
Application Repository Based Evaluation of the
EDGI Infrastructure

Adam Visegradi*, Sandor Acs*, Jozsef Kovacs*, Gabor Terstyanszky**
* MTA SZTAKI, Budapest, Hungary
{a.visegradi, acs, smith}@sztaki.hu

** University of Westminster, London, UK

G.Z.Terstyanszky@westminster.ac.uk

Abstract - The infrastructure set up by the EDGI EU FP7
project contains Desktop Grid (DG) sites (BOINC or
XtremWeb) performing the execution of jobs coming from
gLite, ARC or Unicore type service grids. The infrastruc-
ture contains an Application Repository (AR) as a central
service storing all relevant information for applications.
This AR is also the key to the gateways of the Desktop Grid
sites, since enabling the execution of a given application on a
DG site can be performed through the AR. The entire infra-
structure has a monitoring system developed to collect sta-
tistical information about job execution. However, validat-
ing the information in the AR and testing job execution
against the DG site was still missing. In order to evaluate the
operation of the EDGI infrastructure, a new service has
been designed and prototyped. This service collects all rele-
vant information and submits jobs to Desktop Grids to
gather data about their current state. This data can then be
used by monitoring agents. A reporting webpage for the
administrators is implemented. We will also show how re-
porting can be integrated with the Nagios system.

I. INTRODUCTION

A. The EDGI Infrastructure

The FP7 European Desktop Grid Initiative (EDGI) [1]
project has created an infrastructure which integrates
Desktop Grids (DG) with Service Grids (SG) in order to
support European Grid Initiative (EGI) and National Grid
Initiative (NGI) user communities to run applications
which require large number of CPUs and cores. EDGI
went beyond existing Distributed Computing Infrastruc-
tures (DCI) that typically incorporate cluster Grids and
supercomputer Grids. It extended these grids with public
and private Desktop Grids and Clouds. The project inte-
grates software components of different cloud middleware
(OpenNebula and OpenStack), Service Grid middleware
(ARC, gLite, Unicore), and Desktop Grid middleware
(BOINC[4] and XWHEP[7]) into SG→DG→Cloud plat-
form for service provision. The EDGI infrastructure con-
nects Service Grids with private, public and volunteer DG
resources through the SG→DG bridge [2]. The project
also provides access to Clouds from Desktop Grids via the
DG→Cloud bridge to get additional resources for DG
systems if the applications have QoS requirements that
could not be satisfied by the available DG resources.
EDGI deployed the production EDGI infrastructure that
integrates ARC-, gLite- and Unicore-based Service Grids

with Desktop Grids based on the EDGI bridge middle-
ware. This production infrastructure also enables the dy-
namic and on-demand extensions of the connected Desk-
top Grids with Cloud resources. As a result, e-scientists

can benefit of the flexible and versatile eco-system pro-
vided by the EDGI project (Fig. 1).

The EDGI Infrastructure (Fig. 2) contains the EDGI
Portal, the EDGI Application Repository, the SG→DG
bridge and the Desktop and Service Grid resources. There
are five major user types of the EDGI Infrastructure: E-
scientists, Application Developers, Application Valida-
tors, Desktop Grid Administrators and Repository Admin-
istrator. The EDGI Portal is the GUI to submit and moni-
tor applications, and retrieve and display results. The
EDGI Application Repository stores the non-validated
(private) and validated (public) applications. E-scientists
can browse and search the repository in order to find ap-
plications they want to execute.

B. The EDGI Application Repository

The security models of Desktop and Service Grids are
significantly different. While Service Grids trust the users
and identify them by unique certificates, Desktop Grid
systems trust the applications instead. As a result, only
trusted and validated applications can run on DG systems.
If users of a Service Grid infrastructure want to utilize

Figure 1. The EDGI Eco-system

308 MIPRO 2012/DC-VIS

Desktop Grid resources then the applications should be
trusted and pre-deployed on the supporting DG systems.
This requires the application validation and uploading
them into an application repository where both users and
DG system administrators can access them. Moreover, the
bridging mechanism from an SG to a DG system should
always check that the application submitted via the bridge
available and validated in the repository and identical to
the submitted executable. The EDGI project designed and
implemented the EDGI Application Repository, which is
based on the EDGeS Application Repository (EDGeS
AR), to support the full life-cycle of application valida-
tion, deployment and usage. As the focus of EDGeS was

the creation of the production bridging mechanisms, the
EDGeS Application Repository only provides the mini-
mum set of required functionalities to bridge Service
Grids to the target DG systems.

