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Abstract—This paper presents the first steps toward a graph
comparison method based on matching matchings, or in other
words, comparison of independent edge sets in graphs. The
novelty of our approach is to use matchings for calculating
distance of graphs in case of edge-colored graphs. This idea can
be used as a preprocessing step of graph querying applications,
to speed up exact and inexact graph matching methods. We
introduce the notion of colored matchings and prove some
properties of them in edge colored complete graphs and
complete bipartite graphs in case of two colors.

Keywords-edge-colored graph; inexact graph matching; col-
ored matching

I. INTRODUCTION

Graph based representation has become one of the main
directions of modeling in pattern recognition during the
last few decades. The main reason of the growing interest
in graph based modeling and algorithms is the variety of
available graph models leading to expressive and compact
data representations. Another motivation is that many graph
based pattern recognition methods have low computational
cost. For example graph cut based methods ([21], [17]) or
minimum weight spanning tree based algorithms ([15], [14])
are applied often in computer vision.

Graph comparison is a frequently appearing problem in
graph based pattern recognition applications. Graph com-
parison or as it is often called graph matching is an
essential part of algorithms applied in image retrieval, or in
comparison of molecular compounds, just to mention some
application areas. Due to its high importance in theoretical
approaches and engineering applications as well, several
papers have investigated this topic, see [5].

The main drawback of matching graphs is the high
computational complexity, since most problems related to
this topic belong to the NP-complete problem class.

The idea is that the objects (fingerprints [25], business
processes [7], molecular compounds, shapes, etc.) are rep-
resented by graphs, and the comparison of these objects is
done by comparing the corresponding graphs.

As mentioned, matching graphs is a hard problem from
algorithmic point of view. Two types of graph matching
are usually distinguished: exact and inexact matching. Exact
matching is also called graph isomorphism. In case of
inexact matching, we do not require the two graphs to

be the same, just similar enough. This is the reason why
these algorithms are often referred to as error tolerant or
approximate graph matchings.

The exact subgraph matching for arbitrary graphs is NP-
complete [12]. An experimental comparison on the running
time of some exact graph matching methods is presented in
[10]. However, in case of special graph classes, for example
planar graphs, there exist algorithms with polynomial run-
ning time [16]. We remark here that the following statement
is an old conjecture: the general isomorphism problem is
neither polynomial nor NP-complete (it is in NP, of course).

Although several approaches are also known for speeding
up isomorphism testing as well—for example a heuristic
based method in [20] or [13] using random walks—in
general for arbitrary graphs inexact graph matching methods
have become more popular. These methods also have to
deal with computational complexity issues (see [1]), but in
case of real datasets and applications flexibility and error
tolerance are required.

Depending on the nature of application the applied inexact
graph matching methods are also varied. In case of image
comparison or object categorization simple structures, such
as trees are compared (see [22]). Image processing tasks are
typical examples for the case when the shape of the graphs
can also be important, since vertices have coordinates (see
[2]).

However, the most frequently applied approaches are to
compare graphs using a distance measure based on graph
edit distance ([29], [28]) or a maximum common subgraph
([9]). In case of these metrics, the position of the vertices is
irrelevant.

A detailed survey on graph edit distance is presented
in [11]. Despite the number of papers that are concerned
with this topic, very few contributions can be found in
the literature about learning the parameters that control the
matching ([26], [18]).

In [3] the author analyzes the connection between the two
distance measures.

Our suggestion is to define a distance function between
graphs based on a special type of maximum common sub-
graph searching: finding the maximum common matching
in edge colored graphs.

The paper is organized as follows. In Section II we present
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some basic definitions and notation. Section III presents
our idea of comparing graphs by matching matchings:
Subsection III-A contains our suggestion in case of graphs
without edge colors, and Subsection III-B analyzes the case
of edge-colored graphs. Some interesting properties of 2-
edge-colored complete and complete bipartite graphs are
presented in Section IV. The suggested algorithm for finding
colored matchings in l-edge-colored graphs is introduced
in Section V with some remarks on special graph classes.
Section VI presents test results on evaluating the usefulness
of comparing matchings. Section VII concludes our work
and also points out to some directions for future research.

