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PII: S0167-739X(13)00229-X
DOI: http://dx.doi.org/10.1016/j.future.2013.10.012
Reference: FUTURE 2477

To appear in: Future Generation Computer Systems

Received date: 23 August 2012
Revised date: 28 September 2013
Accepted date: 4 October 2013
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- The EDGI project aims to integrate Service Grid and Desktop Grid 

systems. 

 

- MetaJob support enables the forwarding of multiple jobs to Desktop 

Grids through Service Grid systems 

 

- The MetaJob provides seamless job forward since the service grid system 

does not recognise it as multiple job. 

 

- Seamless job forward is the key to the performance issues caused by the 

submission of high-number of jobs. 

 

- MetaJob can be used in any current service grids like gLite, ARC, 

UNICORE. 

Highlights (for review)
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Abstract 
The paper describes the results of the EU FP7 EDGI project concerning how to extend gLite VOs with 

public and institutional BOINC desktop grids. Beyond simply showing the integration architecture 

components and services, the main emphasis is on how this integrated architecture can efficiently support 

parameter study applications, based on the so-called metajob concept created by the EDGI project. The 

paper explains in detail how to use the metajob concept by gLite users to exploit the BOINC desktop 

grids connected to the gLite VO, as well as how metajobs are managed internally by the 3G Bridge 

service. Performance measurements show that the Metajob concept indeed can significantly improve the 

performance of gLite VOs extended with desktop grids. Finally, the paper describes the practical ways of 

connecting BOINC desktop grids to gLite VOs and the accounting mechanism in these integrated grid 

systems. 
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1 Introduction 
Service grid (SG) systems based on gLite [1], UNICORE [2], Globus [3] and ARC [4] middleware are 

intensively used to solve parametric applications where the same code is executed with a large number of 

different parameter systems. The maintenance of such a grid system is quite expensive since they 

typically use managed clusters as computing element resources. A much less expensive alternative to 

solve such parametric applications would be the use of desktop grid systems, where—instead of managed 

clusters—the spare time of desktop machines is used as computational resource. Typical examples of 

such desktop grid (DG) systems are BOINC [5], XtremWeb [6] and Condor [7]. The advantage of DG 

systems is that they need much less initial investment than grid systems. For example, in case of BOINC, 

a small server is enough to manage a very large number of desktop resources, and these desktop resources 

could be existing desktop machines of an institute or volunteer home computers. None of them generates 

significant cost for the organization that maintains the BOINC server and runs the BOINC project. 

Therefore, at a fraction of the cost, much larger number of computing resources can be collected in a DG 

system than in a SG system. 

Of course, it would make no sense to throw away the existing SG systems and rebuild the 

infrastructure on a DG basis. Rather, the EU FP7 EDGeS and EDGI projects [8][9] proposed to maintain 

the existing SG systems and extend them with the extremely cheap DG resources. The extension should 

be as easy and as transparent as possible both for the users and for the VO administrators. In the current 

paper we describe in detail how this objective is achieved for the gLite → BOINC integrated systems. 

EDGI provides solution for extending other SG systems (ARC and UNICORE) with another DG system 

(XtremWeb) but these are not explained in this paper. The interested reader can find details of those 

solutions at the EDGI project web page [8] or in related publications [10][11]. 

During the EDGeS project the extension of gLite VOs with DG system has been solved, but the 

performance was not as good as we (and the user communities) expected. We had to understand the 

limitations of the EDGeS implementation in order to significantly improve the technical solution of the 
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integration, and to make it really usable for the gLite user communities. The main limitations were as 

follows: 

1) Desktop grids are really helpful when the same application should be executed on many different 

data sets. The bigger the parameter study the more advantageous is using the supporting desktop 

grid system. As a consequence, we had to realize that for solving individual job based 

applications the usage of desktop grids is perfectly useless. On the other hand the use of desktop 

grids is extremely beneficial if large parameter sweep applications should be executed. In 

practice, the majority of the current gLite applications belong to this class, so we decided to 

concentrate on the support of parameter sweep applications in EDGI. At this point we quickly 

realized that for such applications the gLite Workload Management System (WMS) becomes a 

bottleneck. It is not by chance that the gLite system is extended with pilot solutions in order to 

overcome this bottleneck problem. So we had to come up with a solution that reduces the WMS 

work the same way as the pilot mechanism and, at the same time, matches the concept of BOINC 

desktop grids. 

2) Another problem that gLite users did not like in the EDGeS solution was that they had to port 

their application from gLite to BOINC. Although we had created tools like DC API [12] and 

GenWrapper [13] that significantly reduced the required porting effort, still the users were 

reluctant to port their applications from gLite to BOINC. Therefore, we had to introduce a 

solution that completely eliminates the need of this porting activity. For this purpose we have 

invented the GBAC (Generic BOINC Application Client) that, with the help of virtualization, 

solves this problem as described in [14]. 

3) The third major hurdle for the gLite users was that sometimes they had to wait for unexpectedly 

long time to get all the results of the parameter sweep applications. This is due to the tail effect 

issue of volunteer desktop grids [15]. The tail effect problem comes from the unreliable nature of 

the volunteer client machines of the BOINC system. For example, if a client takes a data set but is 

turned off for a long time, then the final result of the parameter sweep application is also delayed. 

Due to the tail effect, typically the last 10% of the jobs are executed nearly as long as the first 

90% of the jobs. In order to avoid the tail effect problem one option is to use dedicated cloud 

resources, as it will be described in a forthcoming paper. There are some other possibilities that 

can be used without applying cloud resources. These techniques will be described in this paper. 

4) Finally, the data transfer between the gLite data resources and the BOINC clients was a major 

bottleneck in EDGeS infrastructure. In this paper we also show how this problem can be solved. 

