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Abstract—This paper presents the first steps toward a graph1

comparison method based on matching matchings, or in other2

words, comparison of independent edge sets in graphs. The3

novelty of our approach is to use matchings for calculating4

distance of graphs in case of edge-colored graphs. This idea can5

be used as a preprocessing step of graph querying applications,6

to speed up exact and inexact graph matching methods. We7

introduce the notion of colored matchings and prove some8

interesting properties of colored matchings in edge colored9

complete graphs and complete bipartite graphs in case of two10

colors.11

I. I NTRODUCTION12

Graph based representation has become one of the main13

directions of modeling in pattern recognition during the14

last few decades. The main reason of the growing interest15

in graph based modeling and algorithms is the variety of16

available graph models leading to expressive and compact17

data representations. Another motivation is that many graph18

based pattern recognition methods have low computational19

cost. For example graph cut based methods [22], [18]) or20

minimum weight spanning tree based algorithms ([16], [15])21

are applied often in computer vision.22

Graph comparisonis a frequently appearing problem in23

graph based pattern recognition applications. Graph com-24

parison or as it is often calledgraph matching is an25

essential part of algorithms applied in image retrieval, orin26

comparison of molecular compounds, just to mention some27

application areas. Due to its high importance in theoretical28

approaches and engineering applications as well, several29

papers have investigated this topic, see [6].30

The main drawback of matching graphs is the computa-31

tional complexity, since most problems related to this topic32

belong to the NP-complete problem class.33

The idea is that the objects (fingerprints [25], business34

processes [8], molecular compounds, shapes, etc) are rep-35

resented by graphs, and the comparison of these objects is36

done by comparing the corresponding graphs.37

As mentioned, matching graphs is a hard problem from38

algorithmic point of view. Two types of graph matching39

are usually distinguished: exact and inexact matching. Exact40

matching is also called graph isomorphism. In case of41

inexact matching, we do not require the two graphs to42

be the same, justsimilar enough. This is the reason why43

these algorithms are often referred to as error tolerant or44

approximate graph matchings.45

The exact subgraph matching for arbitrary graphs is NP-46

complete [13]. An experimental comparison on the running47

time of some exact graph matching methods is presented in48

[11]. However, in case of special graph classes, for example49

planar graphs, there exist algorithms with polynomial run-50

ning time [17]. We remark here that the following statement51

is an old conjecture: the general isomorphism problem is52

neither polynomial nor NP-complete (it is in NP, of course).53

Although several approaches are also known for speeding54

up isomorphism testing as well - for example a heuristic55

based method in [21] or [14] using random walks -, in56

general for arbitrary graphs inexact graph matching methods57

have become more popular. These methods also have to58

deal with computational complexity issues (see [2]), but in59

case of real datasets and applications flexibility and error60

tolerance are required.61

Depending on the application the applied inexact graph62

matching methods are also varied. In case of image com-63

parison or object categorization simple structures, such as64

trees are compared (see [23]). Image processing tasks are65

typical examples for the case when the shape of the graphs66

can also be important, since vertices have coordinates (see67

[3]).68

However, the most frequently applied approaches are to69

compare graphs using a distance measure based on graph70

edit distance ([29], [28]) or a maximum common subgraph71

([10]) In case of these metrics, the position of the vertices72

is irrelevant.73

A detailed survey on graph edit distance is presented74

in [12]. Despite the number of papers that are concerned75

with this topic, very few contributions can be found in76

the literature about learning the parameters that control the77

matching [26], [19].78

In [4] the authors analyze the connection between the two79

distance measures.80

Our suggestion is to define a distance function between81

graphs based on a special type of maximum common sub-82

graph searching: finding the maximum common matching83

in edge colored graphs.84

The paper is organized as follows. In Section II we85

present some basic definitions and notation. Section III86



presents our idea of comparing graphs by matching match-87