The repository is used by six actors, i.e. the six user
types given above and the Modified Computing Elements.
E-scientists are end-users who want to run applications on
the EDGI Infrastructure. They want to search and browse
the repository to find validated applications which they
want to execute. Application Developers are computer
scientists are familiar with infrastructure where the appli-
cations are executed. They elaborate these applications to
enable e-scientists to run their applications on the EDGI
infrastructure. To achieve it they have to be able to devel-
op applications with their implementations and configura-
tions. After implementing and uploading the applications
into the repository they mark them as non-validated and
they should notify Application Validators. If the developer
modifies a validated application, then a new non-validated
version is automatically created which should be validat-
ed. After significant updates, the developer could depreci-
ate previous application versions after successful valida-
tion. Application Validators are also computer scientists
who test applications created by application developers.
They should find non-validated applications submitted by
application developers, download packages and sample

inputs and attempt to run the applications. After successful
validation they give feedback about the applications and
make them available for the Repository Administrator by
marking them as validated. Desktop Grid Administrators
manage Desktop Grid resources. They can search the re-
pository and download validated application packages for
deployment. They can allow users to use available re-
sources by installing applications on the EDGI Infrastruc-
ture. Repository Administrator manages the repository,
i.e. he/she handles users (registering/deleting and modify-
ing their data).

The EDGI AR stores three types of components: ap-
plications, implementations and configurations. Applica-

tion represents an application i.e. software. It describes the
inputs and outputs and explains what the application does.
However it does not actually contain any files necessary to
run the application itself because there can be different
implementations available e.g. for different operating sys-
tems. Implementation defines an implementation of an
application. It strictly follows the input and output defini-
tions of the application and implements the functionality
given in the application description. It contains or refer-
ences (via e.g. URLs) all the files and also holds other
data/metadata necessary to run the application on a given
platform. An implementation goes through a validation
process and is eventually deployed on a resource. Imple-
mentations have a list of sites where they are or can be
installed. Configuration describes in which Desktop Grid
and/or Service Grid the implementation can be executed.
It also stores files such as input and sample files, which
are needed to run the applications.

C. Consistency and Availability

An application registered in the Application Reposito-
ry may be assigned to multiple backend grids. The AR and
each of these grids may pertain to different domains of
authority; they are managed by different members of the
project. The consistency among them is not managed au-
tomatically; it must be enforced on a higher level, by pro-

Figure 2. The EDGI Infrastructure

MIPRO 2012/DC-VIS 309

ject leaders. However, there were not any tools for easy
administration.

We have developed a component which collects data
from individual grids and compares it against the contents
of the Application Repository. This information can be
used by project managers and members to maintain con-
sistency throughout the EDGI infrastructure.

If an application is consistently registered and de-
ployed, it may still be unusable due to availability prob-
lems of the underlying grid. Automatic black-box testing
of the infrastructure is necessary to maintain availability.
The component that tests the infrastructure can use the
consistency information to skip tests which will not suc-
ceed anyway.

II. EVALUATING CONSISTENCY

Our goal is to support maintenance of consistency be-
tween the Application Repository and each backend Desk-
top grid in the infrastructure. Backend grids are independ-
ent of each other; consistency between two – or generally,
over any set – is undefined.

It is important to note, that Clouds are not included in
the testing process. Clouds in the EDGI infrastructure are
“only” used to provide additional dedicated resources for
the various Desktop Grid backends. In our testing mecha-
nism we consider the Desktop Grid as one powerful re-
source, but not going down to the level of individual re-
sources. The correct operation and accessibility of a Cloud
is realized by standard monitoring tools shipped with the
cloud middleware.

First, we gather information from the backend grids. A
modified computing element accesses the underlying grid
through a bridge. Each bridge may be connected to multi-
ple backend grids. Bridges do not support brokering in-
coming jobs; instead, the client must specify the target
grid. For this, each bridge maintains multiple queues, each
queue being associated with a single backend grid. There-
fore, we can state that a target grid can be identified with a
(Bridge, Queue) pair. Each grid may support multiple
applications, whose list can be queried from the associated
bridge. The structure of the information in a bridge is
shown on Fig. 3. Gathering information from all known
bridges results in a set containing (Bridge, Queue,
AppName) triplets.

