
Towards Data Interoperability of Cloud
Infrastructures using Cloud Storage Services

Tamas Pflanzner1 and Attila Kertesz2,1

1 University of Szeged, Department of Software Engineering
H-6720 Szeged, Dugonics ter 13, Hungary

tamas.pflanzner@gmail.com
2 MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P.O. Box 63, Hungary
kertesz.attila@sztaki.mta.hu

Abstract. Cloud Computing is becoming more and more popular, and
various cloud services have appeared to make our lives easier. Mobile de-
vices can also benefit from Cloud services: the huge data users produce
with these devices are continuously posted to online services, which may
require the modification of these data. Using cloud storage services to-
gether with computation-intensive infrastructure services can provide a
suitable solution for these needs. In this paper we address the open issue
of data interoperability in clouds, and propose an approach to manage
and share user data produced by mobile devices in different IaaS clouds.
The approach is exemplified with an image generator application, and
the performance of the application is evaluated with Android devices and
a private IaaS cloud.

1 Introduction

Nowadays, as Cloud Computing is becoming more and more popular, and var-
ious cloud services have appeared to make our lives easier. These services are
offered at different cloud deployment models ranging from the lowest infrastruc-
ture level to the highest software or application level. Within Infrastructure as a
Service (IaaS) solutions we can differentiate public, private, hybrid and commu-
nity clouds according to recent reports of standardization bodies. The previous
two types may utilize more than one cloud system, which is also called as a
cloud federation [6]. One of the open issues of such federations is the interop-
erable management of data among the participating systems. Another popular
family of cloud services is called cloud storage services. With the help of such
solutions, user data can be stored in a remote location – in the cloud. Mobile de-
vices can also benefit from Cloud services: the enormous data users produce with
these devices are continuously posted to online services, which may require the
modification of these data. Nowadays more mobile devices are sold compared to
traditional PCs [7], and Android devices are more and more popular [8]. The aim
of our research is to develop a solution that uses cloud storage services together



with infrastructure services of cloud federations to enhance the capabilities of
mobile devices.

Regarding related works, the need for data interoperability and the extensive
use of cloud storage services have been identified by various research and expert
groups (eg. [5, 3, 1]). Managing user data in the cloud also raises privacy issues
[9, 4] that need to be taken into account during data processing. Nevertheless in
this paper we refrain from legal issues and focus on interoperability problems.
Dillon et. al [2] gathered several interoperability issues that need to be considered
in cloud research, and named a new category called Data Storage as a Service
to draw attention to the problem of data management in clouds.

In this paper we address the open issue of data interoperability in clouds, and
propose an approach to manage and share user data produced by mobile devices
in different IaaS clouds. Therefore the main contributions of this paper are: (i)
envisioning a solution for the data interoperability problem of cloud federations,
(ii) the development of an image generator application that interconnects mobile
devices, IaaS services and cloud storage services, and (iii) the evaluation of our
proposed approach using mobile devices and an IaaS Cloud.

The remainder of this paper is as follows: Section 2 presents a classification
of cloud storage providers, and describes our approach for data interoperability;
Section 3 introduces a scenario for managing user data in a cloud produced by
mobile devices. Finally, Section 4 discusses the performed evaluations, and the
contributions are summarized in Section 5.

2 An Approach for the Data Interoperability Problem in
Cloud Federations

As we have seen in the introduction, retrieving and sharing user data and vir-
tual images among different IaaS Clouds is an open issue. Without concerning
data privacy issues, it is also not an easy task to move a user application from
one Cloud infrastructure to another. Virtualization techniques and virtual im-
age formats different providers support to run on their Virtual Machines (VMs)
are usually incompatible. Retrieving a user’s Virtual Appliance (VA, which is a
specialized image hosting the user application) from an IaaS Cloud is impossible
in most cases, not only in case of commercial providers, but also in academic so-
lutions. Therefore we propose an approach to retrieve and share user application
data among different providers with the help of Cloud Storage Services. In this
way VAs running at different cloud infrastructures can manage the same data at
the same time, and the users can access these data from their own local devices
without the need for accessing any IaaS Clouds. This idea is demonstrated in
Figure 1. A classification on cloud storage service providers (CSSP) is shown in
Table 1. We compared 10 well-known providers focusing on their most important
properties. From these providers we have chosen Dropbox [18] as the CSSP to
demonstrate our approach, because it has the highest variety of development
kits available and its API was the most reliable according to our evaluations.
Regarding the IaaS middleware we have chosen OpenNebula.