Since the solution of Problem 2 was already published in a previous paper [14], and Problem 3 will be 

discussed in a forthcoming paper, in the current paper we show the solutions for Problem 1 and 4. We 

particularly focus on the solution of Problem 1, and explain how the Metajob concept is able to provide a 

solution for Problem 3 and 4, too. 

The next question is: how easy or difficult is it to physically extend the gLite VO infrastructures with 

BOINC desktop grid resources? We show two alternative solutions. One possibility is to connect the 

gLite VO to an existing volunteer BOINC desktop grid. The other option is to set up a new desktop grid 

and connect it to the gLite VO. The paper shows that both solutions are easy; so, even from this point of 

view, there is no obstacle to extend and use gLite VOs with BOINC systems. 

The important message of this paper is that all the major obstacles of utilizing BOINC desktop grids in 

gLite VOs are eliminated from both the users‘ and the infrastructure‘s point of view. From now on, any 

gLite VO can easily be extended with BOINC desktop grids, and users can easily and efficiently exploit 

this integrated infrastructure. There are two typical scenarios in extending gLite VOs by desktop grids. In 

the first case, the EDGeS@home public volunteer project can be attached to any gLite VO through the 

CREAM computing element that is being operated by EDGI (and by IDGF-SP). This scenario requires no 

effort from the gLite VO admin. In the second scenario a new local campus-wide desktop grid site is 

deployed in order to collect the resources in a university. To help deploying a desktop grid server a 

documentation site is provided by IDGF-SP where installation manuals and images with pre-deployed 

components can be found and utilized. 



After these improvements of the integrated gLite-BOINC system, EGI [16] also considers this 

infrastructure as an officially supported infrastructure type. However, to make this happen, EGI required 

applying the same monitoring and accounting infrastructure for BOINC desktop grids that is used for the 

gLite infrastructure. Therefore, we have developed the required monitoring and accounting infrastructure 

that will be described in Section 5. 

The paper is organized as follows. Section 2 introduces the main concept of the gLite BOINC 

integration, the related infrastructure components and the mechanism behind. Section 3 continues with the 

details on job submission, monitoring and result retrieval mechanism. In Section 4 we show the results of 

our performance measurements. Section 5 describes the monitoring and accounting concept and its 

implementation for the BOINC systems integrated with gLite VOs. Section 6 is about the related work. 

Finally, we conclude in Section 7 on the work described in this paper. 

2 Extending gLite VOs with BOINC systems  
The goal of extending gLite VOs with BOINC systems is to transfer parametric jobs from the gLite 

VO to one or more supporting BOINC systems, and to distribute the large number of job instances of the 

parametric job among the large number of BOINC client resources.  

In order to extend gLite VOs with BOINC systems, three new concepts were introduced. First of all, 

the security system of gLite and BOINC are so different that somehow this had to be harmonized by 

developing a joint security concept that is acceptable for both systems. Second, the CREAM computing 

element of gLite VOs had to be modified in order to handle the new, unified security concept. Finally, the 

job submission mechanism is also different in the two systems, so we needed a bridge that transforms 

gLite jobs into BOINC workunits. The generic architecture of extending gLite VOs with a BOINC system 

is shown in Figure 1.  

gLite UI 
machine

gLite 
WMS  

services

gLite 
CREAM 

CE

gLite
SE

gLite
modified
CREAM 

CE

3G 
Bridge 
service

BOINC 
Server

BC
BC

BC
BC

BC

EDGI
Application
Repository

CE: Computing Element
SE: Storage Element
UI: User Interface
BC: BOINC Client

 
Figure 1 - EDGI Infrastructure to bridge gLite jobs to BOINC DGs 

As Figure 1 shows, the parametric job submission goes through the following architecture services: 

gLite UI → gLite WMS → gLite mCE → 3G Bridge → BOINC Server → BOINC Clients (BCs). 

Notice that the gLite VO system administrator does not need to modify anything in the original gLite 

VO. The only action that is needed in the gLite VO is to add to the existing VO a modified CE (mCE) 

that enables submitting jobs to the connected BOINC system. 

These conceptual modifications and extensions of gLite VOs are explained in detail in the rest of the 

current chapter. 



2.1 Security system and EDGI Application Repository 
Concerning the security mechanisms of SG systems, any user who has an accepted grid certificate can 

submit any kind of applications into the grid; i.e. the grid trusts the certified users. User certificates are 

not used in DG systems, DG clients trust the applications and not the users; and hence, only well tested 

and validated applications can be used in DG systems.  

In order to combine the two concepts we have to restrict the applications that can be passed from the 

SG system to the supporting DG system. To achieve this, EDGI introduced the concept of application 

validation. Those parametric applications of the gLite VO that are intended to run in the supportive DG 

system should be validated before the infrastructure enables their transfer from the gLite VO to the DG 

system. By enabling the transfer, a mapping is realized between trusting the user and trusting the 

application. Transfer is only realized when a trusted user submits an application which is trusted by the 

target DG system. 

To collect all the validated applications, a central Application Repository (AR) has been implemented 

and deployed. The EDGI AR [17] stores the validated/trusted applications with all of their executable 

binaries to be submitted. 

2.2 Modified CREAM computing element 

The CREAM computing element modified by the EDGI project is designed to forward jobs to desktop 

grid servers. The EDGI mCE has the following main tasks: 

1) authorizing the application against the target DG system, 

2) converting the application description to the format required by 3G Bridge, 

3) keeping track of the status of the submitted job, and 

4) retrieving the results. 

 

In order to realize the situation, when a gLite job refers to a trusted application, we utilized the 

possibility of defining files by remote URLs. Therefore, instead of submitting (each of) the binaries to the 

mCE, users must only refer to the job binaries in the AR by gsiftp URLs.  To help the reader understand 

how it is done, Figure 2 shows an example. 

