
On sparse matrix orderings in interior point

methods

Csaba Mészáros

Group of Operations Research and Decision Systems,
Hungarian Academy of Sciences

Address: H-1518, Budapest, P.O. Box 63.
e-mail: meszaros@sztaki.hu

Abstract

The major computational task of most interior point implementa-

tions is solving systems of equations with symmetric coefficient matrix

by direct factorization methods, therefore, the performance of Cholesky-

like factorizations is a critical issue. In case of sparse and large problems

the efficiency of the factorizations is closely related to the exploitation of

the nonzero structure of the problem. A number of techniques were de-

veloped for fill–reducing sparse matrix orderings which make Cholesky

factorizations more efficient by reducing the necessary floating point

computations. We present a variant of the nested dissection algorithm

incorporating special techniques that are beneficial for graph partition-

ing problems arising in the ordering step of interior point implementa-

tions. We illustrate the behavior of our algorithm and provide numerical

results and comparisons with other sparse matrix ordering algorithms.

Keyword(s): Interior point methods; Fill–reducing orderings; Sparsity; Large-
scale problems

1 Introduction

In the past 20 years interior point methods (IPMs) proved their efficiency in
practice, especially when solving large-scale problems. One key point of their
practical success is the ability to reduce the computational work by exploitation

1



of structures presented in the optimization problems. In practice optimization
problems tend to have large dimensions but relatively small number of nonze-
ro elements in the constraint matrix. Nowadays we can solve problems with
millions of variables and constraints if such sparsity structures are exploited
efficiently. Exploitation of sparsity in interior point methods is done on dif-
ferent levels. In [20] the author described how disadvantageous cases for the
traditional Cholesky factorization can be identified and perform an quasidef-
inite factorization instead. The approach is crucial when solving problems
from some special application areas, such as when solving two-stage stochastic
optimization [17]. The other level of exploitation of sparsity is the symbolic
ordering step of interior point methods [1, 23].

In the paper we describe an implementation of a nested dissection ordering
algorithm, which belongs to the most popular and powerful ordering meth-
ods [8, 10, 9, 14] nowadays for large-scale problems. The described ordering
scheme is incorporated to our interior point implementation, called BPMPD
[19]. In Section 2 we outline the basics of an implementation of the primal-dual
interior point method and describe the most popular sparse matrix ordering
techniques. In section 3 our implementation of the nested dissection ordering
algorithm is discussed. Section 4 contains numerical experiments and a com-
parison with the public available Metis sparse matrix ordering package [14].
Section 5 summarizes our findings.

2 Sparsity in interior point methods

In this paper the following linear programming problem is considered

min cTx,

subject to Ax = b, (1)

x ≥ 0,

where A is an m × n matrix, c and x are n vectors, and b is an m vector.
Without loss of generality we may assume that rank(A) = m. Several papers,
including [16, 1] give a survey of the developments achieved with the different
algorithmic variants of interior point methods of linear programming. In all
these IPMs the most costly operation is to determine the search direction. For
most problems the most efficient way is to solve the so–called system of normal

equations

AD2AT∆y = h, (2)

2



where D is an n × n diagonal matrix with positive diagonal values, and h is
an m vector. In every iteration the diagonal matrix D is updated, and system
(2) is to be solved several times with different right–hand sides to compute
the next iterate. The big advantage of the normal equation approach is that
it deals with a system of linear equations with a positive definite coefficient
matrix. As such, the Cholesky factorization can be used with a great success.
Since theoretically all pivots are positive, one can pay full attention to the
sparsity issues in the symbolic factorization phase. The symbolic factorization
is made once in advance, i.e., the pivot agenda is the same during iterations.
The pivot order of the Cholesky factorization has a very strong influence on the
number of fill–in and, therefore, on the storage requirement and the speed of
factorizations. In the symbolic phase we try to find a good row permutation of
A that minimizes the number of nonzeros in the Cholesky factors of AAT . Since
finding the “optimal” permutation is an NP complete problem [24], heuristics
are used in practice.

Graph theory was identified as a convenient framework for investigation
of sparse matrix computations. After Parter applied undirected graphs to
model symmetric Gaussian elimination [21], most of the ordering algorithms
in IPMs use this methodology. The minimum degree ordering [6] was one of
the most important and popular methods, it is still widely used in interior
point implementations. The implementation of this ordering algorithm is a
well–developed area, the modern implementations are extremely powerful in
the sense of speed and storage requirements. The most important aspect of
this ordering is the connection with graph theory, and the technique of the
implicit representation of the elimination, which makes compact storage and
efficient implementation possible. For further details on the above, the reader
is referred to the summary in [7].