Table 1. Classification of Cloud Storage Service Providers

Provider
Initial Sto- Bonus Max. Sto- Supported Mobile
rage (GB) (GB) rage (GB) OS Platforms

Google Drive [14] 5 - 5 Win, Mac iOS, Android

Amazon CD [15] 5 - 5 Win, Mac iOS, Android

SkyDrive [16] 7 - 7
Win, Mac,

iOS, Android
Linux

SpiderOak [17] 2 1 10
Win, Mac,

iOS, Android
Linux

Dropbox [18] 2 0.5 18
Win, Mac,

iOS, Android
Linux

IDrive [19] 5 1 50 Win, Mac iOS, Android

SugarSync [20] 5 0.5 32 Win, Mac iOS, Android

Glide [21] 30 - 30
Win, Mac,

iOS, Android
Linux

CX [22] 10 0.3 16 Win, Mac
iOS, Android,
Kindle Fire

Memopal [23] 3 0.5 13
Win, Mac, iOS, Android,

Linux Blackberry

Provider
Version

Encryption
Num. of

API SDK
Control devices

Google Drive [14] + - - +
Java, Python, PHP,

.NET, Ruby

Amazon CD [15] - - 8 - -

SkyDrive [16] + - - + Android, .NET, iOS

SpiderOak [17] + + - + -

Dropbox [18] + + - +
iOS, Android, Python,

Ruby, Java, OS X

IDrive [19] + + 1 + -

SugarSync [20] + + 1 + -

Glide [21] + - 6 - -

CX [22] + + - + -

Memopal [23] + + 10 + -

In the next section we introduce a use case and a sample application that
demonstrates the usability of this approach.

3 Managing mobile data in Clouds

As a use case, we have identified a real world scenario that requires interoperable
data management among cloud infrastructures to manage user data produced
by mobile devices. Though the computing capacity of mobile devices has rapidly
increased recently, there are still numerous applications that cannot be solved
with them in reasonable time. Our approach is to utilize cloud infrastructure
services to execute such applications on mobile data stored in cloud storages.
The basic concept of our solution is the following: services for data management



Fig. 1. An envisioned solution for data interoperability in Clouds

are running in one or more IaaS systems that keep tracking the cloud storage of
a user, and execute data manipulation processes when new files appear in the
storage (see Figure 2).

The service running in the cloud can download the user data files from the
cloud storage, execute the necessary application on these files, and upload the
modified data to the storage service. Such files can be for example a photo
or video made by the user with his/her mobile phone to be processed by an
application unsuitable for mobile devices. In our solution currently developed for
Android devices, there is a possibility to configure the processes to be performed
on the data with a separate configuration file, which is automatically created and
managed by a mobile application running on the users device. This application
is also responsible for communicating with the cloud storage, which is Dropbox
in our case. The file manipulation applications have been created as a virtual
appliance, and have been pre-deployed in our SZTAKI cloud infrastructure based
on OpenNebula, to perform our evaluations.

In order to exemplify the usability of this generic approach, we have created
a concrete application called FolderImage, which can be used to manipulate
pictures produced by mobile devices. This program creates thumbnails of each
image of the appropriate folder then ensembles them into a single image (called
as folder image) that represents the folder and gives an overview of its contents



Fig. 2. Enhancing data management of mobile devices

to the user. This app can be really useful by providing a glimpse of a directory,
when a user has thousands of pictures spread over numerous directories, and she
is looking for a specific one.