Grids to be evaluated and their associated (Bridge,
Queue) pairs must be configured manually; there is no
component which provides this information. Bridges have
a web-service interface; the bridge can be identified by
this service’s URL. The list of applications supported by
a given Bridge/Queue pair can be queried through its WS-
interface. Thus, data is generated in the following way:

1) (Grid name, (Bridge URL, Queue)) associations
must be configured.

2) For each grid configured, the list of applications is
queried from the bridge.

3) The result is a set of (Grid name, Bridge URL,
Queue, AppName) tuples.

After extracting information from grids, we need to
acquire information stored in the Application Repository.
The structure of the information in the AR – the relevant
part, thereof – is shown on Fig. 4. Each application – iden-
tified by its (canonical) name – may have multiple Imple-
mentations and each Implementation may have multiple
GridIDs associated with it. A GridID is a tuple specifying
the name of the supporting grid, and optionally, a bridge-
specific name (GridAppName) for the application. The
same application may have different names in different
grids. If the GridID does not specify one, the
GridAppName is the same as the canonical name. Nor-
malizing this structure, we get a set of (Application, (Grid,
GridAppName)) associations.

Figure 3. Bridge Information

Figure 4. AR Information

We have to integrate these database schemas. The flat-
tened schemas resulting from bridge and AR queries and
the associations between them are shown on Fig. 5. As-
suming that the two sets of information are consistent,
they can be combined in a single dataset. However, some-
times AR and grid information is inconsistent due to infra-
structural or administrative errors. The following incon-
sistencies and problems can be identified:

1) The AR is referencing a bridge that is unknown (i.e.
not configured for evaluation).

Bridge - URL

Queue

Application -
Name

Grid

AR Database

Application
- Name

Implementation

Grid ID
- Grid name
- [Grid-specific application name]

310 MIPRO 2012/DC-VIS

2) The AR is referencing a bridge that is unavailable.

3) The AR is referencing an application which is not
registered in the associated grid.

4) A bridge reports an application which is not refer-
enced in the AR.

Figure 5. AR-Grid Information Associations

Identifying these problems and presenting them in a
user-friendly way helps administrators and project leaders
maintaining the infrastructure:

1) If the AR references a grid unknown to the testing
system, the administrator can check the AR for a ty-
po or may configure the new grid in the testing sys-
tem.

2) System administrators can check firewall settings
and service state if the bridge is reported to be un-
reachable.

3) If the AR references an application which is missing
from the grid, if the grid administrator forgot to reg-
ister that application, the test system can prompt him
to correct the error.

4) Usually, it’s not a problem, if an application is regis-
tered in a grid but is not registered in the AR; it may
be the grid owners’ own application. However, see-
ing this, the project leader may ask the grid adminis-
trators to make this application public by registering
it in the AR, so other users can benefit from it.

Since installing our prototype system, the consistency
and availability of the EDGI infrastructure has improved
greatly. This system made it much easier to maintain the
infrastructure and to coordinate participants of the project.
Furthermore, the consistency information can be used to
optimize the infrastructure testing by skipping tests which
would not possibly succeed. A possible presentation of the
results can be seen on Fig.6. The rows of the table repre-
sent applications, the columns represent grids. Each cell
shows where that specific application is registered:
AR/DG/AR+DG. Unreachable bridges, unknown grids
and inconsistencies are highlighted.

III. TESTING THE INFRASTRUCTURE

In the EDGI infrastructure, multiple smaller infrastruc-
tures are being integrated. While monitoring backend
grids individually [6] is necessary, assessing availability
of the whole integrated system cannot be simply done by
testing its components. To measure the availability of the
EDGI infrastructure, we have developed a simple compo-
nent, which submits pre-configured test-jobs to the system
periodically. This component does nothing else; interpret-
ing the results is the responsibility of a higher layer.

Before submitting test-jobs, the result of the consisten-
cy analysis is checked. If a certain test-job is expected to
fail because of a misconfiguration in the system or infra-
structure outage, the test can be omitted. If the job may
finish successfully, it is submitted and the results are rec-
orded.