Some authors considered an other local heuristic approach, the minimum

local fill [5] ordering. It was included in some of the implementations as
an alternative to the minimum degree ordering. This method computes the
number of fills produced by each pivot candidate, and chooses that one where
this number is minimal for the next pivot. Generally, the minimum local fill
algorithm produces sparser factorization but at higher initial cost to obtain
the ordering, because the analysis in the pivot search process is very expensive
[16]. To avoid the expense of the computation of the true fill–in, approximation
schemes were proposed and incorporated to the minimum degree algorithm to
improve its quality [18, 22].

3



3 The nested dissection ordering algorithm

Whereas in implementations of interior point methods the minimum degree was
the standard default ordering algorithm at the beginning of the practical use
of IPMs, at the same time methods based on bisections and multisections were
extensively studied in other application areas such in finite element methods
(FEMs). The ordering methods based on graph partitioning became standard
in IPMs in the past 10 years only. An important property of sparse matrices
arising in IPMs is that they are usually more dense than those derived in
other applications. Usually it can be observed that the number of nonzeros in
AAT is of the same order the number of nonzeros in the constraint matrix and
therefore the importance of sparse matrix ordering increases with the problem
dimensions.

The methods based on graph partitioning have a more global view on the
graphs. In this algorithm we try to divide the original graph to smaller parts by
excluding a possibly small set of separator vertices. There are several variants
of this method, such as the multilevel orderings, the domain decomposition
and spectral bisection methods.

The aim of the ordering schemes based on graph partitioning is that a
decomposition of G(V,E) is computed as

G = P1 ∪ P2 ∪ ... ∪ Pk ∪ S

such that for any i 6= j pairs

if i ∈ Pi and j ∈ Pj then (i, j) /∈ V.

The subgraphs corresponding Pi are ordered independently for i = 1, ..., k and
the vertices in S are placed at the end of the elimination sequence.

For the interior point code called BPMPD we implemented a multilevel
nested dissection scheme [13] which computes bisections G = W ∪ B ∪ S
recursively, where S is the separator and W and B are the two partitions.
The goal of bisection is to compute a separator set that is small and splits the
graph into well–balanced partitions. Our multilevel bisection scheme has the
following steps:

• Preprocessing.

• Coarsening.

• Do

4



– Initial bisection.

– Partial uncoarsening and refining.

– Separator evaluation.

• Until enough bisections tried

• Reload the best partitioning found.

• Uncoarsening and refining.

• Local perturbations and refinements.

We selected a set of test problems from various applications to represent
problems of different structures for our experiments. The characteristics of
these problems are summarized in Table 1. Figures include the name of the
problems, the number of constraints, representing the vertices of the graph,
the number of nonzero entries in the matrix AAT , representing the edges of the
graph, the average degree of the vertices and the diameter of the graph. We
define the diameter in the usual way, i.e. as the length of the longest shortest
path in the graph.

Table 1: Test problems

Name m NZ(AAT ) avg. degree diameter
25fv47 754 21442 28.4 7
dfl001 5471 74402 13.6 6
epa 232125 8872022 38.2 11
fome13 43768 396016 9.0 6
gasbaucp 155841 4054680 26.0 13
dek–10 333187 14840604 44.5 10
munn–1 162882 3243188 20.0 12
munn–2 52297 1051518 20.1 9
nug20 15240 1201600 78.8 3
nsct2 7797 1818658 233.3 6
pds–70 111874 990914 8.9 21
pds–100 152289 1272220 8.4 22
rail4284 4176 2133370 510.9 4
smdvds 61245 1253070 20.5 12
spal–004 10203 51889356 5085.7 2

5



Naturally, graph bisections are easier when the graph is less connected and
has a large diameter, but, Table 1 indicates that the graph representation of
sparse symmetric matrices arising in interior point methods are rather too
dense compared to graphs arising in FEMs, calling for techniques that take
this property into account.

The preprocessing step of our bisection algorithm detects and removes ver-
tices with high degree and compresses those that share the same set of neigh-
bors. In the bisection phase the graph is compressed by combining vertices
and weights are generated on vertices and edges, until the number of vertices
decrease to about 100. Our goal in the coarsening phase is to keep the coarse
graphs sparse as possible and prevent the rapid decrease of the diameter of
the coarse graphs. To achieve this, we implemented a matching scheme that
maximizes the common neighbors and deliver the largest possible reduction of
edges at each step. We stop coarsening if the diameter of the graph becomes
less or equal 3, or the number of vertices decrease bellow 200.

In the initial bisection we implement a ”greedy growing” algorithm, starting
from two vertices defined by the diameter of the graph as B and W while S
contains all other vertices. At each step of the greedy algorithm we select a
vertex from S to move to B or W which has the smallest number of neighbors
in S. Different initial bisections are computed from different starting partitions
and the one resulting the best partitioning is kept.