We have developed an Android application that is able to perform this task
locally on the user’s device, and a Java application performing the same task
encapsulated in a VA, deployed in a local cloud. In the following subsections we
introduce these applications, then in Section 4 we compare the performance of
the two approaches.

3.1 The FolderImage Android application

In this subsection we introduce in detail how the FolderImage Android applica-
tion has been developed and can be used. This application can be used in two
modes: (i) in local operation, when the folder image is generated by using the
computing resources of the actual device, and (ii) in cloud operation, when the
application communicates directly with Dropbox, in this case the pictures can be
uploaded on demand, or synchronized continuously, and the folder image is gen-
erated in the cloud, which is downloaded to the device after completion. These
modes can be triggered by clicking on the appropriate button in its graphical
interface (see Figure 3).

The implementation of the application uses the Android [10] and Dropbox
API [11]. It needs to read and write files to the local storage of the device, to ac-
cess the internet, and to securely communicate with a Dropbox account storage.
These capabilities are denoted in its ’AndroidManifest.xml’ file. The application
itself needs to be registered at the official Dropbox developer website [12]. The
’APP-KEY’ retrieved during registration need to be set in the application to



allow secure communication and access to the user’s storage. If no such key in-
formation is given, the application offers the possibility to log in through the
device browser to a Dropbox account – in this case the permanently retrieved
credentials will be used to access the remote storage.

A screenshot of the graphical user interface (GUI) of the application is shown
in Figure 3. After installing and starting the FolderImage application, the user
will see a similar look with three buttons. Clicking on the first, top button, it
will automatically log in to Dropbox, and after the successful login, the name of
the account holder is displayed above the button. The second button can be used
to trigger a folder image creation in the cloud, and the third one to perform the
folder image generation locally. For simplicity, this prototype uses the ’Photos’
directory, and creates a file called ’folder image Photos.jpg’. (This prototype
can be easily extended to handle any directories on the device storage.) This
generated image is also shown in the application GUI, under the buttons. Status
messages and updates on image up-, downloads and generation are also shown
between the buttons and the folder image. Though this GUI is relatively simple,
it is not an easy task to show proper look on devices having different display
resolutions.

Fig. 3. A screenshot of the FolderImage Android application

As we mentioned, the second and third buttons can be used to generate the
folder image. These events trigger the ’createFolderImage’ and ’createFolderIm-
ageLocal’ methods respectively. These methods have five similar steps:

1. list: to generate a list of the images the actual folder contains;



2. download: to access the images of the folder;
3. resize: to generate thumbnails of the images;
4. create: to ensemble the thumbnails;
5. upload: to save the created folder image.

These steps are timestamped, therefore comparison between the local and
cloud computation can be easily done. The second step of the local computation
(when each image is loaded to the memory) had to be optimized for the local
version, because most Android device has a relatively small internal memory for
this purpose (eg. 32 MBs). Therefore in this step it is not the transfer time that
needs to be considered, but the loading of the pictures to the internal memory
one by one to generate separate thumbnails (on the contrary to the cloud version,
here the memory is too small to keep all pictures in the memory at the same
time). For the cloud version, the images are downloaded from the Dropbox folder
to the VA, where the computation is performed. In step 3 thumbnails with 50x50
pixels are generated, then in step 4 they are organized into a matrix that will
represent the folder image. Finally, in step 5 the local version only saves the
folder image file, while the Java application in the cloud uploads the generated
folder image file to the Dropbox storage, which will be retrieved by the device
application.

3.2 Image generation in the cloud

As we have depicted in Figure 2, the idea of our scenario is to move computation-
intensive tasks from a mobile device to the cloud. Therefore we have also created
a Java application called ImageConverter that is capable of performing the 5
steps discussed in the previous subsection. We have encapsulated this application
to a VA, deployed, and started it as a web service running in a local cloud. It
also has a direct connection with the user’s Dropbox storage. It can continuously
synchronize the image directory, and perform the folder image generation once
a new image is added to the folder. It can also be set to listen to a specific
setup file that instructs it to execute certain methods (eg. performing different
kinds of image manipulation processes). Once the ’createFolderImage’ method
is called from the Android application, the setup file is refreshed, and the web
service running in the cloud is notified about this change, which triggers the
folder image generating and uploading processes.