 
Executable = "dsp"; 

Arguments = "-f 22 -i 22 -p 723 -n pools.txt"; 

InputSandbox = { 

      "gsiftp://edgi-repo.cpc.wmin.ac.uk:2811/srv/edgi/1001/1102/dsp", 

      "pools.txt" }; 

OutputSandbox = {"result.txt", "stats.txt"}; 

ShallowRetryCount = 0; 

RetryCount = 0; 

SubmitTo = "cr1.edgi-grid.eu:8443/cream-pbs-edgidemo"; 

 

Figure 2 - Example JDL to submit an application to the DG through gLite 

The example (to submit a single binary job named ―dsp‖) shows that binaries must be referenced by 

URLs (―gsiftp://edgi-repo…‖) pointing to the EDGI AR inside the InputSandbox. The URLs for the 

binaries can be queried from the EDGI AR. These URLs are used by the EDGI mCE to detect whether the 

user refers to a trusted application stored in the AR. Input and output files can be defined in a normal 

gLite way, no restrictions are introduced. One additional and optional line (―SubmitTo‖) is added to make 

sure the gLite WMS will forward this job to the EDGI mCE in case the user wants to utilize desktop grid 

resources. However, the JDL is constructed in a way that it could be executed by a normal gLite CREAM 

CE. 



Once the EDGI mCE has received the job and extracted all the necessary information (application 

name, arguments, inputs and outputs), submission to 3G Bridge [18] is performed through its WS 

interface. This interface is then used to keep track of the job status and to retrieve the result files. 

The EDGI mCE is implemented as a new EDGI CREAM connector. The structure of the CREAM 

computing element allows attaching new connector components. A connector is for handling backend 

grids or clusters. The EDGI CREAM connector has the task to intercept the gLite jobs and to send them 

to a target 3G Bridge service. Thus, from higher level CREAM component's point of view, the new 

connector behaves like a batch system implementation. The difference is that the job is not run on a 

worker node belonging to the CREAM CE, but is sent to a 3G Bridge service for execution by a desktop 

grid system behind. A more detailed description of the EDGI CREAM computing element can be found 

in [19]. 

2.3 3G Bridge 

The 3G Bridge (Generic Grid Grid Bridge) [18] is designed to be used as a mediator between different 

types of grid middleware. Its main goal is to realize a standard gateway between the various grid systems. 

It has three main parts:  

5) web-service interface to receive the incoming jobs 

6) database and queue manager to store and schedule the jobs 

7) grid-handler interface and plugins realizing the interfaces to perform grid specific job handling 

Regarding point 1), the web service interface (―WSSubmitter‖ in Figure 3) offers the most important 

job manipulation functionalities like submission, state query, result query, cancel, etc. The interface is 

used by the EDGI CREAM mCE. For 2), the bridge stores the job description in a relational database 

(―3G Bridge Job DB‖ in Figure 3) and the ―Queue Manager‖ is responsible to invoke the different grid 

handlers to perform activities on a particular job. For 3), a ―Grid plugin‖ implementing a ―Grid Handler 

Interface‖ is responsible to communicate with the backend grid system like BOINC, XtremWeb, etc. The 

incoming jobs are organized into queues, and each queue must have a grid plugin handling the jobs of that 

particular queue. For example, a BOINC plugin takes jobs from a certain job queue and inserts them as 

workunits into the BOINC database. The EDGI mCE should submit its job to this particular queue in 

order to make sure the job will be transferred to BOINC. A more detailed description of the 3G Bridge 

service can be found in [18]. 

 
Figure 3 - Internal structure of the 3G Bridge service 

2.4 Running parametric applications in the gLite-BOINC system 
Although our main goal was to support parameter study applications, we have found inefficiencies of 

the system in this case. 



To submit parameter study applications, users may submit a gLite parameter study or job collection, 

which will be processed by the gLite WMS. The jobs in the collection will be handled—and possibly 

forwarded to the DG—individually. As the WMS has the liberty to send only a subset of the parameter 

study to the modified computing element, and because it does not know about the capabilities of the 

infrastructure behind the mCE, this approach cannot fully utilize the resources provided by the DG. 

Unfortunately, the situation is not much better even if the user explicitly specifies the mCE in the JDL as 

the destination CE. In this case, it is guaranteed that all the jobs of the parameter study application will be 

transferred to the connected DG system but jobs will be forwarded individually, and such an individual 

forwarding of the jobs in the PS will still have considerable overhead—as measured and described in 

Section 4. 

3 Efficient submission using the Metajob feature 
We have designed and implemented the Metajob feature, which enables gLite users to efficiently 

utilize the desktop grid for parameter study applications. Our design goals were the following: 

1) As we are extending a working infrastructure, the new feature must affect the least components 

possible. 

2) It must be easy to use. 

3) The resulting solution must impose considerably less overhead on the infrastructure than existing 

solutions (described in Section 2.4). 

To achieve our main design goal (3), our basic concept was that the user should submit a single 

package—a metajob—describing the actual jobs, which will be ―unfolded‖ only when necessary. There 

are two components in the infrastructure that are completely under our control: the mCE, and the 3G 

Bridge. Being downstream in the flow of submission, we chose the 3G Bridge to be modified, because 

this way, we can shave off even the mCE–3G Bridge communication overhead. 

We chose a solution that did not need the modification of any of the 3G Bridge interfaces; therefore, 

we could leave all other components unmodified—only the user needs to be conscious about using the 

feature. 

The following subsections describe in detail how 1) and 2) have been achieved; while 3) is 

corroborated by the performance measurements in Section 4. 

3.1 Submitting a parameter study 
To submit a parameter study, the user has to submit a single, special job, a metajob, through the EDGI 

infrastructure. A metajob differs from an ordinary job in a single, specially named input file, which 

contains the description of the jobs in the parameter study. This file is called the metajob file. This special 

file will be noticed and interpreted only by the Bridge, which will unfold the metajob and execute the 

resulting subjobs in the desktop grid. The gLite infrastructure and the modified CE will see and handle the 

whole parameter study as a single job, which alleviates stress on the gLite infrastructure. Even more, the 

Bridge will not only create, but also manage all subjobs internally. It will aggregate their status 

information and their output files to fully hide the nature of the metajob from the gLite infrastructure. By 

doing so, the Bridge shifts further load from the gLite infrastructure to itself.   