After an initial bisection is computed, the coarse graph is projected back to
the finer levels and the separator is refined with two techniques. The first one
is the local refinement technique of Kernigham-Lin, called primitive moves [15]
that modifies the partitioning by moving vertices with the best score, where
the score is defined as the reduction of the separator set. Our other implement-
ed method is the refinement technique based on bipartite matching [2] that
decreases the number of vertices in the separator or improves the balancing.
We would like to note that Ashcraft and Liu extended this refinement tech-
nique by using ”wider” separators and network flows [3] but our experiments
showed that this extension is less effective on graphs arising in interior point
methods. We found that the described technique tends to generate imbalanced
partitioning due to the dense edge structure of the graph.

We evaluate the generated partitioning at the 3rd coarse level. For the
evaluation we use the utility function defined by Hendrickson [11] as

f(S,W,B) =
|S|

|W | ∗ |B|
.

We try 5 initial bisections and select the best in this pass. The best bisection is

6



then projected back to the original graph while the Kernigham-Lin followed by
the bipartite macthing refinement techniques are applied at each uncoarsening
step. Similarly to the technique described in [12], on the final partitioning the
following refinement procedure is applied:

• Do

– Generate edge separator from vertex separator.

– Refine edge separator.

– Generate vertex separator from edge separator.

– Refine vertex separator.

• While the partitioning improves.

The process is started on the whole graph and applied on the resulting
partitioning S and W recursively, while the separator is removed from the
graph. This recursive process stops if number of vertices in the subgraphs
decrease bellow 200, or the process generates bisections with large number of
vertices in the separator. In this latter case the partitioning is rejected.

After the process the partitions B and W are ordered independently by a
minimum degree algorithm with approximate fill–in utility function [22] and
the separator vertices are unified as a multisector [4] and placed to the end of
the ordering sequence.

4 Numerical experiments

In our numerical experiments we compare our nested dissection scheme with
the freely available graph partitioning software package, Metis 4.0 [14] and the
standard minimum degree algorithm with approximate fill-in utility function.
From the Metis package the METIS NodeND procedure was applied with the
following option vector:

[1, 3, 1, 2, 0, 1, 100, 2,max(900,min(100, m/40))].

We collected the results in Table 2. Figures given include the number of nonze-
ro elements in the Cholesky factors L in thousands, the number of floating point
operations for computing the Cholesky decomposition in millions achieved by
the minimum degree ordering as references, and the relative values of those

7



Table 2: Comparison of ordering algorithms

Problem Min.Deg. nz(L) flops
name nz(L)× 103 flops ×106 Metis Bpmpd Metis Bpmpd

25fv47 30 1 96 % 92 % 92 % 78 %
dfl001 1355 517 84 % 85 % 62 % 63 %
epa 11663 967 119 % 101 % 364 % 102 %
fome13 11015 4267 85 % 79 % 64 % 57 %
gasbaucp 29891 48478 86 % 83 % 63 % 58 %
dek–10 21570 2828 116 % 104 % 287 % 112 %
munn–1 307603 950974 32 % 24 % 12 % 4 %
munn–2 90598 212859 36 % 16 % 24 % 5 %
nug20 64295 232129 75 % 72 % 58 % 52 %
nsct2 4945 3327 80 % 81 % 57 % 59 %
pds–70 76945 202324 39 % 32 % 12 % 5 %
pds–100 114587 354107 33 % 27 % 15 % 6 %
rail4284 5588 5811 102 % 99 % 101 % 99 %
smdvs 195305 585640 34 % 24 % 17 % 6 %
spal–004 45127 133256 112 % 98 % 109 % 99 %

achieved by Metis and our implementation. We selected test problems to cover
different problem types from different application areas.

The experiments show that on some cases, typically on problems which
produce AAT matrix with significant density, the graph partitioning algorithm
is not able to improve the quality of the minimum degree and sometimes
decreases the quality of the ordering. Let us note that our criteria based on
the monitoring the diameter of the graph during the coarsening phase is able
to identify such cases and stop the nested dissection algorithm quickly.

We can observe that on several cases a significant reduction in the generated
nonzero elements can be achieved by the ordering methods based on graph
partitioning. This results in decrease in the necessary floating point operations
needed for the iterations of the interior point algorithm, giving a proportional
speedup in the execution time. These problems often come from assignment
or scheduling applications (munn-1, munn-2, pds-100) in which an underlying
network is present in the constraints, providing an advantageous structure
which is exploited by the graph partitioning methods.

