} .
The J(u,Qu) terms model interactions between the cor-

responding parent a child objects, and interactions between
different child objects corresponding to the same parent. For
example, we can prescribe that the children of a given par-
ent (i.e. siblings) should not overlap with each other, and not
overhang the parent, or the siblings should have same shape,
similar color, size, orientation etc.

Finally, with theA(u, ψ) energies, can define various con-
straints between the object group level and the (parent) object
level of the scene. To measure if an object u appropriately
matches to a population segment ψ, we define a distance mea-
sure dψ(u) ∈ [0, 1], where dψ(u) = 0 corresponds to a high
quality match. In general, we prescribe that the segments are
spatially connected, therefore, we use a constant high differ-
ence factor, if u has no neighbors within ψ w.r.t. relation ∼,
so that dψ(u)

DEF
= 1, if @v ∈ ψ\{u}: u ∼ v.

By definition of A(u, ψ), we slightly penalize population
segments which only contain a single object: with a small
0 < c constant A(u, ψ) = c iff ψ = {u}. For segments with
multiple objects, large dψ(u) distances are penalized within
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a group, but they are favored between groups, i.e. if u ∈ ψ:
A(u, ψ) = dψ(u); if u /∈ ψ: A(u, ψ) = 1− dψ(u).

4. OPTIMIZATION

To estimate the optimal object configuration, we have pro-
posed a three-level modification of the MBD algorithm [3, 4]:

Initialization: start with empty population ω = ∅, set the
birth rate b0, initialize the inverse temperature parameter β =
β0 and the discretization step δ = δ0.

Main program: alternate the following three steps:
• Birth step: Visit all pixels on the image lattice S one

after another. At each pixel s, with probability δb0, generate
a new object u with center s and random geometric parame-
ters. For each new object u, either generate a new ψ empty
configuration segment, add u to ψ and ψ to ω; or add u to an
existing segment from its neighborhood, as detailed in [10].

• Death step: Consider the actual configuration of all ob-
jects within ω and sort it by decreasing values depending on
φY (u)+J(u,Qu)+A(u, ψ)

∣∣
u∈ψ . For each object u taken in

this order, compute ∆Φω(u) = ΦD(ω/{u})−ΦD(ω), derive
the death rate dω(u) as

dω(u) = Γ(∆Φω(u)) =
δ exp(−β·∆Φω(u))

1+δ exp(−β·∆Φω(u)) ,

and delete object u with probability dω(u). Remove empty
segments from ω, if they appear.

• Group re-arrangement: Propose randomly group merge,
group split and vehicle re-clustering moves. For each pro-
posed move M, calculate the corresponding energy cost
∆ΦM

ω , and apply the move with a probability Γ(∆ΦM
ω ).

• Child Maintenance: For each u ≺ ω object: (i) add
new child objects to Qu randomly (ii) sort Qu by decreasing
values depending on the φcd(u, qu) values (iii) for each child
object qu ∈ Qu taken in this order, compute the child removal
rate dcu(qu) similarly to the parent level, but considering only
the child level unary and interaction terms. (iv) remove qu
from Qu with a probability dcu(qu).

Test: if the process has not converged yet, increase β and
decrease δ with a geometric scheme, and go back to Birth.

5. APPLICATIONS

In this section, we introduce three different applications of the
proposed EMPP model. In each application, we have to define
the domain specific f features and feature integration rules to
obtain the parent level φpY (u) and child level φcY (u) unary
terms (Sec. 3.1), we should set up the J(u,Qu) parent-child
interaction rules and define the grouping constraints through
the definition of the dψ(u) object-segment distance (Sec. 3.2).

5.1. Built-in area analysis in aerial and satellite images

Model elements: parent objects are rectangular buildings
or building parts. Child objects are tall structure elements on

Fig. 2. Results of built-in area analysis, displayed at three
different scales. Building groups are distinguished with dif-
ferent colors (purple: red roofs’ district, others: orientation
based groups); red markers denote the detected chimneys

the roofs, such us chimneys and satellite dishes, also modeled
by rectangles. Configuration segments are groups of corre-
sponding buildings (eg. residential housing district, Fig. 2a).

Parent unary terms (φpY ): two object prototypes, based on
features prescribing either high image gradients under build-
ing edges and shadows next to the buildings; or salient (typi-
cally red) roof colors separable from the background [5].

Child unary terms (φcY ): chimneys et al. differ from the
roof in color, and cast shadows on the roof (Fig. 2c).

