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Abstract—This paper presents the first steps toward a grapha
comparison method based on matching matchings, or in othey,
words, comparison of independent edge sets in graphs. que
novelty of our approach is to use matchings for calculating
distance of graphs in case of edge-colored graphs. This idea cén
be used as a preprocessing step of graph querying applications,
to speed up exact and inexact graph matching methods. We
introduce the notion of colored matchings and prove some,
interesting properties of colored matchings in edge colored
complete graphs and complete bipartite graphs in case of two
colors. 5
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these algorithms are often referred to as error tolerant or
approximate graph matchings.

The exact subgraph matching for arbitrary graphs is NP-
complete [13]. An experimental comparison on the running
time of some exact graph matching methods is presented in
[11]. However, in case of special graph classes, for example
planar graphs, there exist algorithms with polynomial run-
ning time [17]. We remark here that the following statement
is an old conjecture: the general isomorphism problem is
neither polynomial nor NP-complete (it is in NP, of course).

Although several approaches are also known for speeding
up isomorphism testing as well - for example a heuristic

Graph based representation has become one of the;maased method in [21] or [14] using random walks -, in
directions of modeling in pattern recognition during the general for arbitrary graphs inexact graph matching method
last few decades. The main reason of the growing intesediave become more popular. These methods also have to
in graph based modeling and algorithms is the variety, ofdeal with computational complexity issues (see [2]), but in
available graph models leading to expressive and compacase of real datasets and applications flexibility and error
data representations. Another motivation is that manylgtaptolerance are required.
based pattern recognition methods have low computational Depending on the application the applied inexact graph
cost. For example graph cut based methods [22], [18]) omatching methods are also varied. In case of image com-
minimum weight spanning tree based algorithms ([16], [15])parison or object categorization simple structures, sixh a

are applied often in computer vision. o
Graph comparisoris a frequently appearing problem dn

trees are compared (see [23]). Image processing tasks are
typical examples for the case when the shape of the graphs

graph based pattern recognition applications. Graph g¢omean also be important, since vertices have coordinates (see

parison or as it is often calledyraph matchingis ane
essential part of algorithms applied in image retrievalinog

(3)).

However, the most frequently applied approaches are to

comparison of molecular compounds, just to mention sameompare graphs using a distance measure based on graph
application areas. Due to its high importance in theorkticaedit distance ([29], [28]) or a maximum common subgraph
approaches and engineering applications as well, seyergll0]) In case of these metrics, the position of the vertices

papers have investigated this topic, see [6]. 7

is irrelevant.

The main drawback of matching graphs is the computa- A detailed survey on graph edit distance is presented
tional complexity, since most problems related to thisdopi in [12]. Despite the number of papers that are concerned

belong to the NP-complete problem class. 7

with this topic, very few contributions can be found in

The idea is that the objects (fingerprints [25], businesghe literature about learning the parameters that contel t
processes [8], molecular compounds, shapes, etc) aresremratching [26], [19].
resented by graphs, and the comparison of these objegts isin [4] the authors analyze the connection between the two

done by comparing the corresponding graphs. 80

distance measures.

As mentioned, matching graphs is a hard problem fstom Our suggestion is to define a distance function between
algorithmic point of view. Two types of graph matching graphs based on a special type of maximum common sub-
are usually distinguished: exact and inexact matchingc&xa graph searching: finding the maximum common matching
matching is also called graph isomorphism. In case. ofn edge colored graphs.
inexact matching, we do not require the two graphssto The paper is organized as follows. In Section Il we

be the same, jussimilar enough This is the reason why

present some basic definitions and notation. Section Il
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presents our idea of comparing graphs by matching matchand searching techniques. For example graph indexing and
ings: subsection IlI-A contains our suggestion in cases ofquerying receives more and more attention, see [31] or [27].
graphs without edge colors subsection 1lI-B analyzes.thélesting relatively easily computable features of grapHp he
case of edge-colored graphs. Some interesting propeities ceducing the search space (branch-and-bound or tree grunin
2-edge-colored complete and complete bipartite graphs: atechniques). In our case, a pruning condition is the size of
presented in Section IV. The suggested algorithm for findinghe matching in the query graph and the ones in the graph
colored matchings irl-edge-colored graphs is introduced database. Comparing a simple structural property can speed
in Section V with some remarks on special graph classeaip exact and inexact graph matching technigues as well.
Section VI presents test results on evaluating the usefslne Let the distance between two graphs be derived from the
of comparing matchings. Section VIl concludes our warkdifference of the size of their maximum matchings. That is,
and also points out to our future goals. 1w let G; andG; be two arbitrary graphs. The distance between