If we deployed web services of similar VAs into different IaaS providers, we
could execute a set of cloud services that can access the same data storage
under a Dropbox account. In this way we could handle and manage data in an
interoperable way among different IaaS solutions.

4 Evaluation

As we have already mentioned, we performed our evaluations on a private IaaS
Cloud. It has been developed by a national project called SZTAKI Cloud [13],



Table 2. Capabilities of the used devices in the evaluation

Samsung Galaxy Asus Slider Cloud Cloud
Mini (phone) SL101 (tablet) VM1 VM2

OS Android 2.2 Android 4.0 Ubuntu 12.04 64bit Ubuntu 12.04 64bit

CPU 600 MHz 1 GHz (dual-core) 1 CPU 4 CPUs

RAM 384 MBs 1 GB 1 GB 4 GBs

which was initiated to perform research in clouds, and to create an institutional
cloud infrastructure for the Computer and Automation Research Institute of the
Hungarian Academy of Sciences based on the latest research results to enable
a significant improvement of the local IT infrastructure. This new cloud-based
infrastructure is more effective and cost efficient than the former physical in-
frastructure built on traditional concepts and individual specific servers. This
improved institutional infrastructure could even be the first milestone in a global
academic paradigm shift, and will serve as a base for further research investiga-
tions.

To perform the measurements, we deployed the ImageConverter VA to the
SZTAKI Cloud. We have deployed them to two different types of virtual images:
one having one processor and one GB memory (VM1), and the other 4 processors
with 4 GBs of memory (VM2). Meanwhile we have also tested the FolderImage
application on two different Android devices: on a phone and a tablet. Table 2
summarizes the used resources during the evaluations. Tables 3 and 4 show the
evaluation results corresponding to the 5 steps of the executed methods intro-
duced in the previous section. In the first round of measurements we considered
a folder containing 450 images, while in the second round we manipulated 900
images.

Table 3. Evaluation results for 450 images

Device 1. list 2. download 3. resize 4. create 5. upload Sum
(ms) (ms) (ms) (ms) (ms) (ms)

Android phone 879 199738 872 10631 1587 213707

Android tablet 304 68334 286 3480 491 72895

Cloud VM1 20 173 135 277 326 931

Cloud VM2 14 189 68 203 181 655

The evaluation results clearly show the differences among the different types
of executions. Regarding the Android devices, the tablet performed the gener-
ation 3 times faster then the phone in both rounds of experiments. The web
service running in VM2 type virtual machine performed two times faster then
the other deployment at VM1. The local execution on the Android devices are
significantly slower (more then 100 times) then the image generations performed
in the cloud. These measurements fulfil our expectations, therefore it is worth



Table 4. Evaluation results for 900 images

Device 1. list 2. download 3. resize 4. create 5. upload Sum
(ms) (ms) (ms) (ms) (ms) (ms)

Android phone 2972 401312 1496 21643 3173 430596

Android tablet 971 133575 509 6957 998 143010

Cloud VM1 44 220 300 575 702 1841

Cloud VM2 24 191 73 541 239 1068

both in terms of computation time and energy efficiency to move computation-
intensive tasks to clouds from mobile devices.

Nevertheless we have to mention that file transfer times can also affect these
execution times. When a significant amount of data should be moved from a mo-
bile device with slow internet connection may result in much worse performance,
but if the new images are occasionally uploaded to Dropbox by using high speed
wifi connection, still good results can be achieved.