For each (Grid, Application) pair a test case can be de-
fined. If a given application in a given grid is found to be
consistently registered, both in the AR and the grid, the
associated test can be executed. Practically, this means
that each item of the joint schema (see Fig. 5.) may be
associated with a test case. Each test is a black box for the
testing system. For input, the joint information is provid-
ed. The output is expected to be a status code and – in case
of an error – a message. Also, the test must have a timeout
defined for that application. The testing system is entirely
indifferent of the mechanism implemented in a test. It may
be a gLite submission script or a direct submission to the
bridge; the commands in the script may even be executed
remotely on a UI machine. In the prototype, we imple-
mented direct bridge submission from remote UI machine.

The test system will submit new tests periodically, and
query the state of pending tests from time to time. In our
prototype system, we submit two tests for each application
every hour and query pending tests every thirty minutes. If
a test does not finish before the defined timeout, the test is
cancelled and reported to be failed.

1) Displaying the Results

Interpreting the results is not trivial; particularly in
case of volunteer desktop grids. Volunteer desktop grids
need much higher timeout for jobs than institutional desk-
top grids. While an institutional DG can finish jobs in a
short time (i.e. within an hour), a volunteer DG may need
almost a month or even more to provide results. For ex-
ample, in case of the EDGIDemo DG, each hour two tests
are submitted, and most of the time the results arrive be-
fore the next test submission. In contrast, the SZDG [8]
volunteer DG has a thirty day timeout for jobs, which –
depending on the load of the DG – usually proves to be
too little.

High timeout for tests means high lag of the infor-
mation provided by the testing system. Suppose we start
testing a grid in which we have a 30 day timeout. In the
worst-case scenario, we need to wait a month before we
can decide, whether a particular test has failed. This
means that whenever the infrastructure fails, the fact of
failure can only be established 30 days after the actual
event. Lowering the timeout would result in higher failure
rates, as tests would be less likely to finish in time. Anoth-

App. name Grid name Grid app. name

Grid name Bridge URL; Queue Application Name

Canonical application name Grid name
Bridge URL; Queue Bridge specific application name

Information in the Application Repository

Information in a bridge

The two schemas joined on associated attributes

MIPRO 2012/DC-VIS 311

er way is to monitor the current output of the infrastruc-
ture. That is, because we provide a continuous load on the
infrastructure, we can expect continuous output rate if we
assume a uniform lead time of jobs. The problem here is
the opposite of the previous. Whenever the infrastructure
fails, we are notified almost immediately. However, when
the system has recovered from a failure and testing has

begun, we need to wait until the first tests start to finish. In
the aspect of maintenance, this is a much better choice;
even so because smaller outages will not affect the results
at all. However, if we want to provide availability infor-
mation to users, this method has the disadvantage of mis-
informing them while the system is “bootstrapping”;
showing them the infrastructure is unreliable, while it is
actually up and running.

In the prototype, we used the latter method. We show
for each tested application, how many test jobs have fin-
ished in an hour on average through a certain timeframe.
This is still problematic since the moving average will
flatten the series a little, but with a well-chosen timeframe
size, this information can still be useful. Also, volunteer
and institutional DGs will produce series with different
characteristics. In our experience, submitting two tests

each hour, an institutional DG will finish around two jobs
by hour on average, while a volunteer will finish around
0.04. The numbers produced by volunteer DGs can be
explained with their (very) high load. Usually, the load in
a volunteer DG is kept high, and because the workunits
are processed in a FIFO fashion, the test jobs will not be
executed before the test system cancels them due to

timeout. We conjecture that introducing job-priorities and
submitting test jobs with high priority would correct this
anomaly.

Because of the nature of the data, we have not created
a system which interprets the data; instead we show the
processed data on a web page, and let the administrators
draw conclusions from it. A web page is shown on Fig.6.
Each tested application has a number pair in its cell, where
the first number is the hourly average number of finished
tests from the last two days, and the second is the number
of tests submitted each hour.