ings: subsection III-A contains our suggestion in case of88

graphs without edge colors subsection III-B analyzes the89

case of edge-colored graphs. Some interesting properties of90

2-edge-colored complete and complete bipartite graphs are91

presented in Section IV. The suggested algorithm for finding92

colored matchings inl -edge-colored graphs is introduced93

in Section V with some remarks on special graph classes.94

Section VI presents test results on evaluating the usefulness95

of comparing matchings. Section VII concludes our work96

and also points out to our future goals.97

II. D EFINITIONS AND NOTATION98

A simple undirected graph is an ordered pairG= (V,E),99

where V = v1,v2, ..,vn denotes the set of vertices, and100

E⊆V×V denotes the set of edges. The edge between vertex101

vi andv j is denoted by(vi ,v j) = ei j . A vertex v is incident102

to edgee, if v∈ e. The number of vertices is called the order103

of the graph. Complete graph (or clique)Kn on n vertices104

is a graph where each vertex pair is connected:∀vi ,v j ∈V,105

(vi ,v j) ∈ E. A bipartite graph is a tripletG = (A,B,E). A106

graph is bipartite if its set of verticesV can be divided into107

two disjoint setsA,B, such that each edge inE connects108

a vertex inA to a vertex inB. Remark For disconnected109

bipartite graph,A and B are not unique. The complete110

bipartite graphKm,n, is a bipartite graph, where|A| = m,111

|B| = n and each vertex inA is connected to each vertex112

in B. In an arbitrary graph two edges are independent, if113

they do not have a common vertex. A matching is a set of114

pairwise independent edges. If every vertex of the graph is115

incident to exactly one edge of the matching, it is called a116

perfect matching. For further introduction to graph theory117

and algorithm complexity, see for example [7].118

III. C OMPARING MATCHINGS OF TWO GRAPHS119

A. Comparing matchings of graphs without edge colors120

Finding the largest common subgraph of two graphs is in121

general an NP-hard problem. Our suggestion is to modify (or122

specialize) the idea of finding the largest common subgraph123

to finding the largest common matching of two graphs.124

Matchings are an appropriate choice for comparing graphs125

without colors, since it is relatively easy to find a maximum126

sized matching. There are polynomial methods for finding127

the largest (or maximum) matching in a bipartite graph, and128

in non-bipartite graphs as well (Edmonds-algorithm [9]).129

These algorithms are also applicable in case of weighted130

graphs.131

Although graphs with maximum matchings of the same132

size can differ in structure, this measure is suitable to133

run pre-filtering in graph comparison applications. Recently,134

the size of the available input datasets have increased135

rapidly in several areas applying graph-based modeling (web136

analysis, protein-protein interaction networks, etc.). This137

naturally requires the development of efficient graph storing138

and searching techniques. For example graph indexing and139

querying receives more and more attention, see [31] or [27].140

Testing relatively easily computable features of graphs help141

reducing the search space (branch-and-bound or tree pruning142

techniques). In our case, a pruning condition is the size of143

the matching in the query graph and the ones in the graph144

database. Comparing a simple structural property can speed145

up exact and inexact graph matching techniques as well.146

Let the distance between two graphs be derived from the147

difference of the size of their maximum matchings. That is,148

let G1 andG2 be two arbitrary graphs. The distance between149

these graphs is the following:150

D(G1,G2) = abs(|M1|− |M2|) (1)

where |Mi | is the size of the maximum matching in graph151

Gi .152

B. Comparing matchings of edge colored graphs153

Investigation of matching in graphs is an extensively154

studied topic, however the main directions of research take155

graphs into consideration without edge colors. One of the156

novel aspects of our approach is to compare colored match-157

ings as well.158

Definition 1. (In this work) an edge colored - or edge159

labeled graph(V,E,c) is a graph such that color c(ei j ) is160

the color assigned to edge ei j .161

Note that the usual definition contains the following162

additional condition: edges having a common vertex can not163

have the same color (proper coloring). The definition here164

is drastically different.165

Edge colored graphs offer more possibilities for compar-166

ing matchings, or calculating the distance of graphs based167

on matchings, than the ones without edge colors. The first168

idea is to extend Equation 1., to handle more colors, see169

Equation 2.170

D1color(G1,G2) =

√

nc

∑
i=1

wi(|Mci ,1|− |Mci ,2|)
2 (2)