II. DEFINITIONS AND NOTATION

A simple undirected graph is an ordered pair G = (V,E),
where V = {v1,v2, . . . ,vn} denotes the set of vertices, and
E ⊆ (V

2

)
(a collection of unordered vertex pairs) denotes

the set of edges. The edge between vertex vi and v j is
denoted by (vi,v j) = ei j. A vertex v is incident to edge e
if v ∈ e. The number of vertices is called the order of the
graph. The complete graph (or clique) Kn on n vertices is
the graph where each vertex pair is adjacent: (vi,v j) ∈ E
for all vi,v j ∈ V . A graph is bipartite if its vertex set V
can be partitioned into two disjoint sets A and B, such that
each edge in E connects a vertex in A to a vertex in B.
In notation we write G = (A,B,E). Note that the vertex
bipartition A∪B=V is uniquely determined by a bipartite G
if and only if G is connected. The complete bipartite graph
Km,n is a bipartite graph, where ∣A∣ = m, ∣B∣ = n and each
vertex in A is adjacent to each vertex in B. In an arbitrary
graph two edges are said to be independent if they do not
have a common vertex. A matching is a set of pairwise
independent edges. A matching is called a perfect matching
if every vertex of the graph is incident to exactly one edge of
it. For further introduction to graph theory and algorithmic
complexity, see for example [6].

III. COMPARING MATCHINGS OF TWO GRAPHS

A. Comparing matchings of graphs without edge colors

Finding the largest common subgraph of two graphs is in
general an NP-hard problem. Our suggestion is to modify (or
specialize) the idea of finding the largest common subgraph
to finding the largest common matching of two graphs.

Matchings are an appropriate choice for comparing graphs
without colors, since it is relatively easy to find a matching
of maximum size. There are polynomial-time algorithmic
methods for finding the largest (or maximum) matching in
bipartite graphs (Kőnig’s theorem, Hungarian method), and
in non-bipartite graphs as well (Edmonds’s algorithm [8]).
These algorithms are also applicable in case of weighted
graphs.

Although graphs with maximum matchings of the same
size can differ in structure, this measure is suitable to
run pre-filtering in graph comparison applications. Recently,

the size of the available input datasets have increased
rapidly in several areas applying graph-based modeling (web
analysis, protein-protein interaction networks, etc.). This
naturally requires the development of efficient graph storing
and searching techniques. For example graph indexing and
querying receives more and more attention, see [31] or [27].
Testing relatively easily computable features of graphs help
reducing the search space (branch-and-bound or tree pruning
techniques). In our case, a pruning condition is the size of
the matching in the query graph and the ones in the graph
database. Comparing a simple structural property can speed
up exact and inexact graph matching techniques as well.

Let the distance between two graphs be derived from the
difference of the size of their maximum matchings. That is,
let G1 and G2 be two arbitrary graphs. The distance between
these graphs is the following:

D(G1,G2) = abs(∣M1∣− ∣M2∣) (1)

where ∣Mi∣ is the maximum size of a matching in graph Gi.

B. Comparing matchings of edge colored graphs

Investigation of matchings in graphs is an extensively
studied topic, however the main directions of research take
graphs into consideration without edge colors. One of the
novel aspects of our approach is to compare colored match-
ings as well.

Definition 1. An edge colored (or edge labeled) graph
(V,E,c) is a graph such that color c(ei j) is the color
assigned to edge ei j.

Hence, no restriction is put on the color assignments here
(contrary to ‘proper edge coloring’ and many other notions).