The JDL in Figure 4 can be used to submit a parameter study through gLite, to the desktop grid. 

Notice that the only difference between this JDL and a regular one (shown in Figure 2) is an extra input 

file called ―_3gb-metajob-test”. Although submitting this JDL will result in many jobs executed in the 

desktop grid, the gLite part of the infrastructure will handle it as a single one. 

 
Executable = "dsp"; 

Arguments = "-f 22 -i 22 -p 723 -n pools.txt"; 

InputSandbox = { 

      "gsiftp://dev17-portal.cpc.wmin.ac.uk:2811/srv/edgi/1001/1102/dsp", 

      "pools.txt", 

      "_3gb-metajob-test"}; 



OutputSandbox = {"result.txt", "stats.txt"}; 

ShallowRetryCount = 0; 

RetryCount = 0; 

SubmitTo = "cr1.edgi-grid.eu:8443/cream-pbs-edgidemo"; 

 

Figure 4 - Example JDL to submit a parameter study to the DG through gLite 

But how does a—technically—ordinary job become a batch of many jobs? The web-service interface 

of 3G Bridge would be able to recognize and unfold an incoming metajob upon submission, but this 

would introduce high delays when submitting: the remote procedure call would terminate only after the 

metajob has been unfolded, which time is proportional to the metajob‘s size. Also, the status and the 

output of the subjobs should be aggregated on demand, whenever a request arrives, which would make 

this solution non-scalable. 

We have chosen to implement the Metajob feature as a backend plugin of the Bridge (Figure 5). The 

mCE submits the metajob to the Bridge queue assigned to the desktop grid; as it would do in case of an 

ordinary job. The web-service interface notices the extra input file—whose name begins with ―_3gb-

metajob‖—, and redirects the job to another queue, so the Metajob plugin will handle it instead of the 

originally specified backend queue. The Metajob plugin will unfold the metajob first: it will interpret the 

definition file, and insert the subjobs in the 3G Bridge database. Then, the plugin will keep track of the 

subjobs, gather their output, and recursively cancel them when necessary. 

 
Figure 5 - 3G Bridge architecture with Metajob plugin 

The extra metajob description file must contain the specification of the parameter study application. 

The parameter study can be specified using a simple imperative language (example shown in Figure 6). 

The language is based on the Condor job description language [7]. We have chosen this syntax as it is 

simple to write and to generate with scripts; and it can be parsed quickly with constant memory overhead 

(as opposed to an XML-based language). 

The executable name, the set of input files, and the set of output files—that is, their logical names—

are derived from the JDL, and are fixed. The user can set the arguments of a specific subjob (line 05 in 

the example of Figure 6), and the source URLs of each input file (lines 06, 12, 15); then, they can 

instantiate a subjob using the `Queue [N]` command (lines 07, 13, 16). The interpreter maintains a single 

job template, which is initialized based on the JDL, and can be manipulated with the assignments in the 

metajob description. Each `Queue [N]` command will instantiate subjobs based on the current state of the 

template. This means that unchanged values will be inherited by following subjobs. 

Notice that input files are specified with URLs in the example. This is because the Metajob feature 

only allows http location specifications. The gsiftp protocol is not supported, since BOINC does not 

support it. Furthermore, since the infrastructure does not interpret metajobs, local (sandbox) files cannot 

be specified, because they would not be transferred with the metajob. Although this is a restriction, it 



encourages the use of the scalability improvement of the EDGI infrastructure and BOINC suggested by 

Problem 4 in Section 1. 

Files specified with http URLs will only be downloaded as late as possible. If the URL is specified, 

only the 3G Bridge will download these files, so the gLite infrastructure will not have to transfer these 

files. Moreover, if the MD5 sum and the size of the input file is also specified (line 12), only the BOINC 

client will download the input file, completely removing transfer overhead from both the gLite 

infrastructure and the BOINC server.  

The ‗%Comment‘ directive (lines 04 and 11) enables the user to identify which parameter set 

produced a particular result. A Comment may be specified for each set of parameters. All subjobs created 

by a single `Queue [N]` command will share the same comment, but—unlike other properties—it will not 

be inherited by following subjobs. The comment can be an arbitrary string, which will be included in the 

aggregated output to help find specific results. Using this feature is detailed in Section 3.4. 

3.2 Controlling batch execution 
As a metajob will be submitted as a single job, the infrastructure will only enable the user to control 

(monitor, cancel) the metajob, but not its individual subjobs. The subjobs may not execute uniformly: 

their execution time may have high variance, or some of them may fail. As the user has no control over 

individual jobs, this must be handled automatically by the Bridge, based on parameters specified by the 

user upon submission.  

The user can specify two directives for the Bridge to handle the parameter study. The ‗%Minimum‘ 

and ‗%Maximum‘ directives (lines 01 and 02 in Figure 6) are properties of the parameter study, and 

control its execution and evaluation. The ‗%Minimum‘ directive specifies the necessary number of 

subjobs required for the parameter study to be successful. If less than this number of subjobs finish 

successfully, the whole parameter study is considered failed, and no output is produced. The 

‗%Maximum‘ directive specifies the sufficient number of subjobs needed for success. If at least this 

number of subjobs has finished successfully, remaining running and pending subjobs are cancelled, and 

the execution of the parameter study is considered successful. Both values can be specified as absolute 

values or values relative to the total number of jobs—as percentage, or using the keyword ‗All‘ standing 

for 100%. 

This simple control feature supports important scenarios of parameter studies. For example, 

%Minimum=1 means that any result would be acceptable, while %Maximum<100% would introduce 

redundancy in the application. 