wherenc is the number of colors,ci is the ith color. |Mci , j |171

is the size of the maximum matching in the subgraph ofG j172

containing only the edges with colorci . If it is necessary,173

the colors can also be weighted.174

The advantage of this distance calculating method is that175

the colors are handled separately. The same polynomial176

algorithm is suitable to find the maximum matching for each177

color, as in case of graphs without colors on the edges.178

However, the drawback is that we gain quite a little179

information on the correspondence between the edges with180

different colors. Our suggestion is to use a distance function,181

that takes into consideration matchings with mixed coloring.182



Definition 2. A colored matching (c1,c2, ...,cnc) =183

(e1,e2, ...,enc) is a matching of ei edges with color ci . For184

example (yellow,green)=(1,3) is a matching of one yellow185

and three green edges.186

This definition is somewhat similar to the definition187

of rainbow matchings [20] (or heterochromatic matchings188

[30]), however in these type of matchings, no two edges189

have the same color. In other words a rainbow matching is190

a (c1,c2, ...,cnc) = (e1,e2, ...,enc) colored matching, where191

∀ei ≤ 1.192

Although there exist interesting theoretical results in case193

of matchings of not properly edge-colored graphs (Labeled194

Maximum/Perfect Matching problem, see [5], [1] or [24])195

our work aims to solve problems that to the best of our196

knowledge were not addressed before. The goal of the197

Labeled Maximum Matching problem is to find a maximum198

matching in an edge-colored graph with the maximum (or199

minimum) number of colors in it.200

Our work is more general, since we are interested not only201

in the number of appearing colors in a matching, but the202

number of edges corresponding to each color as well. The203

advantage of this approach is that it gives more information204

on the structure of the colored matchings.205

The comparison of edge-colored graphs and the distance206

calculation between them is based on the distance between207

their selected colored matchings. Note that these matchings208

do not necessarily have the same size. The exact method209

of comparing colored matchings depends on the application210

and the role of the colors. The colors are weighted in order211

to handle different importance of edges.212

Dist(CM1,CM2) =

√

nc

∑
i=1

wi(|ci : CM1|− |ci : CM2|)2 (3)