Il DEFINITIONS AND NOTATION 10 these graphs is the following:

A simple undirected graph is an ordered paie= (V,E),
where V = v1,Vo,..,V, denotes the set of vertices, and
E CV xV denotes the set of edges. The edge between verteyhere |M;| is the size of the maximum matching in graph
vi andvj is denoted by(vi,vj) = &j. A vertexv is incident,, G,
to edgee, if v e. The number of vertices is called the order
of the graph. Complete graph (or cliqui&) on n vertices,, B. Comparing matchings of edge colored graphs
is a graph where each vertex pair is connectaglvj €V, L L . .
(vi,v;) € E. A bipartite graph is a tripleG = (A B,E). A™ In\_/estlgapon of matching in graph_s is an extensively
graph is bipartite if its set of verticég can be divided int&’ studied topic, hov_vever_the main directions of research take
two disjoint setsA, B, such that each edge B connect&’ graphs into consideration W|th(_)ut edge colors. One of the
a vertex inA to a vertex inB. Remark For disconnected NOVel aspects of our approach is to compare colored match-

bipartite graph,A and B are not unique. The compléte ings as well.

bipartite graphKmp, is a bipartite graph, whergA| = m..., Definition 1. (In this work) an edge colored - or edge
[B| = n and each vertex irA is connected to each vertgx |abeled graph(V,E,c) is a graph such that color (e;) is

in B. In an arbitrary graph two edges are independeny, ithe color assigned to edge; e

they do not have a common vertex. A matching is a set of o . )
pairwise independent edges. If every vertex of the gragh is Note that the usual definition contains the following
incident to exactly one edge of the matching, it is called g2dditional condition: edges having a common vertex can not
perfect matching. For further introduction to graph thesryhave the same color (proper coloring). The definition here

and algorithm complexity, see for example [7]. 1 is drastically different. o
166 Edge colored graphs offer more possibilities for compar-

I1l. COMPARING MATCHINGS OF TWO GRAPHS  ; ing matchings, or calculating the distance of graphs based
A. Comparing matchings of graphs without edge colors: on matchings, than the ones without edge colors. The first

Finding the largest common subgraph of two graphs 78 ifdea is to extend Equation 1., to handle more colors, see
general an NP-hard problem. Our suggestion is to modifg’/"(oﬁquat'on 2.
specialize) the idea of finding the largest common subgraph -

g 4 o
to flndlng the largest common matthng of two gr_aphs. Dlootor(G1, G2) = \/Zwi(qu’l Mg .2|)? @)

Matchings are an appropriate choice for comparing graphs &
without colors, since it is relatively easy to find a maximum
sized matching. There are polynomial methods for findingwvherenc is the number of colorsg; is theit" color. [Mg j|
the largest (or maximum) matching in a bipartite graph,-ands the size of the maximum matching in the subgraplGpf
in non-bipartite graphs as well (Edmonds-algorithm [2]). containing only the edges with colay. If it is necessary,
These algorithms are also applicable in case of weightethe colors can also be weighted.
graphs. s The advantage of this distance calculating method is that

Although graphs with maximum matchings of the samethe colors are handled separately. The same polynomial
size can differ in structure, this measure is suitable- taalgorithm is suitable to find the maximum matching for each
run pre-filtering in graph comparison applications. Relyent color, as in case of graphs without colors on the edges.
the size of the available input datasets have increased However, the drawback is that we gain quite a little
rapidly in several areas applying graph-based modelingpgweinformation on the correspondence between the edges with
analysis, protein-protein interaction networks, etc.hisk: different colors. Our suggestion is to use a distance fancti
naturally requires the development of efficient graph stpsi  that takes into consideration matchings with mixed colprin

D(G1,Gz) = abg(|My| —[Mz]) (1)
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Definition 2. A colored matching (c1,C,...,Cn,) =2 colored graph. As mentioned, here our graphs are complete

(e1,e,...,6n,) is @ matching of eedges with color ic Forz: or complete bipartite graphs. It means we know the type of

example (yellow,green)=(1,3) is a matching of one yellowconnection (color) between all pair of vertices.