The latter case may be used to reduce the tail effect in volunteer desktop grid systems (see Problem 3 

in Section 1). Tail effect happens in case of job batches, when the variance in execution time is high. 

Some of the jobs may take exceptionally long time to execute, which delays the completion of the whole 

batch. In some cases—Monte Carlo simulations for example—discarding several results is acceptable; 

thus, it is possible to introduce redundancy. Introducing redundancy may reduce the execution time of the 

batch, as it would enable the Bridge to discard some or all offending workunits, so the batch can finish in 

less time. 

 
File _3gb-metajob-test: 

01 %Minimum 1 

02 %Maximum 75% 

03  

04 %Comment With input file: par1.txt 

05 Arguments = -f 22 -i 22 -p 723 -n pools.txt 

06 Input=pools.txt = http://my.server.com/ps/par1.txt 

07 Queue 

 

08 # `Queue N` creates N identical subjobs. All of them will 



09 #  have the same %Comment. 

10 # The Arguments property is inherited. 

11 %Comment With input file: par2.txt 

12 Input=pools.txt =  

http://my.server.com/ps/par2.txt=d8e8fca2dc0f896fd7cb4cb0031ba249=320 

13 Queue 2 

 

14 # %Comment is not inherited 

15 Input=pools.txt = http://my.server.com/ps/par3.txt 

16 Queue 

Figure 6 - Example metajob description file 

3.3 Monitoring the execution of the parameter study 

As stated before, the Bridge fully hides the nature of a metajob from the infrastructure. To maintain 

this, the detailed status information of a parametric study must not be published through the 

infrastructure. Instead, the status of subjobs is aggregated by the Bridge, and only this aggregated status 

information will be available through the usual channels. The detailed information is made available to 

the user through an external channel. 

Periodically, the statuses of the subjobs are gathered in a histogram. This histogram is used to generate 

a status file (see an example in Figure 7), which is published in a readable textual format, through http. 

This method requires no modification in the infrastructure and needs no extra maintenance since: (1) An 

http server is always present, because it is mandatory for BOINC. (2) The infrastructure already provides 

the internal DG identifier—gridid—of the job to the user. As a metajob has no internal DG identifier, this 

field can be recycled to hold the URL of the status information file. 

The user can query the gLite logging information about the job from the WMS, which will contain an 

entry named ‗3GBridge_DG_ID‘. In case of a metajob, this entry will contain the URL of the detailed 

metajob status information. An example status file is shown in Figure 7. 

 
# Stat generated at Wed Apr 9 17:12:40 2013 

 

Meta-job ID: 328808cc-7a66-4632-b3d8-0d6ef4c85c62 

Meta-job STATUS: RUNNING 

 

# Generation report 

Total generated:    10500 (100.0%) 

Required:           10000 ( 95.2%) 

Success at:         10000 ( 95.2%) 

 

# Status report 

Not started:            0 (  0.0%) 

Running:             1049 ( 10.0%) 

Error:                  0 (  0.0%) 

Finished:            9451 ( 90.0%) 

Still need:           549 (  5.2%) 

 

Figure 7 - Example of a detailed metajob status 

The histogram of the subjobs‘ statuses is then mapped to a possible job status that will become the 

overall status of the metajob; this mapped status will be reported to the modified CE. The mapping 

considers the Minimum and Maximum values specified in the metajob definition file. If the number of 

successfully finished subjobs exceeds Maximum, all remaining subjobs are cancelled, output is produced, 

and the metajob is reported to be successfully finished (‖Finished‖). If all subjobs have finished—either 



successfully or with error—the metajob is considered to be successful if and only if the Minimum number 

of successful subjobs has been reached. As an optimization, if the Bridge finds that so many subjobs have 

failed, that the Minimum cannot possibly be reached, remaining subjobs are cancelled, and the metajob 

fails immediately sending back the status ―Error‖. 

In the example shown in Figure 7, if 501 subjobs would fail, then the whole metajob would be 

considered failed. On the other hand, after 549 subjobs have finished successfully, all reamining subjobs 

are cancelled immediately, and the metajob is considered successful. 

 

3.4 Obtaining the output of the parameter study 

As with status information, the infrastructure is only prepared to handle the results of the single 

submitted metajob. To make the infrastructure transfer all subjobs‘ results back to the user, the Bridge 

must aggregate them, and pretend that the metajob has produced it. 

To achieve this, for all files specified in the output sandbox, the Bridge will create a tar.gz archive, 

which will contain all corresponding output files of the subjobs. The name of the archive must match that 

specified in the JDL. For example, if the sandbox specifies a single output.txt, the metajob will produce a 

single result.txt. This file will actually be an archive containing all result.txt-s produced by successfully 

finished subjobs (Figure 8). If another file, for example stats.txt, is specified, the metajob will ―produce‖ 

another archive named stats.txt containing all matching result of its subjobs, etc. To separate subjobs in an 

archive, they are put into separate directories; each directory name being the unique identifier of the 

corresponding subjob given by the Bridge. This way, to merge multiple output archives, one must simply 

decompress them in the same directory (Figure 9). 

 
result.txt  # actually, a tar.gz with the following content 

├── 0b/ 

│   └── 0b3e6bd3-f8b4-4d60-84a9-8c9c5855ffce/ 

│       └── result.txt 

├── 26/ 

│   └── 263a6140-cf01-4889-ad21-210ecd3d41c4/ 

│       └── result.txt 

└── 47/ 

    ├── 475ea5d0-982d-45d2-8260-7eb8493851e5/ 

    │   └── result.txt 

    └── 4787ab3d-594f-4691-96db-b826c3d63b61/ 

        └── result.txt 

Figure 8 - Example output of a metajob (result.txt) 

# The result of uncompressing both result.txt 

# and stats.txt in the same directory. 

. 