We can derive that our implementation gives usually better orderings than
Metis, but we would like to note that while Metis is a general–purpose graph

8



partitioning package in which we tuned its behavior by its options only. The
ordering algorithm in BPMPD was specifically developed for ordering sparse
symmetric matrices arising in interior point methods, exploiting their special
properties outlined in Section 3.

Since the minimum degree algorithm is a very fast procedure, interior point
implementations always perform it beside the nested dissection ordering and
select that result which gives the better quality. This requires little compu-
tational effort and guarantees that the interior point algorithm will use an
ordering which is always at least as good as the result of the minimum degree.

5 Concluding remarks

In the paper we described our ordering scheme for interior point methods which
is based on the multilevel nested dissection graph partitioning scheme. We im-
plemented techniques that take the special properties of the sparse matrices
arising in IPMs into consideration and our experiments showed that they pro-
vide benefits when comparing with general–purpose graph partitioning codes.
Our experiments showed that the developed method successfully exploits the
underlying advantageous structures in the AAT matrix.

6 Acknowledgements

This work was supported in part by Hungarian Research Fund OTKA K-77420
and K-60480.

References

[1] E.D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation
of interior point methods for large scale linear programs. In T. Terlaky,
editor, Interior Point Methods of Mathematical Programming, pages 189–
252. Kluwer Academic Publishers, 1996.

[2] C. Ashcraft and J. W. H. Liu. Using domain decomposition to find graph
bisectors. BIT Numerical Mathematics, 37(3):506–534,, 1997.

[3] C. Ashcraft and J. W. H. Liu. Applications of the dulmage-mendelsohn
decomposition and network ow to graph bisection improvement. SIAM

Journal on Matrix Analysis and Applications, 19:325–354, 1998.

9



[4] C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices us-
ing multisection. SIAM Journal on Matrix Analysis and Applications,
19(3):816–832, 1998.

[5] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matri-

ces. Oxford University Press, New York, 1986.

[6] A. George and J.W.H. Liu. Computer Solution of Large Sparse Positive

Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[7] A. George and J.W.H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Reviews, 31:1–19, 1989.

[8] J. A. George. Nested dissection of a regular finite element mesh. SIAM

Journal on Numerical Analysis, 10:345–363, 1973.

[9] A. Gupta. Watson graph partitioning package. Technical Report RC
20453, IBM T. J. Watson Research Center, 1996.

[10] B. Hendrickson and R. Leland. The chaco user’s guide, version 2.0. Tech-
nical report, Sandia National Laboratories, 1995.

[11] B. Hendrickson and E. Rothberg. Improving the run time and quality
of nested dissection ordering. SIAM Journal on Scientific Computing,
20(2):468–489, 1998.

[12] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. Tech-
nical report, Supercomputing ’95, Proceedings of the 1995 ACM/IEEE
conference on Supercomputing, 1995.

[13] G. Karypis and V. Kumar. Metis a software package for partitioning
unstructured graphs, partitioning meshes, and computing fill–reducing
orderings of sparse matrices version 3.0. Technical report, University of
Minnesota, 1998.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1999.

[15] B. W. Kernighan and S. Lin. An efficient heuristic procedure for par-
titioning graphs. Technical Report 49, Bell Systems Technical Journal,
1970.

10



[16] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Interior point methods for
linear programming: Computational state of the art. ORSA J. on Com-

puting, 6(1):1–15, 1994.

[17] C. Mészáros. The augmented system variant of IPMs in two–stage stochas-
tic linear programming. European J. on Operational Research, 101(2):317–
327, 1997.

[18] C. Mészáros. Ordering heuristics in interior point LP methods. In F. Gi-
anessi, S. Komlósi, and T. Rapcsák, editors, New Trends in Mathematical

Programming, pages 203–221. Kluwer Academic Publishers, 1998.

[19] C. Mészáros. The BPMPD interior-point solver for convex quadratic prob-
lems. Optimization Methods and Software, 11&12:431–449, 1999.

[20] C. Mészáros. Detecting dense columns in linear programs for interior point
methods. Computational Optimization and Application, 36(2–3):309–320,
2007.

[21] S.V. Parter. The use of linear graphs in gaussian elimination. SIAM Rev.,
3:191–130, 1961.

[22] E. Rothberg. Ordering sparse matrices using approximate minimum local
fill. Technical report, Silicon Graphics Inc., Mountain View, CA 94043,
1996.

[23] E. Rothberg and B. Hendrickson. Sparse matrix ordering methods for in-
terior point linear programming. INFORMS J. on Computing, 10(1):107–
113, 1998.

[24] M. Yannakakis. Computing the minimum fill–in is NP–complete. SIAM

J. Algebraic Discrete Methods, 2:77–79, 1981.

11