and three green edges. 234 First, we will present a theorem and a short proof on
This definition is somewhat similar to the definitf&n finding (y,g) matchings in complete graphs with a fixed

of rainbow matchings [20] (or heterochromatic matchff"igscmoring' T_hen we introduce a rephrase_d versio_n of the
[30]), however in these type of matchings, no two ed@geéheorem with a longer proof. Although this proof is more

have the same color. In other words a rainbow matchifity igomplixlthan t:e first one alnd _|thaI§o depends (;)r:aiparlty,
8 (C1,Co.....Cn) — (€1.€»,....6n,) colored matching, whefé nevertheless it has a strong algorithmic nature, and iialeve

Ve < 1 20 IMportant properties of the structure of the edge colored

Although there exist interesting theoretical results ineta 9@Pns. that will be useful in generalizing our theorem.
of matchings of not properly edge-colored graphs (Labé&led Prehmmary_ remarkSuppose there is a matc_hlng with size
Maximum/Perfect Matching problem, see [5], [1] or [24]) Y9 containingy yellow andg green edges in a graph.
our work aims to solve problems that to the best of2purObviously, for this property, the following is a necessary
knowledge were not addressed before. The goal ofsth&ondition: there is a yellow matching of sizeand a green
Labeled Maximum Matching problem is to find a maxiriim Matching of sizeg in G separately. The condition(2+g) <
matching in an edge-colored graph with the maximuni“(of 1S also necessary. Here_ we mvesugate the question: When
minimum) number of colors in it. «s are these conditions sufficient in the complete graph?

Our work is more general, since we are interested not only
in the number of appearing colors in a matching, but,thea  2-edge-colored graphs K
number of edges corresponding to each color as well. The
advantage of this approach is that it gives more informationTheorem 1. Let K, be an edge colored complete graph with
on the structure of the colored matchings. = two colors. We have no constraint for the parity of n.

The comparison of edge-colored graphs and the distance Furthermore, let M denote a set of edges, that contains a
calculation between them is based on the distance betwesgmllow matching of y edges and a green matching of g edges,
their selected colored matchings. Note that these matshingvhere yg < n/2. Furthermore, suppose that among all the
do not necessarily have the same size. The exact methagts of edges with this property, M has the smallest number
of comparing colored matchings depends on the applicatioof vertices belonging to a green and a yellow matching edge
and the role of the colors. The colors are weighted in ardeas well. Then, M is dy,g) matching.

to handle different importance of edges.

258

259

Nc
Dist(CM;,CMy) = \/Z\Wi(|q :CMy| —|ci : CM3])2 (3)261
i=

262

where|c; : CM;| is the number of edges with coley in the,,
colored matchingCM;.

If there are no selected colored matchings to represefit the
graphs, calculation of the distance becomes more coniplex.
Similarly to graph edit distance calculations, the matgkffi
with the smallest distance should be selected. Of cour§e in
this case, the size of the matchings should also be takei into

269

consideration.
270

IV. COMPARING MATCHINGS OF2-EDGE-COLORED 21
GRAPHSK, AND Ky 272

In this section we will present some properties of‘the
matchings in complete graphs and complete bipartite gfdphs
using two colors. Analyzing these types of graphs helps {fs to
understand the behavior of more general graph classes,”Here
we are interested in exact matching of matchings, that i€'our

assumption is that in the query graph we have fourig @) **

matching ofy yellow andg green edges, and we would |Ke

Proof. In an edge set with the edge coloring introduced
above, let the vertices that are incident with a yellow and a
green edge calleblad vertices. Suppose, there exists a vertex
x in M which is bad. LetVyy denote the vertices covered
by M. Vm < n, since 2 (y+g) <n, andW < 2-(y+g),
otherwise we have found @,g) matching.

« If the number of vertices is evemn & 2t): at least 3
vertices remain outsidey.
Let v1 and v» denote two of the vertices outsidégy.
We do not know the color of the edge between these
vertices, but it is not important. If it is yellow, then
we remove the yellow matching edge lih incident to
X, and substitute it with this yellow edge between
andv,. (If the (v1,v2) edge was green, we remove the
green edge incident t®). The result is aM’ edge set,
that consists of a yellow matching of sigand a green
matching of sizeg. This edge set contains at least one
less bad vertex thail, which is a contradiction, since
M was chosen to be the one with the least bad vertices.
« If the number of vertices is oddh& 2t + 1): at least 2
vertices remain outsidéy, so the previous method is
appropriate in this case as well.

whether the given colored matching exists in another given The proof is completel]
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B. 2-edge-colored graphsgk, 532 For the next step we will use the information that there