where|ci : CM j | is the number of edges with colorci in the213

colored matchingCM j .214

If there are no selected colored matchings to represent the215

graphs, calculation of the distance becomes more complex.216

Similarly to graph edit distance calculations, the matchings217

with the smallest distance should be selected. Of course in218

this case, the size of the matchings should also be taken into219

consideration.220

IV. COMPARING MATCHINGS OF2-EDGE-COLORED221

GRAPHSKn AND Km,n222

In this section we will present some properties of the223

matchings in complete graphs and complete bipartite graphs224

using two colors. Analyzing these types of graphs helps us to225

understand the behavior of more general graph classes. Here,226

we are interested in exact matching of matchings, that is our227

assumption is that in the query graph we have found a(y,g)228

matching ofy yellow andg green edges, and we would like229

whether the given colored matching exists in another given230

colored graph. As mentioned, here our graphs are complete231

or complete bipartite graphs. It means we know the type of232

connection (color) between all pair of vertices.233

First, we will present a theorem and a short proof on234

finding (y,g) matchings in complete graphs with a fixed235

coloring. Then we introduce a rephrased version of the236

theorem with a longer proof. Although this proof is more237

complex than the first one and it also depends on parity,238

nevertheless it has a strong algorithmic nature, and it reveals239

important properties of the structure of the edge colored240

graphs, that will be useful in generalizing our theorem.241

Preliminary remarkSuppose there is a matching with size242

y+g, containingy yellow andg green edges in a graphG.243

Obviously, for this property, the following is a necessary244

condition: there is a yellow matching of sizey and a green245

matching of sizeg in G separately. The condition 2(y+g)≤246

n is also necessary. Here we investigate the question: When247

are these conditions sufficient in the complete graph?248

A. 2-edge-colored graphs Kn249

Theorem 1. Let Kn be an edge colored complete graph with250

two colors. We have no constraint for the parity of n.251

Furthermore, let M denote a set of edges, that contains a252

yellow matching of y edges and a green matching of g edges,253

where y+g< n/2. Furthermore, suppose that among all the254

sets of edges with this property, M has the smallest number255

of vertices belonging to a green and a yellow matching edge256

as well. Then, M is a(y,g) matching.257

Proof. In an edge set with the edge coloring introduced258

above, let the vertices that are incident with a yellow and a259

green edge calledbadvertices. Suppose, there exists a vertex260

x in M which is bad. LetVM denote the vertices covered261

by M. VM < n, since 2· (y+ g) < n, and VM < 2 · (y+ g),262

otherwise we have found a(y,g) matching.263

• If the number of vertices is even (n = 2t): at least 3264

vertices remain outsideVM.265

Let v1 and v2 denote two of the vertices outsideVM.266

We do not know the color of the edge between these267

vertices, but it is not important. If it is yellow, then268

we remove the yellow matching edge inM incident to269

x, and substitute it with this yellow edge betweenv1270

andv2. (If the (v1,v2) edge was green, we remove the271

green edge incident tox). The result is aM′ edge set,272

that consists of a yellow matching of sizey and a green273

matching of sizeg. This edge set contains at least one274

less bad vertex thanM, which is a contradiction, since275

M was chosen to be the one with the least bad vertices.276

• If the number of vertices is odd (n= 2t +1): at least 2277

vertices remain outsideVM, so the previous method is278

appropriate in this case as well.279

The proof is complete.�280



B. 2-edge-colored graphs Km,n281

The method of the proof can also be applied in case282

of complete bipartite graphs. In this way we obtained the283

following theorem.284

Theorem 2. Let Km,n be an edge colored complete biparite285

graph with two colors. We have no constraint for the parity286

of n or m.287

Furthermore, let M denote a set of edges, that contains288

a yellow matching of y edges and a green matching of g289

edges, where y+g< min(m,n). Furthermore, suppose that290

among all the sets of edges with this property, M has the291

smallest number of vertices belonging to a green and a292

yellow matching edge as well. Then, M is a(y,g) matching.293

The next two subsections present the detailed proof of the294

rephrased version of Theorem 1. with respect to the parity295

of n.296

C. 2-edge-colored graphs Kn with odd number of vertices297

Theorem 3. Let Kn be an edge colored complete graph298

with two colors. Furthermore, let the number of vertices be299

n= 2t+1. If there is a yellow matching of size y and green300

matching of size g separately in Kn so that y+g≤ t, then301

there is a matching with size y+g, containing y yellow and302

g green edges.303

Proof. We know that there exists a yellow matching with304

sizey, moreover, we can find it in polynomial time. Denote305

this yellow matching withY. On the remaining vertices we306

can select some additional edges to the matching with green307

color. Let us denote this green matching withG′, and its size308

with g′. If g′ = g, we would have found a(y,g) matching.309

So let us suppose thatg′ < g. We will prove that ifg′ < g,310

thenG′ can be amended with one more green edge, so that311

we gain ag′+1+ y sized matching withg′+1 green, and312

y yellow edges.313

There are at least 3 vertices remaining inKn that are314

contained neither byY, nor by G′. The explanation is the315