Parent-child terms J(u,Qu): Non-overlapping siblings
with similar orientation. Children figures are encapsulated
by the parent rectangles (Fig. 2c).

Object-segment distance dψ(u): groups are formed either
based on similar (salient) roof color, or based on similar orien-
tation [10]. dψ(u) is the normalized color/orientation distance
between u and the mean value within ψ (Fig. 2a,b).

Application: urban environment planning or detecting il-
legally built objects which do not fit the regular environment.
Detecting illegal or irregular chimneys.

5.2. Traffic monitoring based on aerial Lidar data

Preprocessing: the Lidar point set is segmented into vehicle
and background classes, and the labels and the intensity val-
ues of the points are projected to the ground plane [8].

Model elements: parent objects are vehicles, child objects
are windshields (both rectangles). Configuration segments
are formed by corresponding vehicles, such as cars in a park-
ing lot, or a vehicle queue in front of a traffic light (Fig. 3a).

Parent unary terms (φpY ): covering ratio of vehicle points
within u’s rectangle based on geometric and intensity based
separation. Covering ratio of background points around u [8].
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Fig. 3. Results of traffic analysis: a) cars and traffic segments
b) selected region with the detected windshields c) intensity
map of a selected car, d) detection result for c)

Child unary terms (φcY ): due to their glass material, wind-
shield regions are composed of missing points, or points with
salient low intensities within the car’s rectangle (Fig. 3c,d).

Parent-child terms J(u,Qu): the windshield is encapsu-
lated by the car’s figure, and the orientation is perpendicular
to the car’s main axis (Fig. 3b,d).

Object-segment distance dψ(u): orientation distance be-
tween u and the mean orientation within ψ(u). For correct
grouping of a vehicle queue in a curved road, orientation can
be calculated relatively to the closest road side as in [8].

Application: automatic traffic monitoring and control,
surveillance. Windscreen configuration can be used for clas-
sifying vehicle types, estimating vehicle direction (Fig. 3b).

5.3. Automatic optical inspection of printed circuit boards

Goal: shape extraction and grouping of Circuit Elements
(CEs) in uniquely designed PCBs, detecting special soldering
errors called scooping [7].

Model elements: parent objects are CEs of various shapes,
child objects are scoops, modeled by pairs of concentric el-
lipses [7]. Groups are formed by CEs which likely have sim-
ilar functionalities [10] (Fig 4a).

Parent unary terms (φpY ): CEs have bright figures sur-
rounded by darker background, used feature is the Bhat-
tacharya [3] distance between the pixel intensity distributions
of the internal CE regions and their boundaries.

Child unary terms (φcY ): dominant brightness value of the
scoop central region, contrast between the central region and
the median ring, resp. the median ring and the external ring
(Fig 4c) [7].

Parent-child terms J(u,Qu): each parent CE may have at
most one child, whose figure cannot overhang its parent.

Fig. 4. Results of PCB analysis. CEs are grouped by shape
and orientation, scoops are extracted within the CEs

Object-segment distance dψ(u): within a CE group, the
elements must have similar shape and must follow a strongly
regular alignment. Therefore dψ(u) = 1 if the type of u, is
not equal to the type of the ψ group, otherwise dψ(u) is angle
difference between u and the mean value in ψ.

Application: automatic interpretation and quality assess-
ment of uniquely designed PCBs by AOI systems.

6. EXPERIMENTS AND CONCLUSION

We tested our method on real datasets for each application,
sample results are shown in Fig. 2-4. The parameters of the
method were set based on a limited number of training sam-
ples [10]. For evaluation, we have counted the number of
true positive, false positive and false negative objects both at
parent and child levels, and calculated the F-rate of detec-
tion (harmonic mean of precision and recall). We have also
counted the objects with False Group labels among the true
positive samples, using classification of human observers.

The built-in area dataset contained 69 buildings with 66
chimneys or antennas. Detection rate was 95% at parent, 73%
at child level, Correct Grouping Rate (CGR) was 91%.

In the traffic dataset, we measured a 92% detection rate
and a 93% CGR among the 170 observable vehicles, the de-
tected windshild position was in 82% correct.

Finally in the PCB dataset, all the 98 circuit elements were
correctly detected and classified, while the child level scoop-
ing detection rate was 89%.

The above experiments confirm at a proof-of-concept
level, that the proposed EMPP model is able to handle real
world tasks from significantly different application domains,
providing an expandable Bayesian framework for multi-level
image content interpretation. Future work will focus on ro-
bustness analysis and automated parameter estimation.
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