The method of the proof can also be applied in &asdS @ green matching with sizg in Ky, and we are able to
of complete bipartite graphs. In this way we obtained“thellnd On€ in polynomial time. D‘i”,‘)te this I6y". Suppose we
following theorem. s keep only the edges @' andG” in the graph. Furthermore

~ = We delete the edges that both matchings contain. Thus,
Theorem 2. Let Knn be an edge colored complete bipatite the remaining graph consists of two types of green edges
graph with two colors. We have no constraint for the patity forming alternating paths and circles.
of n or m. w  Since|G’| =g> |G| =, there exists at least one path
Furthermore, let M denote a set of edges, that containsvith more edges 06" than of G'. Let P denote one of the
a yellow matching of y edges and a green matching Qf Glternating paths with this property.
edges, where ¥ g < min(m,n). Furthermore, suppose that  Obviously, the end vertices & can not be inG'.

among all the sets of edges with this property, M has,the Now we will examine the possible positions of the end
smallest number of vertices belonging to a green and asertices ofP:

yellow matching edge as well. Then, M igyag) matChingéAs « Both end vertices are iX. This way we could have

The next two subsections present the detailed proof ofthe ~ found a larger green matching th@, by replacing the
rephrased version of Theorem 1. with respect to the parity ~ €dges ofG” with the ones of5'. This is a contradiction,

of n. 8 since we have selecte@ to be the maximum sized
. e green matching that amendfs

C. 2-edge-colored graphspivith odd number of vertices, . One end vertex is iiX, the other one is ilY. By keeping

Theorem 3. Let K, be an edge colored complete graph the edges oG" instead ofG’ in the alternating patf®,

with two colors. Furthermore, let the number of verticessoe ~ We will gain a larger green matching. However, we use
n=2t+ 1. If there is a yellow matching of size y and green one vertex that was the end vertex of a yellow edge in

matching of size g separately in, 0 that y g <t, thers Y. But we are able to replace this edge by onithe
there is a matching with sizeyg, containing y yellow arve same way as illustrated on Fig.1(c). See the example
g green edges. 0 on Fig.2(a).

] . 357 « Both end vertices are ilY. If they are in the same
Proof. We know that there exists a yellow matching with yellow matching edge, then we will replace it, as in
sizey, moreover, we can find it in polynomial time. Dengte the previous case (see Fig.2(b)). If the end vertices
this yellow matching withY. On the remaining vertices we of the path belong to two yellow matching edges, by
can select some additional edges to the matching with green increasing the green matching with one, we will lose
color. Letus denote this green matching w@h and its size, two yellow matching edges. Since we have proved that
with g'. If g’ =g, we would have found &y, ) m_atf:h'ngésa between the vertices dfandX all the edges are yellow,
SO let us suppose that < g. We will prove that ifg’ <g,, and there are more than two vertices Xy we can
thenG’ can be amended with one more green edge, sQ.that  agiore the yellow matching by replacing the lost yellow
we gain ag' +1+y sized matching wittg' + 1 green, ang, edges (see Fig.2(c)).

yYﬁ:'g;’; Zdrge; least 3 vertices remaining KR that ard” All the cases have been examined. Thus we have proved
contained neither by, nor by G'. The explanation is the that if |G'] = g’ < g, then there exists one more green edge

: : S j o 10 amend the matching with. That is, until we reach a
following. Sincen is odd at least one vertex was left out

of the matchings. Besides that, note that g < t, oY matching ofy yellow and g green edges, we can always

. . improve the matchin
and G’ contain at mosk 2-t — 2 vertices together. Let us P g

denote these remaining vertices with Note that all thé’

edges between the vertices ¥ are yellow, otherwise @ D. 2-edge-colored graphs Kwith even number of vertices
green edge could have been selected to increase the si
of G, see Fig.1(a). e SfReorem 4. Let K, be an edge colored complete graph

. . with two colors. Furthermore, let the number of vertices be
The other important fact is that all the edges betwéen . P .
se N =2t. If there is a yellow matching of size y and a green

the vertices iV (X) andV(Y) respectively, are also yellow. matching of size g separately in, Ko that y+ g < t, then

(These are the sets of endpoints of the matchings.)” Th , . e <
o : a7 ere is a matching with sizedyg, containing y yellow and

explanation is the following. Let us denote 3 arbitrary

: : . 50 7 g green edges.

vertices inX by vi,V»,vs. Suppose there is a green edge

between aw € V(Y) andvy € V(X) see Fig.1(b). The size Proof. First of all, note that all matchings iK, of size

of the G’ matching can be increased by this green edge=«The: t can be extended to a matching of sizeSimilarly

yellow matching edge withv end vertex can be replacedsby to the proof of Theorem 3., we know that there exists a

the yellow edge betweew, andvs, see Fig.1(c). s yellow matching of sizey. However, if the largest yellow
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Figure 1: Edges of the matchings are colored black, the other |c) Crte e’

edges are colored grey. &) and G': the two matchings,
remaining vertex seX. b) An example: green edge between
Y and X. ¢) Modified matching withy yellow andg' + 1
green edges.