following. Sincen is odd at least one vertex was left out316

of the matchings. Besides that, note thaty+ g′ < t, so Y317

and G′ contain at most≤ 2 · t −2 vertices together. Let us318

denote these remaining vertices withX. Note that all the319

edges between the vertices inX are yellow, otherwise a320

green edge could have been selected to increase the size321

of G′, see Fig.1(a).322

The other important fact is that all the edges between323

the vertices inV(X) andV(Y) respectively, are also yellow.324

(These are the sets of endpoints of the matchings.) The325

explanation is the following. Let us denote 3 arbitrary326

vertices inX by v1,v2,v3. Suppose there is a green edge327

between aw∈ V(Y) and v1 ∈ V(X) see Fig.1(b). The size328

of theG′ matching can be increased by this green edge. The329

yellow matching edge withw end vertex can be replaced by330

the yellow edge betweenv2 andv3, see Fig.1(c).331

For the next step we will use the information that there332

is a green matching with sizeg in Kn, and we are able to333

find one in polynomial time. Denote this byG′′. Suppose we334

keep only the edges ofG′ andG′′ in the graph. Furthermore335

we delete the edges that both matchings contain. Thus,336

the remaining graph consists of two types of green edges337

forming alternating paths and circles.338

Since |G′′| = g> |G′| = g′, there exists at least one path339

with more edges ofG′′ than ofG′. Let P denote one of the340

alternating paths with this property.341

Obviously, the end vertices ofP can not be inG′.342

Now we will examine the possible positions of the end343

vertices ofP:344

• Both end vertices are inX. This way we could have345

found a larger green matching thanG′, by replacing the346

edges ofG′′ with the ones ofG′. This is a contradiction,347

since we have selectedG′ to be the maximum sized348

green matching that amendsY.349

• One end vertex is inX, the other one is inY. By keeping350

the edges ofG′′ instead ofG′ in the alternating pathP,351

we will gain a larger green matching. However, we use352

one vertex that was the end vertex of a yellow edge in353

Y. But we are able to replace this edge by one inX the354

same way as illustrated on Fig.1(c). See the example355

on Fig.2(a).356

• Both end vertices are inY. If they are in the same357

yellow matching edge, then we will replace it, as in358

the previous case (see Fig.2(b)). If the end vertices359

of the path belong to two yellow matching edges, by360

increasing the green matching with one, we will lose361

two yellow matching edges. Since we have proved that362

between the vertices ofY andX all the edges are yellow,363

and there are more than two vertices inX, we can364

restore the yellow matching by replacing the lost yellow365

edges (see Fig.2(c)).366

All the cases have been examined. Thus we have proved367

that if |G′|= g′ < g, then there exists one more green edge368

to amend the matching with. That is, until we reach a369

matching ofy yellow and g green edges, we can always370

improve the matching.�371

372

D. 2-edge-colored graphs Kn with even number of vertices373

Theorem 4. Let Kn be an edge colored complete graph374

with two colors. Furthermore, let the number of vertices be375

n= 2t. If there is a yellow matching of size y and a green376

matching of size g separately in Kn so that y+g< t, then377

there is a matching with size y+g, containing y yellow and378

g green edges.379

Proof. First of all, note that all matchings inKn of size380

< t can be extended to a matching of sizet. Similarly381

to the proof of Theorem 3., we know that there exists a382

yellow matching of sizey. However, if the largest yellow383



Figure 1: Edges of the matchings are colored black, the other
edges are colored grey. a)Y and G′: the two matchings,
remaining vertex set:X. b) An example: green edge between
Y and X. c) Modified matching withy yellow and g′ + 1
green edges.

matching in Kn has only y edges, we would be done,384

since the additional edges to the perfect matching would385

be necessarily green.386

Otherwise, there exists a yellow matching of sizey+1,387

which can also be found in polynomial time. Denote this388

matching byY. Its role is not the same as above. LetG′
389

denote the largest green matching on the leftover vertices.390

The size of this matching will be denoted byg′, it is smaller391

thang, similarly as above.392

Again, similarly to the proof of Theorem 3., there are393

remaining vertices, with yellow edges between them (vertex394

set X), and their number is at least 2. We also know that,395

in the whole graph, there exists a green matching of sizeg,396

denote this byG′′. Let P be an alternating path between the397

edges ofG′ and G′′, as it was in the proof of Theorem 3..398

The case partition of the position of the end vertices ofP is399

also analogous with the mentioned proof:400

• The two end vertices are inV(X). This way we would401

have found a green matching of size larger thang′,402

which is a contradiction.403

• One of the end vertices (v1) is in V(X), the other one404

(vk) is in V(Y). By replacing the edges of the green405

matching G′ with G′′, we gain one green edge, and406

lose one yellow (the one withvk as end vertex). But407

still we havey yellow matching edges.408

• If both of the end vertices are inY, then similarly to409

the case of odd number of vertices, theY matching will410

Figure 2: Edges of the matchings are colored black, the
other edges are colored grey. a)v1, ..,v6: alternating path
with one end inX and one inY. b) v1, ..,v4 alternating
path with end vertices corresponding to one edge inY. c)
v1, ..,v8 alternating path with end vertices corresponding to
two edges inY.