├── 0b/ 

│   └── 0b3e6bd3-f8b4-4d60-84a9-8c9c5855ffce/ 

│       ├── result.txt 

│       └── stats.txt 

├── 26/ 

│   └── 263a6140-cf01-4889-ad21-210ecd3d41c4/ 

│       ├── result.txt 

│       └── stats.txt 

└── 47/ 

    ├── 475ea5d0-982d-45d2-8260-7eb8493851e5/ 

    │   ├── result.txt 

    │   └── stats.txt 

    └── 4787ab3d-594f-4691-96db-b826c3d63b61/ 

        ├── result.txt 

        └── stats.txt 

Figure 9 - Merged output of a metajob 



The user must be able to tell which parameter set produced a specific result, but UUIDs are not useful 

for that. The Comment directive used in the metajob definition language was implemented to achieve this. 

In each output archive, the Bridge will also include a so called mapping file (Figure 10), which can be 

used to identify results. (The same mapping file is included in all output archives.) The mapping file is 

actually a metajob definition file, but it is ―normalized‖: 

1. Relative specifications of Minimum and Maximum are changed to absolute values. 

2. Inheritance is not used, all subjobs are fully defined. 

3. Queue N commands are not used; they are substituted with N full subjob definitions. 

4. Before each %Comment, a %Id directive specifies the UUID associated with that parameter 

set. 

The mapping file is semantically equivalent with the original metajob definition. If submitted, the %Id 

directives will simply be omitted. 

 
File _3gb-metajob-test-mapping: 

01 %Id 0b3e6bd3-f8b4-4d60-84a9-8c9c5855ffce 

02 %Comment With input file: par1.txt 

03 Arguments = -f 22 -i 22 -p 723 -n pools.txt 

04 Input=pools.txt = http://my.server.com/ps/par1.txt 

05 Queue 

 

06 %Id 263a6140-cf01-4889-ad21-210ecd3d41c4 

07 %Comment With input file: par2.txt 

08 Arguments = -f 22 -i 22 -p 723 -n pools.txt 

09 Input=pools.txt = http://my.server.com/ps/par2.txt 

10 Queue 

 

11 %Id 475ea5d0-982d-45d2-8260-7eb8493851e5 

12 %Comment With input file: par2.txt 

13 Arguments = -f 22 -i 22 -p 723 -n pools.txt 

14 Input=pools.txt = http://my.server.com/ps/par2.txt 

15 Queue 

 

16 %Id 4787ab3d-594f-4691-96db-b826c3d63b61 

17 %Comment 

18 Arguments = -f 22 -i 22 -p 723 -n pools.txt 

19 Input=pools.txt = http://my.server.com/ps/par3.txt 

20 Queue 

 

21 %Minimum 1 

22 %Maximum 3 

23 # Total generated: 4 

Figure 10 - A possible mapping file generated by submitting the metajob description file shown 

in Figure 6 

The infrastructure will transfer the created archive output files back to the user like usual output files. 

The user only has to extract them, and, if looking for a particular result, check the mapping file for 

information. For example, if the user wants to find results belonging to par2.txt, they can look for ―With 

input file: par2.txt‖ in the mapping file and find the UUIDs associated with these parameter sets. The 

UUIDs found will be the directory names containing the results sought. 



We have developed the metajob feature in hope that it will reduce administrative and communication 

overhead considerably in the gLite part of the infrastructure. As the Bridge undertakes the responsibility 

of managing such parameter studies, 

 the gLite infrastructure only has to forward a single job upon submission, reducing administration 

and transfer overhead; 

 the gLite infrastructure only has to monitor a single job, reducing polling overhead; 

 the user only has to manage a single job. 

In case of submission, the metajob feature uses local database insertions instead of individual 

forwarding subjobs through the infrastructure. In case of monitoring and management, the most overhead 

comes from the polling nature of the infrastructure. If Metajob is used, only a single job has to be polled; 

while the Bridge can assemble the status histogram, required for subjob management, with a single 

database query. It is clear, that the strength of the metajob feature is that it shifts decision making to 

where the information exists. 

Performance measurements have been executed to verify that the metajob feature achieves these goals. 

Our results will be described in Section 4. 

4 Performance measurements 

The key feature of the metajob concept is that it shifts administrative load from the WMS and the 

modified CE to the 3G Bridge. It also eliminates communication overhead between these elements. On 

the other hand, the architecture of the 3G Bridge, and the fact that it only has to process locally available 

information, makes it very scalable.  

  
Figure 11 - The metric used in our measurements is the arrival time of all jobs in the batch 

(a) gLite collection, (b) metajob 

We have designed and implemented a test to verify the efficiency of the metajob feature. The focus of 

the test was to measure the submission time of batches of jobs. That is, the time elapsed between 

submitting the batch to gLite, and all subjobs arriving in the Bridge, becoming ready to be forwarded to 

the desktop grid. 

The alternative, to which we have compared the metajob feature, is gLite‘s collection submission. In 

both cases, a batch of jobs can be submitted to the EDGI infrastructure, and in both cases, the 



infrastructure will manage the batch. The difference is that a gLite collection will be unfolded in the 

WMS, whereas a metajob will only be unfolded in the 3G Bridge. 

The elapsed time, in both cases, is measured from the time of submission. In case of gLite collections, 

the time of arrival is considered to be the maximal time of arrival among subjobs; that is, when the WMS 

has successfully forwarded all subjobs to the Bridge. The equivalent metric in case of metajobs is to 

measure the time until the Bridge has finished unfolding the metajob (rather than until the metajob itself 

has arrived). 