Figure 2: Edges of the matchings are colored black, the
other edges are colored grey. &), ..,Vs: alternating path
with one end inX and one inY. b) vi,..,v4 alternating
path with end vertices corresponding to one edg¥ .irc)
vy,..,Vg alternating path with end vertices corresponding to

matching in K, has onlyy edges, we would be done, MO €dges iny.

since the additional edges to the perfect matching would
be necessarily green.

Otherwise, there exists a yellow matching of size 1,**
which can also be found in polynomial time. Denote this
matching byY. Its role is not the same as above. L@t*
denote the largest green matching on the leftover vertites. .
The size of this matching will be denoted by it is smallef* remain.
thang, similarly as above. a6 We proved that if the5' matching contained less than

Again, similarly to the proof of Theorem 3., there are edges, we could always extend it with at least one green
remaining vertices, with yellow edges between them (vestexedge by keeping at leagtindependent yellow edges.
set X), and their number is at least 2. We also know that, Theorem 4 deals with the case whes:2-t andy+g <t.
in the whole graph, there exists a green matching of gjze If y+g=1t, Theorem 2 does not hold, see the following
denote this byG”. Let P be an alternating path between ¢he example.
edges ofG' andG”, as it was in the proof of Theorem 3..

The case partltlon_ of the p05|t_|0n of the e.nd vert|ce§’0£m complete graph Kedge colored with two colors, with the
also analogous with the mentioned proof: A . . . :
i ) w2 following properties. K contains a yellow matching of size
« The two end vertices are M(X). This way we would_ y—=t—1 and a green matching of size-g1, but there is

have found a green matching of size larger tgy) 1 (y,9) = (t —1,1) matching. An example is presented on
which is a contradiction. Figure 3. for n=6, y=2, g=1.

» One of the end verticesr{) is in V(X), the other one
(w) is in V(Y). By replacing the edges of the green )
matching G’ with G”, we gain one green edge, 4fid E. Conclusions of our theorems
lose one yellow (the one withy, as end vertex). Bus Our theorems state that if a yellow matching of size
still we havey yellow matching edges. =0 and a green matching of sizpappears in a complete or a

- If both of the end vertices are M, then similarly tex complete bipartite graph somewhere, angg < n/2, then
the case of odd number of vertices, Menatching will: there is a(y,g) colored matching. We have also presented

be decreased by one or two edges. SiKoeontains at
least two vertices, connected by a yellow edge, there is
at least one edge to increase the yellow matching with.
The size ofY wasy+ 1, so at leasty yellow edges

Example 1. Let n=2t and y+g=t. Then there exists a
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) i . Figure 4. An example graph with 6 vertices and three
Figure 3: An example graph with 6 vertices, where a yellowgifferent colors on the edges. There is a red matching (dotte
2-matching and a green 1-matching exist, but there is NQne) of size one, and a green matching (dashed line) of size
(v,9) = (2,1) matching. one as well, but there is not (r,y,g)=(1,0,1) colored matghi

in the graph.

methods, to find a colored matching with the given property.

Suppose, there are edges in the graph with no informgafiogs 4 (r,y, g, ...) colored matching cannot be guaranteed even
of their colors, and denote this set with Our theorems alsQ it its size is less tham/2.
mean that, if we have found a yellow and a green matching However, matchings corresponding to each color are use-
in this graph of the given size, no matter how we chQosey| in case of inexact graph matching, even if the colors
the colors of the edges i, the gained colored complefe are handled separately. In case of colored matchings, the
graph will have an(y,g) matching. « effectiveness of the comparison depends on the size of the

V. ALGORITHM FOR FINDING COLORED MATCHINGS IN *"° matchings.

|-EDGE-COLORED GRAPHS s C. Algorithm for finding colored matchings

In subsection V-C we give an algorithm for findigg The method presented in Algorithm 1 is based on the
(€1,C2,..,0) colored matchings in ah-edge-colored graph, recursive functionColMatch The graphs induced by the
but the first two subsections contain some remarks. oolors are handled in the different levels of the recursion.
colored matchings in case of restrictions on the numbgr ofote that ranking the colors can decrease the running time.
colors and on the graph structure. s Colors should be ranked based on the number of their