be decreased by one or two edges. SinceX contains at411

least two vertices, connected by a yellow edge, there is412

at least one edge to increase the yellow matching with.413

The size ofY was y+ 1, so at leasty yellow edges414

remain.415

We proved that if theG′ matching contained less thang416

edges, we could always extend it with at least one green417

edge by keeping at leasty independent yellow edges�.418

Theorem 4 deals with the case whenn= 2·t andy+g< t.419

If y+ g = t, Theorem 2 does not hold, see the following420

example.421

Example 1. Let n= 2t and y+g = t. Then there exists a422

complete graph Kn edge colored with two colors, with the423

following properties. Kn contains a yellow matching of size424

y = t −1 and a green matching of size g= 1, but there is425

no (y,g) = (t −1,1) matching. An example is presented on426

Figure 3. for n= 6, y= 2, g= 1.427

E. Conclusions of our theorems428

Our theorems state that if a yellow matching of sizey429

and a green matching of sizeg appears in a complete or a430

complete bipartite graph somewhere, andy+g< n/2, then431

there is a(y,g) colored matching. We have also presented432



Figure 3: An example graph with 6 vertices, where a yellow
2-matching and a green 1-matching exist, but there is no
(y,g) = (2,1) matching.

methods, to find a colored matching with the given property.433

Suppose, there are edges in the graph with no information434

of their colors, and denote this set withT. Our theorems also435

mean that, if we have found a yellow and a green matching436

in this graph of the given size, no matter how we choose437

the colors of the edges inT, the gained colored complete438

graph will have an(y,g) matching.439

V. A LGORITHM FOR FINDING COLORED MATCHINGS IN440

l -EDGE-COLORED GRAPHS441

In subsection V-C we give an algorithm for finding442

(c1,c2, ..,cl ) colored matchings in anl -edge-colored graph,443

but the first two subsections contain some remarks on444

colored matchings in case of restrictions on the number of445

colors and on the graph structure.446

A. Perfect colored matchings in 2-edge-colored graphs Kn447

Note that perfect matchings can occur only in graphs with448

even number of vertices. Hence in this subsection we will449

assume thatn= 2t. As explained in the previous sections, in450

case of 2-edge-colored complete graphs, Theorem 1 holds451

only if y+g< n/2 (see Example 1). In this subsection we452

present an algorithm to decide if there exists a perfect(y,g)453

colored matching inKn, that isy+g= n/2. The basic idea454

of the algorithm is the following. Instead of analyzing the455

Kn graph, we select the edges corresponding to one of the456

colors, and process the graph induced by these edges.457

Assume that the yellow edges were selected. LetGy =458

(Vy,Ey) denote the graph induced by the yellow edges. In459

this graph each matching of sizey should be checked if it460

can be augmented by a green matching of sizeg.461

B. Perfect colored matchings in l-edge-colored graphs Kn462

Our conjecture for 3 (or more) colors is that it is NP-hard463

to decide if a graph has a(r,y,g, ...) matching of red, yellow464

and green, etc. colors even if we have found matchings of465

these colors of the given size separately.466

A simple example is presented on Fig. 4 , with a complete467

graph colored with 3 colors. There exists a red and a green468

matching of size one in the graph separately, but there is no469

(r,y,g)= (1,0,1) colored matching. Note thatr+y+g= 2<470

n/2= 3, so in case of more than two colors, the existence471

Figure 4: An example graph with 6 vertices and three
different colors on the edges. There is a red matching (dotted
line) of size one, and a green matching (dashed line) of size
one as well, but there is not (r,y,g)=(1,0,1) colored matching
in the graph.