2) Using Test Results in Nagios

Nagios [5] is a powerful, scalable and flexible moni-
toring framework that enables to identify IT infrastructure

Figure 6. Web Page Based on Consistency and Test Data

312 MIPRO 2012/DC-VIS

problems. It is free software, licensed under the terms of
the GNU General Public License version 2. Nagios al-
ready have lots of plugins for checking host resources
(disk usage, processor load, etc.) and network services
(HTTP, ICMP, FTP, SSH, etc.) because of its flexibility.
Plugins can be written in many shell and program lan-
guages. We designed and implemented a plugin which can
extend our monitoring system with alerting and alternate
visualization back end. This plugin checks data generated
by the test system periodically. It investigates the number
of finished and failed jobs per day and sends alarms via e-
mail for the administrators when expected conditions are
not met.

IV. CONLUSION

The EDGI infrastructure was designed to promote ac-
cess to high capacity desktop grid resources. While we
have most certainly reached this goal, the monitoring of
the system was still unreliable. We have designed an au-
tomatic testing system, which

• Monitors consistency among the components of
the EDGI infrastructure

• Creates availability data by regular submission of
test-jobs to each grid

This information can be used in various ways. We
have implemented two applications using this data: a web
page, which helps project administrators to manage pro-
ject participants; and a Nagios plugin which alerts system
administrators on infrastructure failures.

Although automatic interpretation of the data is far
from trivial, the UI provided by the system is sufficient for
an administrator to maintain the EDGI infrastructure.
Since the prototype system has been deployed, many
anomalies and errors have been corrected; for example
typos and misconfigurations in the Application Reposito-
ry, missing applications from participating desktop grids,
or—in case of most newly joined desktop grids—
unopened firewalls. Also, the system allows us to notice
outages in the infrastructure with small delay, thus these
problems can be addressed quickly.

V. FUTURE WORK

Although our prototype system proved to be useful as-
is, there are several things we can further improve.

The Application Repository may act as a grid infor-
mation repository. Storing (Grid, Bridge URL, Queue)
associations in the AR – in a central location, that is –
would decrease the possibility of inconsistencies in the
infrastructure. Also, manual configuration of the testing
system would be unnecessary.

We will investigate the possibilities of high-priority
job submission. We conjecture that doing so would make
volunteer and institutional desktop grid results compara-
ble; therefore, we could interpret the data automatically,
creating an even more reliable monitoring system.

ACKNOWLEDGMENT

The research leading to these results has received
funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no
261556 (EDGI)

REFERENCES
[1] EDGI project, [Online]. Available: http://edgi-project.eu/

[2] 3G Bridge, [Online]. Available:
http://sourceforge.net/projects/edges-3g-bridge/

[3] Z. Farkas, P. Kacsuk, Z. Balaton, and G. Gombas, Interoperability
of BOINC and EGEE, Future Generation Computer Systems, vol.
26, no. 8, pp. 1092 1103, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/B6V06-5046M26-
8/2/b33ce4a0dc54204e34cdff1c90c577eb

[4] D. Anderson, Boinc: A system for public resource computing and
storage. Proceedings of the 5th IEEE/ACM International GRID
Workshop, pp. 1 7, 2004.

[5] Nagios, [Online]. http://www.nagios.org/

[6] F. Araujo, D. Santiago, D. Ferreira, J. Farinha, L. M. Silva, P.
Domingues, E. Urbah, O. Lodygensky, A. Marosi, G. Gombas, Z.
Balaton, Z. Farkas, and P. Kacsuk, Monitoring the edges project
infrastructure, in 3rd Workshop on Desktop Grids and Volunteer
Computing Systems (PCGrid 2009), Rome, Italy, May 2009.

[7] Fedak, G. et al.: XtremWeb: A Generic Global Computing
Platform. In: Proceedings of 1st IEEE International Symposium on
Cluster Computing and the Grid CCGRID 2001, Special Session
Global Computing on Personal Devices, pp. 582 587, IEEE Press,
May (2001)

[8] Kacsuk, P., Kovács, J., Farkas, Z., Marosi, A., Gombás, G.,
Balaton, Z.: SZTAKI Desktop Grid (SZDG): A Flexible and
Scalable Desktop Grid System. J Grid Comput.: Special Issue:
Volunteer Computing and Desktop Grids 7(4), 439 461 (2009).
http://dx.doi.org/10.1007/s10723-009-9139-y

MIPRO 2012/DC-VIS 313