Edge colored graphs offer more possibilities for compar-
ing matchings, or calculating the distance of graphs based on
matchings, than the ones without edge colors. The first idea
is to extend Equation 1, to handle more colors, as follows:

D1color(G1,G2) =

√
nc

∑
i=1

wi(∣Mci,1∣− ∣Mci,2∣)2 (2)

where nc is the number of colors, ci is the ith color, and
∣Mci, j∣ (for j = 1,2 and 1≤ i≤ nc) is the size of a maximum
matching in the subgraph of G j containing only the edges
with color ci. If it is necessary, the colors can also be
weighted.

The advantage of this distance calculating method is that
the colors are handled separately. The same polynomial
algorithm is suitable to find the maximum matching for each
color, as in case of graphs without colors on the edges.

However, the drawback is that we gain quite little informa-
tion on the correspondence between the edges with different
colors. Our suggestion is to use a distance function, that
takes into consideration matchings with mixed coloring.
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Definition 2. A colored matching of type (e1,e2, . . . ,enc) is
a matching of ei edges with color ci for all 1≤ i≤ nc. For
example (y,g) = (1,3) is a matching of one yellow and three
green edges.

This definition is somewhat similar to the definition
of rainbow matchings [19] (or heterochromatic matchings
[30]), however in these latter types of matchings, no two
edges have the same color. In other words a rainbow
matching is a (e1,e2, . . . ,enc) colored matching where each
ei is at most 1.

Although there exist interesting theoretical results in case
of matchings of not properly edge-colored graphs (Labeled
Maximum/Perfect Matching problem, see [4], [24] or [23]),
our work aims to solve problems that to the best of our
knowledge were not addressed before. The goal of the
Labeled Maximum Matching problem is to find a maximum
matching in an edge-colored graph with the maximum (or
minimum) number of colors in it.

Our work is more general, since we are interested not
only in the number of appearing colors in a matching but
also in the number of edges corresponding to each color. The
advantage of this approach is that it gives more information
on the structure of the colored matchings.

The comparison of edge-colored graphs and the distance
calculation between them is based on the distance between
their selected colored matchings. Note that these matchings
do not necessarily have the same size. The exact method
of comparing colored matchings depends on the application
and the role of the colors. The colors are weighted in order
to handle different importance of edges:

Dist(CM1,CM2) =

√
nc

∑
i=1

wi(∣ci : CM1∣− ∣ci : CM2∣)2 (3)

where ∣ci : CM j∣ is the number of edges with color ci in the
colored matching CM j.

If there are no selected colored matchings to represent the
graphs, calculation of the distance becomes more complex.
Similarly to graph edit distance calculations, the matchings
with the smallest distance should be selected. Of course in
this case, the size of the matchings should also be taken into
consideration.

IV. COMPARING MATCHINGS OF 2-EDGE-COLORED

GRAPHS Kn AND Km,n

In this section we will present some properties of the
matchings in complete graphs and complete bipartite graphs
using two colors. Analyzing these types of graphs helps us
to understand the behavior of more general graph classes.
Here, we are interested in exact matching of matchings, i.e.
our assumption is that in the query graph we have found a
(y,g) matching of y yellow and g green edges, and we would
like to test whether the given colored matching occurs in

another given colored graph. As mentioned, here our graphs
are complete or complete bipartite graphs. It means we know
the type of connection (color) between all pairs of vertices.

First, we will present a theorem and a short proof on
finding (y,g) matchings in complete graphs with a fixed
coloring. Then we introduce a rephrased version of the
theorem with a longer proof. Although this proof is more
complex than the first one and it also depends on parity,
nevertheless it has a strong algorithmic nature, and it reveals
important properties of the structure of the edge colored
graphs, that will be useful in generalizing our theorem.

Remark 1. An obvious necessary condition for the existence
of a matching with size y+ g, containing y yellow and g
green edges in a graph G is that G should contain a yellow
matching of size y and also a green matching of size g.