The measurements were executed on the EDGI infrastructure, backed up by the EDGIDemo desktop 

grid. In each test, a batch of 200*k (k  [1..5]) identical jobs—based on the dsp executable (Digital 

Signal Processing application) — has been submitted to the desktop grid, through gLite, either as a gLite 

collection or a metajob. In case of metajobs, the metajob definition format would have allowed us to 

optimize the submission of identical jobs by using the Queue N command. As the gLite collection feature 

does not offer such optimization, we disregarded this possibility. On the other hand, as in the metajob 

case the proxy certificate has to be handled only once for each submission, we used the proxy delegation 

feature of gLite to simulate similar conditions for the collection case. 

The time of arrival—in both cases—has been parsed from the Bridge logs; therefore, polling was not 

required. Log records are generated immediately when an event occurs, the timestamps are accurate to the 

second (no rounding), and no operations are performed (no cumulative error). Thus, the error is between 

(-1, 0] seconds. The median results—of five samples each case—are shown in Figure 12. 
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Figure 12 - Performance measurement results 

The results match the expected behavior of the infrastructure. Suppose the time needed to forward a 

single job from the WMS to the Bridge takes tF time. When a batch of n jobs is submitted as a gLite 

collection, it is unfolded immediately by the WMS, and then on, all subjobs are forwarded through the 

infrastructure, to the Bridge, individually. That is, forwarding the batch will take Θ(ntF) time. In the 

metajob case, assuming that parsing a subjob and inserting it into the database takes tp time, submitting a 

metajob with n subjobs will take Θ(tF + ntp) time. Considering that tF consists of the administrative 

overhead at the infrastructure components and then transmission delay between them, while tp depends 

only on parsing time and DBMS insertion time, tF is expected to be several orders of magnitude higher 

than tp. This essentially means that submitting a gLite collection should take linear time, while submitting 



a metajob should take quasi-constant time. The results of our experiment match this expectation perfectly: 

the submission time of a metajob grows at a negligible pace as more jobs are submitted in a batch. 

5 Providing accounting information for the EGI federation 

In order to fully integrate service grid infrastructure, three EU FP7 projects are collaborating: EDGI 

[8], EGI-Inspire [16], and EMI [20].  EDGI is working on integrating the SG and DG infrastructure 

together with EMI and EGI.eu. The SG–DG integration has three main logical parts: 

1. Seamless transfer of jobs from gLite, ARC or UNICORE to BOINC or XtremWeb-based desktop 

grid sites. This task belongs to EDGI and this integration regarding job transfer has been 

successfully done by EDGI. As a result, modified computing elements have been developed and 

became part of the EMI software distribution. SLA and OLA has been signed between EDGI and 

EMI for further software support. 

2. Monitoring desktop grid sites within the EGI monitoring infrastructure. This work has been done 

in the first half of 2012 within the framework of the EDGI–EGI MoU. EDGI has developed and 

later its follow-up FP7 project, called IDGF-SP maintains probes for monitoring the desktop grid. 

Probes are provided as RPM packages which follow EGI probe development guidelines. 

Currently, the Hungarian NGI is operating the Nagios probes for the DG sites. 

3. Accounting for desktop grid sites for the EGI infrastructure. EGI maintains an accounting 

infrastructure based on APEL [21]. All EGI CEs must gather accounting information on executed 

jobs, and synchronize this information with the site-level APEL node. For full integration, the 

EDGI modified CE must also supply accounting information to the EGI system.  

This section describes how the EGI accounting integration has been achieved in EDGI. 

5.1 Required information 
Most of the information required by the APEL infrastructure about jobs is available at the modified 

computing element. The actual accounting information about them, however, can only be provided by the 

desktop grid. The accounting metrics the desktop grid has to provide to the modified computing element 

are summarized in Table 1. 

Start/stop times Time when the job has been started, and when it has 

finished. 

Wall clock time Total time the job has spent running: 

= stop_time – start_time 

CPU time Consumed CPU time measured by the kernel on the 

executing host. 

Memory Real and virtual memory consumed by the job. 

Benchmark values Constant factors describing the performance of the 

executing host. 

Number of CPUs Number of CPUs in the executing host. 

Table 1 – Accounting metrics provided by the desktop grid 

Some of these metrics are readily available in the desktop grid database; however, there are three 

exceptions. 



Memory 
The memory consumed by the job is not recorded by the desktop grid. On the other hand, for each 

application, an upper limit for memory consumption must be estimated. This information is stored as an 

attribute for each workunit, and can be used by clients to filter out workunits that would require too much 

memory. If a running workunits exceeds its limit, it will be immediately terminated. 

Because of the termination policy, it is guaranteed, that the memory consumed by the workunit will be 

at most that estimated. Because of the filtering policy, application developers are forced to provide tight 

estimates. Therefore, the limit associated with the workunits is a suitable estimate for the memory 

consumption of the job. 

Benchmark metrics 
Only the number of floating point operations per second (FLOPS) is provided as information about 

hosts' performance. The current APEL records store SpecInt2K and SpecFloat2K factors (although this 

seems to be changing [22]). To integrate the desktop grid with the APEL accounting system, we have to 

find a reliable mapping between these two values. 

As the specification of APEL seems to be changing, the simplest and best solution is that the desktop 

grid will only provide the raw FLOPS value to the computing element. Then, the computing element will 

be able to map the raw value to a suitable number as necessary. 

Benchmark metrics in case of metajobs 
In case of metajobs, most of these metrics are trivial aggregations of the metrics of their subjobs. Start 

time is the minimal start time, stop time is the maximum stop time, while consumed memory, number of 

CPUs and CPU time can be summed. 

However, determining benchmarking metrics is not trivial. The benchmark being the number of 

floating point (or integer) operations a specific host can perform in a second, simply summing the 

individual metrics of all the hosts would result in a skewed metric that does not take into account the 

effort (time) each host has made. The solution is the following simple metric. 

For each host, the number of floating point operations it has actually performed can be estimated as 

follows: . This is a statistic that can be summed. The total CPU time donated 

by all the hosts can also be summed. Thus, the following statistic makes sense: 

 

This expression captures the overall, weighted performance of the set of nodes that has executed the 

metajob. 