of a (r,y,g, ...) colored matching cannot be guaranteed even472

if its size is less thann/2.473

However, matchings corresponding to each color are use-474

ful in case of inexact graph matching, even if the colors475

are handled separately. In case of colored matchings, the476

effectiveness of the comparison depends on the size of the477

matchings.478

C. Algorithm for finding colored matchings479

The method presented in Algorithm 1 is based on the480

recursive functionColMatch. The graphs induced by the481

colors are handled in the different levels of the recursion.482

Note that ranking the colors can decrease the running time.483

Colors should be ranked based on the number of their484

occurrence in the graph. The smaller the number of edges,485

the faster the algorithm can rule out the existence of the486

colored matching (if there is no such matching).487

Note that before running this algorithm it is worth check-488

ing for matchings of the required size in case of each489

color separately, since it can be carried out by Edmonds’s490

algorithm in polynomial time.491

Further simplification of the method in case of special492

graph classes is in progress.493

VI. T EST RESULTS494

Our suggested method for speeding up graph query was495

tested on a dataset of ’AIDS Screened’ chemical structural496

data available at497

htt p : //dt p.nci.nih.gov/docs/aids/aids data.html. The498

dataset contains the structure of 42390 chemical compounds.499

The description of this dataset (number of vertices of the500

graphs modeling the compounds and the corresponding501

maximum matchings) is presented on Fig. 5. For a fixed502

number of vertices the size of the maximum matchings might503

be different. The small histograms show the distribution of504

the size of the maximum matchings in case of 30,50,75 and505

100 vertices. As the number of vertices raises the deviation506

of the size of the maximum matchings also increases.507

Tests were carried out on this dataset in order to evaluate508

the efficiency of using maximum matching as a descriptor of509

graphs. Each graph in the dataset was used as query to search510



Figure 5: Description of the test dataset. For 42390 chemical compounds the size of the graphs and the size of the
corresponding maximum matchings are visualized. Detaileddescription for graphs with 30,50,75,100 vertices is also
presented. Each histogram shows the distribution of the size of the maximum matchings for graphs with 30,50,75,100
vertices.

Figure 6: Test results on the dataset described on Fig. 5. Suppose that the query graph hasn vertices. This figure shows the
ratio of the graphs withn vertices that can be excluded based on their maximum matching. Tests were carried out with each
graph selected as query. The black stars and the red dots showthe best and the worst exclusion ratios among the graphs
with a given number of vertices, respectively.

the dataset. Since the number of vertices is a property that511

is easy to be checked, we only ran the query within graphs512

of the same order.513

Test results on the exclusion ratio, i.e. the ratio of the514

graphs excluded by the query within graphs of the same515

order are presented on Fig. 6. The exclusion ratio (ER) was516

computed the following way:ER(G) = 1− NM−1
NV−1 . NV is the517

number of graphs of the database with the same order as518

graphG. NM is the number of graphs with the same order519

asG in what the corresponding matching has the same size520

as in case ofG.521

A query was run with each graph and for all different522

graph orders, the best and the worst result is shown on the523

figure marked with black and red, respectively. A query is524

considered to be better than another, if the corresponding525

exclusion ratio is higher, i.e. the larger number of graphs526

could be excluded.527

With a few exceptions, even the worst excluding ratios528

(red marks) reach 0.5, that is, at least half of the graphs of a529

given order can be excluded regardless of the selected query530

graph.531

Two types of edges are marked in the database depending532

on the strength of the connection between the elements of533

the compounds. For further analysis, the types (labels) of534

the edges are also taken into consideration. For each 2-535

edge-labeled graph, two new graphs were generated keeping536



(a) Maximum matchings in the graphs of edgetype 1. (b) Exclusion ratios for edgetype 1.

(c) Maximum matchings in the graphs of edgetype 2. (d) Exclusion ratios for edgetype 2.

Figure 7: Distribution of the maximum matchings in the graphs of edge types 1 (a) and 2 (c). Corresponding exlusion ratios
on (c) and (d) respectively.

Figure 8: Best (red) and worst (black) exclusion ratios based on the colored matchings (output of Algorithm 1.)



Algorithm 1 Finds a(c1,c2,c3, ...,cl ) matching in l-edge-
colored arbitrary graphs (if exists).