We are going to investigate the question: When are these
trivial necessary conditions sufficient in the complete or
complete bipartite graph?

A. 2-edge-colored graphs Kn

Our first theorem shows that the necessary conditions
given in Remark 1 almost always are sufficient in 2-edge-
colored complete graphs.

Theorem 1. Let Kn be an edge colored complete graph
with two colors. Assume that M is a set of edges consisting
of a yellow matching of y edges and a green matching of
g edges together, where y+g < n/2. Furthermore, suppose
that among all the sets of y+g edges with this property, M
has the smallest number of vertices belonging to a green and
a yellow matching edge as well. Then M is a (y,g) matching.

Proof. In an edge set with the edge coloring introduced
above, let the vertices that are incident with a yellow and
a green edge be called bad vertices. Suppose, there exists
a vertex x in M which is bad. Let VM denote the vertices
covered by M. We have VM < n, since 2 ⋅ (y+ g) < n, and
VM < 2 ⋅ (y+g), otherwise a (y,g) matching has been found.

∙ If the number of vertices is even (n = 2t): at least three
vertices remain outside VM .
Let v1 and v2 denote two of the vertices outside VM .
We do not know the color of the edge between these
vertices, but it is not important. If it is yellow, then
we remove the yellow matching edge in M incident
to x, and substitute it with this yellow edge between
v1 and v2. (If the (v1,v2) edge was green, we remove
the green edge incident to x.) The result is an edge set
M′ that consists of a yellow matching of size y and a
green matching of size g. This edge set contains at least
one fewer bad vertex than M, which is a contradiction,
since M was chosen to be the one with the fewest bad
vertices.
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∙ If the number of vertices is odd (n = 2t +1): at least 2
vertices remain outside VM , so the previous method is
appropriate in this case as well.

The proof is complete. □
B. 2-edge-colored graphs Km,n

The method of the previous proof can also be applied in
case of complete bipartite graphs. In this way we obtain the
following theorem.

Theorem 2. Let Km,n be an edge colored complete bipartite
graph with two colors. Let M denote a set of edges consisting
of a yellow matching of y edges and a green matching
of g edges together, where y+g < min(m,n). Furthermore,
suppose that among all the sets of edges with this property,
M has the smallest number of vertices belonging to a green
and a yellow matching edge as well. Then M is a (y,g)
matching.

The next two subsections present the detailed proof of the
rephrased version of Theorem 1 with respect to the parity
of n.

C. 2-edge-colored graphs Kn with odd number of vertices

Theorem 3. Let Kn be an edge colored complete graph
with two colors. Furthermore, let the number of vertices be
n = 2t +1. If there is a yellow matching of size y and green
matching of size g separately in Kn so that y+ g ≤ t, then
there is a matching with size y+g, containing y yellow and
g green edges.

Proof. We know that there exists a yellow matching with
size y, moreover, we can find it in polynomial time. Denote
this yellow matching with Y . On the remaining vertices we
can select some additional edges to the matching with green
color. Let us denote this green matching with G′, and its
size with g′. If g′ = g, we are done. So let us suppose that
g′ < g. We will prove that if g′ < g, then G′ can be amended
with one more green edge, so that we gain a matching of
size g′+1+ y with g′+1 green and y yellow edges.

There are at least three vertices remaining in Kn that
are not contained in Y ∪G′. Indeed, the number of vertices
covered by Y ∪G′ is 2y+2g′ ≤ 2t−2≤ n−3. Let us denote
with X the set of these remaining vertices. Note that all
the edges between the vertices in X are yellow, otherwise a
green edge could have been selected to increase the size of
G′, see Fig. 1(a).

As another important fact, we claim that all the edges
joining V (X) with V (Y ) are yellow. (These are the sets
of endpoints of the matchings.) The explanation is the
following. Let us denote three arbitrary vertices in X by
v1,v2,v3. Suppose there is a green edge between a w∈V (Y )
and v1 ∈V (X) see Fig. 1(b). Then the size of the G′ matching
can be increased by this green edge. The yellow matching
edge with one end in w can be replaced by the yellow edge
between v2 and v3, see Fig. 1(c).