5.2 Propagating information 
The modified computing element communicates with the desktop grid via the web-service interface of 

the 3G Bridge. The current interface did not define a way to access detailed information about a job; 

therefore, a new method had to be made available. 

We have implemented a RESTful interface that is much simpler, can be accessed with standard http 

clients (browsers, curl, wget, etc.), supports authentication and authorization, and is very easy to extend 

with new functionality. The required function has been implemented and made available through this new 

REST interface. 

The 3G Bridge itself cannot provide the accounting information needed, only its back-end desktop grid 

can. However, the desktop grid database and the 3G Bridge database are physically the same; therefore, 



the 3G Bridge interface can access it and extract the required information from it directly. This means, 

that the interface between the 3G Bridge and the back-end desktop grid can be left intact. 

The modified computing element must call this new function with a job identifier as an argument. As a 

result, the information specified in Table 1 is returned as a table of key–value pairs, either in clear text, or 

in JSON. 

The 3G Bridge does not employ a garbage collection system, the client side—here, the modified 

computing element—has to explicitly delete a job after execution. After deleting the job, no information 

about it will be accessible—including the accounting information. Because of this, the accounting 

information must always be queried before the job is deleted. 

In order to seamlessly integrate EGI accounting, the mCE functions should be extended. After a job 

has finished, before deleting it, its accounting metrics are acquired from the Bridge. This information is 

amended with required administrative information and is stored for the APEL client to access.  In the 

mCE, the APEL client periodically checks the changes and synchronizes the database with the site APEL 

node, which regularly sends the accounting information to the central EGI accounting system. 

6 Related work 

There have been several technologies developed for gLite to support parametric study applications. 

The gLite WMS itself supports parametric study and collection jobs, but these techniques impose huge 

overhead on the gLite infrastructure, as the jobs in these collections have to be handled individually by 

the WMS. 

The main components of this overhead are administrative tasks and finding available resources; 

impairing mostly the submission time of jobs. To reduce the submission overhead, pilot systems (like 

DIRAC [23] or Diane [24]) has been developed. In these systems, a single pilot job is submitted through 

gLite, as a placeholder, to a given CE. The pilot job pulls jobs from the pilot system‘s job repository for 

execution on the CE, and transfers information and results back. Pulling jobs and all communication are 

executed by-passing the gLite infrastructure, reducing the overhead of job submission from linear to 

constant time. 

Pilot systems use the existing infrastructure to execute larger sets of arbitrary jobs. In contrast, the 

EDGI solution provides not only a middleware, but also computing resources to support service grid 

users. The Metajob feature enables users to execute parameter studies in the EDGI infrastructure with 

high efficiency. On the other hand, pilot systems can execute arbitrary jobs, while the desktop grid was 

constrained to a set of supported (ported and preregistered) applications. However, this disadvantage has 

been diminished with the introduction of GBAC [14], which enables users to submit arbitrary (non-

ported, non-registered) applications to the desktop grids. 

Generally, the pull method eliminates the need for active polling of the status of CEs, and therefore, is 

suitable for volatile environments and for handling large number of jobs. Because of this, the BOINC 

desktop grid itself has been designed as a pull-based system. The EDGI infrastructure with the metajob 

feature of the 3G Bridge enables gLite users to exploit the resources offered by the desktop grid, without 

the overhead of the push-based gLite system. 

Condor [7] is a job-scheduler system that is able to handle parameter sweep type jobs. The syntax of 

the Metajob definition language was inspired by the job description language of Condor. In the condor 

submit file the user has the possibility to utilize existing macros (like ―$(Process)‖) to perform indexing 

in filenames. This feature is missing in our Metajob feature, but can be easily added in the future. 

Moreover, Condor can monitor the individual jobs themselves and can handle the results of the individual 

jobs as well, while Metajob cannot. Most of these missing features are coming from the restriction that 

Metajob must simulate the list of PS jobs as one single job. 

Another interesting related work is the Condor-BOINC integration [25] which enables Condor to 

submit (parametric) jobs to BOINC. This solution integrates the power of Condor submission mechanism 



with the scalable job handling mechanism of BOINC. This solution is a really powerful mechanism; 

however, in our solution, the gLite, ARC and UNICORE as submission interfaces were already a 

constraint. 

7 Conclusions 
The Metajob concept introduced in this paper enables the submission of high number of jobs to 

desktop grids (BOINC as an example). This concept has the following very important advantages. (1) 

Simple and low-level parameter sweep description can be created very easily by the user or even by a 

simple script or a high-level tool. (2) Simple monitoring facility through a webpage where the URL can 

be easily propagated in service grid systems, like gLite. (3) Simple identification mechanism by returning 

the annotated submission file. (4) Solution is transparent from the point of view of the source service grid; 

therefore, it can also be utilized through ARC or Unicore. (5) The solution is transparent from the target 

infrastructure‘s aspect as the Metajob concept is implemented by a separate 3G Bridge plugin. Therefore, 

other desktop grids, like XtremWeb or even new type of infrastructures can also be supported.  

The concept is general enough to be integrated to any Grid middleware since the only extension is an 

additional input file (Metajob description) while the output is a compressed file of multiple results. 

Among its advantages, the drawback of our solution is that it does not support standard job description 

languages; however, due to its simplicity, a converter for this purpose will also be implemented in the 

future. 

The EDGI (and later its follow-up FP7 project, called IDGF-SP) maintains a service grid to desktop 

grid infrastructure where several BOINC and XtremWeb desktop grid sites collected more than 130 

thousands of desktop and volunteer PCs worldwide. These sites and their resources can be accessed by 

gLite, ARC or Unicore users. 

The technology reported in this paper makes the extension of gLite VOs with desktop grids a 

production level reality for every gLite VO and gLite user who would like to run large parameter study 

applications in a fast and efficient way. 
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