. _ 5 Occurrence in the graph. The smaller the number of edges,
A. Perfect colored matchings in 2-edge-colored graphs‘mi( the faster the algorithm can rule out the existence of the

Note that perfect matchings can occur only in graphs withcolored matching (if there is no such matching).
even number of vertices. Hence in this subsection we,will Note that before running this algorithm it is worth check-
assume that = 2t. As explained in the previous sections,in ing for matchings of the required size in case of each
case of 2-edge-colored complete graphs, Theorem 1 holdsolor separately, since it can be carried out by Edmonds’s
only if y+g<n/2 (see Example 1). In this subsection we algorithm in polynomial time.
present an algorithm to decide if there exists a perf@d)... ~ Further simplification of the method in case of special
colored matching irKp, that isy+g=n/2. The basic ideg graph classes is in progress.
of the algorithm is the following. Instead of analyzing the
K, graph, we select the edges corresponding to one df the VI. TEST RESULTS
colors, and process the graph induced by these edges:s Our suggested method for speeding up graph query was

Assume that the yellow edges were selected. Ggt=«s tested on a dataset of 'AIDS Screened’ chemical structural
(W, Ey) denote the graph induced by the yellow edges~ Indata available at
this graph each matching of sizeshould be checked if 4t http: //dtp.nci.nih.gov/docyaids/aids datahtml. The
can be augmented by a green matching of gize w0 dataset contains the structure of 42390 chemical compounds

) . s0 The description of this dataset (number of vertices of the
B. Perfect colored matchings in I-edge-colored graphis K graphs modeling the compounds and the corresponding

Our conjecture for 3 (or more) colors is that it is NP-hard maximum matchings) is presented on Fig. 5. For a fixed
to decide if a graph has@,y, g, ...) matching of red, yellows number of vertices the size of the maximum matchings might
and green, etc. colors even if we have found matchings obe different. The small histograms show the distribution of
these colors of the given size separately. ss the size of the maximum matchings in case of 30,50,75 and

A simple example is presented on Fig. 4 , with a completel 00 vertices. As the number of vertices raises the deviation
graph colored with 3 colors. There exists a red and a greeaf the size of the maximum matchings also increases.
matching of size one in the graph separately, but there«s no Tests were carried out on this dataset in order to evaluate
(r,y,9) =(1,0,1) colored matching. Note thatt y+g=2<s» the efficiency of using maximum matching as a descriptor of
n/2 =3, so in case of more than two colors, the existencegraphs. Each graph in the dataset was used as query to search
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Figure 6: Test results on the dataset described on Fig. SodSepthat the query graph hawertices. This figure shows the
ratio of the graphs withm vertices that can be excluded based on their maximum matchests were carried out with each
graph selected as query. The black stars and the red dotsthleokest and the worst exclusion ratios among the graphs
with a given number of vertices, respectively.

the dataset. Since the number of vertices is a property.thdigure marked with black and red, respectively. A query is
is easy to be checked, we only ran the query within graphsonsidered to be better than another, if the corresponding
of the same order. 26 exclusion ratio is higher, i.e. the larger number of graphs
Test results on the exclusion ratio, i.e. the ratio ofsthecould be excluded.
graphs excluded by the query within graphs of the same With a few exceptions, even the worst excluding ratios
order are presented on Fig. 6. The exclusion reiB)(was:s (red marks) reach 0.5, that is, at least half of the graphs of a
computed the following wayER(G) =1— Wj Ny is thes given order can be excluded regardless of the selected query
number of graphs of the database with the same order agaph.
graphG. Ny is the number of graphs with the same okder Two types of edges are marked in the database depending
asG in what the corresponding matching has the same;sizen the strength of the connection between the elements of
as in case of. s the compounds. For further analysis, the types (labels) of
A query was run with each graph and for all different the edges are also taken into consideration. For each 2-
graph orders, the best and the worst result is shown os thedge-labeled graph, two new graphs were generated keeping
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Algorithm 1 Finds a(ci,cp,Cs,...,¢) matching in l-edge;,

colored arbitrary graphs (if exists). s
1: function ISINDEPENDENT(e1, &) 549
2: if epNey =0 then return true 550
3: elsereturn false 551
4. end if 552
5. end function 553
6:

7: function COLMATCH(E;em, M, SizeColor,level) 554
8: Mievel = {€ € M|c(e) = Color(level)}; scs
9 if [Mievell = Sizélevel) then -

10: if |Color| = level then return M o7
11 else oo
12: | =level+1,; oo
13: Res=CoLMATCH(Eem, M, SizeColor,1); .,
14: return Res w61
15: end if s
16:  else o
17: Ejevel = {€ € Erem|C(€) = Color(level) }; o
18: for i = 1;i <|Ejevell;i++; do s
19: if ISINDEPENDENT(M, Ejevel(i)) then .
20: R= Erem\ Elevel(i); 567
21: E' = {ec ReNnEpevel(i) # 0}; -
22: R=R\FE’; o
23: m=MU Elevel(i); 570
24: Res=CoLMATCH(R, m,SizeColor,level),
25: if Res# 0 then return Res
26: end if 572
27: end if
28: end for o
29: return 0 o
30: end if

. 575
31: end function
32: 576
33: function MAIN(E, SizeColor) 577
34: level=1; E,em=E; M =0; 578
35: Res=COLMATCH(Eem, M, SizeColor, level); 579
36: if Res# 0 then Output: Res 560
37 elseDutput: No such matching. se1
38: end if 582
39: end function 583

584

585

586

matchings. Since the edges of type 2 performed better, this
color was chosen at first. The exclusion ratios are presented
on Fig. 8.

The worst exclusion ratios clearly outperform the ones
corresponding to the unlabeled case. The tests confirm
that colored matchings perform better than standard ones,
however these are more complicated to compute.

VIl. CONCLUSION

We have presented the first steps toward a graph matching
method based on comparison of matchings. Our aim was
to introduce a novel approach to compare graphs even if
their edges are colored (or labeled). Our suggestion isdo us
matchings of graphs as a basis of distance measures, to over-
come some of the complexity issues of graph comparison.
We have shown interesting properties of colored matchings
in case of two colors. We have analyzed the circumstances of
the appearance of colored matchings using the well known
method of finding matchings in graphs without edge colors.
An algorithm was suggested to find colored matchingk in
edge-colored graphs. Test were run on a dataset of chemical
compounds. We have shown that comparing matchings is
a useful descriptor in graph comparison in this application
field. Our goal in the future is the further analysis of the
properties of edge colored graphs in case of more than two
colors, concerning algorithmic complexity as well.

ACKNOWLEDGEMENTS

This work has been partially supported by Hungarian
Scientific Research Fund grants 81493 and 80352.

REFERENCES

[1] (2005). On Complexity and Approximability of the
Labeled Maximum/Perfect Matching Problemslume
3827 of LNCS Springer.

[2] Abdulkader, A. M. (1998). Parallel Algorithms for
Labelled Graph MatchingPhD thesis, Colorado School
of Mines.

[3] Bai, X. and Latecki, L. (2008). Path similarity skeleton
graph matching. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions pB0(7):1282 —1292.

[4] Bunke, H. (1997). On a relation between graph edit
distance and maximum common subgraphPattern

only the edges of type 1 and 2, respectively. The maxiggum Recognition Letters18(8):689 — 694.

matchings (Figs. 7a, 7c) and the exclusion ratios (Figs,,705] Carrabs, F., Cerulli, R., and Gentili, M. (2009). The
7d) were also computed for these new graphs as if,the |apeled maximum matching probleromputers & OR
unlabeled case. The results clearly show that matchings of 36(6):1859-1871.

edges of type 2 tend to be more unique. Due to this,theg] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004).
corresponding exclusion ratios are tend to be higher than in Thirty years of graph matching in pattern recognition.

case of edge type 1. 503

IJPRAI pages 265-298.

Another interesting conclusion of the tests are the result§7/] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson,
of the 2-edge-labeled case, where colored matchingssawere C. E. (2001). Introduction to Algorithms McGraw-Hill
compared. Algorithm 1 was run to compute the colesed Higher Education, 2nd edition.



597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

[8] Dijkman, R., Dumas, M., and GadeBdaiuelos, Les 10.1007/s10618-009-0132-7.
(2009). Graph matching algorithms for business @ro-[22] Liu, X., Veksler, O., and Samarabandu, J. (2010).
cess model similarity search. IRroc. 7th Int. Conts Order-preserving moves for graph-cut-based optimiza-
on BPM'09 pages 48-63, Berlin, Heidelberg. Springer- tion. Pattern Analysis and Machine Intelligence, IEEE

Verlag. 655 Transactions on32(7):1182 —1196.
[9] Edmonds, J. (1965). Paths, trees, and flowé&anad«s [23] Macrini, D., Dickinson, S., Fleet, D., and Siddiqi, K.
Journal of Mathematics17:449-467. 657 (2011). Object categorization using bone gragb@mput.