5 Conclusion

In this paper we addressed the open issue of data interoperability in clouds, and
proposed an approach to manage and share user data produced by mobile de-
vices in different IaaS clouds. We have introduced a solution for solving the data
interoperability problem of cloud federations by using cloud storage services.
We have shown how to develop an image generator application that intercon-
nects mobile devices, IaaS services and cloud storage services, and evaluated the
prototype application using mobile devices and a private IaaS cloud.

Our future work aims at extending the functionalities of the designed mobile
application, and supporting additional IaaS and cloud storage providers, and
mobile platforms.

6 Acknowledgment

The research leading to these results has received funding from the CloudSME
FP7 project under grant agreement 608886, and it was supported by the Euro-
pean Union and the State of Hungary, co-financed by the European Social Fund
in the framework of TAMOP 4.2.4. A/2-11-1-2012-0001 ’National Excellence
Program’, and by the European Union and the European Social Fund through
project FuturICT.hu (TAMOP-4.2.2.C-11/1/KONV-2012-0013).

References

1. J. Bozman. Cloud Computing: The Need for Portability and Interoperability.
IDC Executive Insights, August 2010.



2. T. Dillon, C. Wu, and E. Chang. Cloud Computing: Issues and Challenges.
In proc. of the 24th IEEE International Conference on Advanced Information
Networking and Applications, pp. 27–33, 2010.

3. Fraunhofer Institute for Secure Information Technology. On THE Secu-
rity of Cloud Storage Services, SIT Technical reports, March 2012. Online:
http://www.sit.fraunhofer.de/content/dam/sit/en/documents/Cloud-Storage-
Security a4.pdf

4. F. Gagliardi, S. Muscella. Cloud Computing – Data Confidentiality and Inter-
operability Challenges. In book: Cloud Computing, Computer Communications
and Networks, Springer-Verlag London, pp. 257–270, 2010.

5. K. Jeffery, and B. Neidecker-Lutz. The Future of Cloud Computing, Opportunities
for European Cloud Computing beyond 2010. Expert Group Report, January
2010.

6. G. Kecskemeti, A. Kertesz, A. Marosi, P. Kacsuk. Interoperable Resource Man-
agement for establishing Federated Clouds. In book: Achieving Federated and
Self-Manageable Cloud Infrastructures: Theory and Practice, IGI Global (USA),
pp. 18-35, 2012.

7. Mobile and PC shipments. Online: http://blog.modernmobileapps.com/post/20-
11/05/03/Qualcomm-A-Hand-in-Everything.aspx, March 2011.

8. Mobile OS statistics. Online: http://www.globalnerdy.com/2013/02/14/idcs-
smartphone-stats-for-4q-2012-and-a-review-of-their-mobile-os-share-prediction-
for-2015/, Feb. 2013.

9. Sz. Varadi, A. Kertesz, M. Parkin. The Necessity of Legally Compliant Data
Management in European Cloud Architectures. Computer law and security review
(CLSR), vol. 28, issue 5, pp. 577-586, Elsevier, 2012.

10. Android website. Online:http://www.android.com/, April 2013.
11. Dropbox API website. Online:https://www.dropbox.com/developers/reference/api,

April 2013.
12. Dropbox developer website. Online:https://www.dropbox.com/developers, April

2013.
13. The SZTAKI Cloud project website. http://cloud.sztaki.hu/en/home, 2013.
14. Google Drive. Online: https://drive.google.com/, May 2013.
15. Amazon Cloud Drive. Online: http://www.amazon.com/clouddrive/, May 2013.
16. Microsoft SkyDrive. Online: http://windows.microsoft.com/skydrive/, May 2013.
17. SpiderOak. Online: https://spideroak.com/, May 2013.
18. Dropbox. Online: https://www.dropbox.com/, May 2013.
19. IDrive. Online: https://www.idrive.com/, May 2013.
20. SugarSync. Online: https://www.sugarsync.com/, May 2013.
21. TransMedia Glide. Online: http://www.glideconnect.com/, May 2013.
22. CX. Online: https://www.cx.com/, May 2013.
23. Memopal. Online: http://www.memopal.com/, May 2013.