1: function ISINDEPENDENT(e1,e2)
2: if e1∩e2 = /0 then return true
3: elsereturn false
4: end if
5: end function
6:

7: function COLMATCH(Erem,M,Size,Color, level)
8: Mlevel = {e∈ M|c(e) =Color(level)};
9: if |Mlevel|= Size(level) then

10: if |Color|= level then return M
11: else
12: l = level+1;
13: Res=COLMATCH(Erem,M,Size,Color, l );
14: return Res
15: end if
16: else
17: Elevel = {e∈ Erem|c(e) =Color(level)};
18: for i = 1;i ≤ |Elevel|; i ++; do
19: if ISINDEPENDENT(M,Elevel(i)) then
20: R= Erem\Elevel(i);
21: E′ = {e∈ R|e∩Elevel(i) 6= /0};
22: R= R\E′;
23: m= M∪Elevel(i);
24: Res=COLMATCH(R,m,Size,Color, level);
25: if Res6= /0 then return Res
26: end if
27: end if
28: end for
29: return /0
30: end if
31: end function
32:

33: function MAIN (E,Size,Color)
34: level= 1; Erem= E; M = /0;
35: Res=COLMATCH(Erem,M,Size,Color, level);
36: if Res6= /0 then Output:Res
37: elseOutput: No such matching.
38: end if
39: end function

only the edges of type 1 and 2, respectively. The maximum537

matchings (Figs. 7a, 7c) and the exclusion ratios (Figs. 7b,538

7d) were also computed for these new graphs as in the539

unlabeled case. The results clearly show that matchings of540

edges of type 2 tend to be more unique. Due to this, the541

corresponding exclusion ratios are tend to be higher than in542

case of edge type 1.543

Another interesting conclusion of the tests are the results544

of the 2-edge-labeled case, where colored matchings were545

compared. Algorithm 1 was run to compute the colored546

matchings. Since the edges of type 2 performed better, this547

color was chosen at first. The exclusion ratios are presented548

on Fig. 8.549

The worst exclusion ratios clearly outperform the ones550

corresponding to the unlabeled case. The tests confirm551

that colored matchings perform better than standard ones,552

however these are more complicated to compute.553

VII. C ONCLUSION554

We have presented the first steps toward a graph matching555

method based on comparison of matchings. Our aim was556

to introduce a novel approach to compare graphs even if557

their edges are colored (or labeled). Our suggestion is to use558

matchings of graphs as a basis of distance measures, to over-559

come some of the complexity issues of graph comparison.560

We have shown interesting properties of colored matchings561

in case of two colors. We have analyzed the circumstances of562

the appearance of colored matchings using the well known563

method of finding matchings in graphs without edge colors.564

An algorithm was suggested to find colored matchings inl -565

edge-colored graphs. Test were run on a dataset of chemical566

compounds. We have shown that comparing matchings is567

a useful descriptor in graph comparison in this application568

field. Our goal in the future is the further analysis of the569

properties of edge colored graphs in case of more than two570

colors, concerning algorithmic complexity as well.571

ACKNOWLEDGEMENTS572

This work has been partially supported by Hungarian573

Scientific Research Fund grants 81493 and 80352.574

REFERENCES575

[1] (2005). On Complexity and Approximability of the576

Labeled Maximum/Perfect Matching Problems, volume577

3827 ofLNCS. Springer.578

[2] Abdulkader, A. M. (1998). Parallel Algorithms for579

Labelled Graph Matching. PhD thesis, Colorado School580

of Mines.581

[3] Bai, X. and Latecki, L. (2008). Path similarity skeleton582

graph matching.Pattern Analysis and Machine Intelli-583

gence, IEEE Transactions on, 30(7):1282 –1292.584

[4] Bunke, H. (1997). On a relation between graph edit585

distance and maximum common subgraph.Pattern586

Recognition Letters, 18(8):689 – 694.587

[5] Carrabs, F., Cerulli, R., and Gentili, M. (2009). The588

labeled maximum matching problem.Computers & OR,589

36(6):1859–1871.590

[6] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004).591

Thirty years of graph matching in pattern recognition.592

IJPRAI, pages 265–298.593

[7] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson,594

C. E. (2001). Introduction to Algorithms. McGraw-Hill595

Higher Education, 2nd edition.596



[8] Dijkman, R., Dumas, M., and Garcı́a-Bãnuelos, L.597
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