[10] Fernandez, M. L. and Valiente, G. (2001). A graph Vis. Image Underst.115:1187-1206.
distance metric combining maximum common subgtapH24] Monnot, J. (2005). The labeled perfect matching in
and minimum common supergrapRattern Recognitiom bipartite graphsinf. Process. Lett.96(3):81-88.

Letters 22(6):753—758. e [25] Neuhaus, M. and Bunke, H. (2005). A graph matching
[11] Foggia, P., Sansone, C., and Vento, M. (2001).. A based approach to fingerprint classification using direc-
performance comparison of five algorithms for graphdso- tional variance. Inin: Proc. 5th Int. Conf. on Audio-

morphism. InProc. 3rd IAPR TC-15 Workshop on Graph-  and Video-Based Biometric Person Authentication. LNCS

based Representations in Pattern Recognijtiages 188w 3546 pages 191-200. Springer.

199. es [26] Neuhaus, M. and Bunke, H. (2007). Automatic learning
[12] Gao, X., Xiao, B., Tao, D., and Li, X. (2010). Asurwey  of cost functions for graph edit distancdnformation

of graph edit distanceRattern Analysis and Applications Sciences177(1):239 — 247.

13:113-129. wo [27] Pal, D. and Rao, P. R. (2011). A tool for fast
[13] Garey, M. R. and Johnson, D. S. (1990 omputs indexing and querying of graphs. Rroc. 20th Int. Conf.

ers and Intractability; A Guide to the Theory of NP-  Companion on World Wide Weld/ WW '11, pages 241—

Completeness W. H. Freeman & Co., New York, N¥, 244,

USA. es  [28] Raveaux, R., Burie, J.-C., and Ogier, J.-M. (2010). A
[14] Gori, M., Maggini, M., and Sarti, L. (2005). Exaat graph matching method and a graph matching distance
and approximate graph matching using random walks. based on subgraph assignment®attern Recognition

IEEE Transactions on Pattern Analysis and Machine Letters 31:394-406.

Intelligence 27(7):1100-1111. e [29] Riesen, K. and Bunke, H. (2009). Approximate graph
[15] Grygorash, O., Zhou, Y., and Jorgensen, Z. (20@6). edit distance computation by means of bipartite graph
Minimum spanning tree based clustering algorithmsss In  matching.Image and Vision Computing@7(7):950 — 959.

18th IEEE Int. Conf. on Tools with Artificial Intelligenee, [30] Wang, G. and Li, H. (2008). Heterochromatic match-
2006. ICTAI '06, pages 73 —81. 681 ings in edge-colored graphs. Trhe electronic journal of
[16] Haxhimusa, Y. and Kropatsch, W. (2004). Segmen- combinatorics 17.
tation graph hierarchies. IStructural, Syntactic, and [31] Zhu, L., Ng, W. K., and Cheng, J. (2011). Structure
Statistical Pattern Recognitionvolume 3138 0fLNCSes and attribute index for approximate graph matching in
pages 343-351. Springer Berlin, Heidelberg. 685 large graphsinformation Systems36(6):958 — 972.
[17] Hopcroft, J. E. and Wong, J. K. (1974). Linear
time algorithm for isomorphism of planar graphs. In
Proceedings of 6th STOC '7pages 172—-184, New York,
NY, USA. ACM.
[18] Ladicky, L., Russell, C., Kohli, P., and Torr, P. (2010)
Graph cut based inference with co-occurrence statistics.
In Computer Vision ECCV 2010olume 6315 of ecture
Notes in Computer Scienc@ages 239-253. Springer
Berlin,Heidelberg.
[19] Leordeanu, M. and Hebert, M. (2009). Unsupervised
learning for graph matching. I€omputer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 864 —871.
[20] LeSaulnier, T. D., Stocker, C., Wenger, P. S., and West,
D. B. (2010). Rainbow matching in edge-colored graphs.
Electr. J. Comh.17(2).
[21] Lipets, V., Vanetik, N., and Gudes, E. (2009). Subsea:
an efficient heuristic algorithm for subgraph isomorphism.
Data Mining and Knowledge Discoveryl9:320-350.