For the next step we will use the information that there
is a green matching of size g in Kn, and we are able to find
one in polynomial time. Denote this matching by G′′. We
consider the edges of the subgraph (G′ ∪G′′) ∖ (G′ ∩G′′).
This subgraph consists of two types of green edges forming
alternating paths and cycles, the latter having even length.

Since ∣G′′∣ = g > ∣G′∣ = g′, there exists at least one path
with more edges of G′′ than of G′. Let P denote one of the
alternating paths with this property.

Obviously, the end vertices of P cannot be in G′.
Now we will examine the possible positions of the end

vertices of P.

∙ Both end vertices are in X . This way we could have
found a larger green matching than G′, by replacing
the edges of G′ ∩P with the ones of G′′ ∩P. This is a
contradiction, since we have selected G′ to be a green
matching of maximum size that amends Y .

∙ One end vertex is in X , the other one is in Y . By keeping
the edges of G′′ instead of G′ in the alternating path P,
we will gain a larger green matching. However, we use
one vertex that was the end vertex of a yellow edge in
Y . But we are able to replace this edge by one in X the
same way as illustrated in Fig. 1(c). See the example
in Fig. 2(a).

∙ Both end vertices are in Y . If they are in the same
yellow matching edge, then we will replace it, as in
the previous case (see Fig. 2(b)). If the end vertices
of the path belong to two yellow matching edges, by
increasing the green matching with one, we will lose
two yellow matching edges. Since all the edges joining
Y with X are yellow, and there are more than two
vertices in X , we can restore the yellow matching by
replacing the lost two yellow edges (see Fig. 2(c)).

Thus we have proved that if ∣G′∣ = g′ < g, then in each
of the possible cases there exists one more green edge
to amend the matching with. That is, until we reach a
matching of y yellow and g green edges, we can always
improve the matching. □

D. 2-edge-colored graphs Kn with even number of vertices

Theorem 4. Let Kn be an edge colored complete graph
with two colors. Furthermore, let the number of vertices be
n = 2t. If there is a yellow matching of size y and a green
matching of size g separately in Kn so that y+ g < t, then
there is a matching with size y+g, containing y yellow and
g green edges.

Proof. First of all, note that all matchings in Kn of size
< t can be extended to a matching of size t. Similarly
to the proof of Theorem 3, we know that there exists a
yellow matching of size y. However, if the largest yellow
matching in Kn has only y edges, we would be done,
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Figure 1: Edges of the matchings are colored black, the other
edges are colored grey. a) Y and G′: the two matchings,
remaining vertex set: X . b) An example: green edge between
Y and X . c) Modified matching with y yellow and g′+ 1
green edges.

since the additional edges to the perfect matching would
be necessarily green.

Otherwise, there exists a yellow matching of size y+ 1,
which can also be found in polynomial time. Denote this
matching by Y . Its role is not the same as previously. Let G′
denote the largest green matching on the leftover vertices.
The size of this matching will be denoted by g′, it is smaller
than g, similarly as above.

Again, similarly to the proof of Theorem 3, there are
remaining vertices, with yellow edges between them (vertex
set X), and their number is at least 2. We also know that,
in the whole graph, there exists a green matching of size
g, denote this by G′′. Let P be an alternating path using
edges of G′ and G′′, as in the proof of Theorem 3. The case
distinction of the position of the end vertices of P is also
analogous to the mentioned proof:
∙ The two end vertices are in V (X). This way we would

have found a green matching of size larger than g′,
which is a contradiction.

∙ One of the end vertices (v1) is in V (X), the other one
(vk) is in V (Y ). By replacing the edges of the green
matching G′ ∩P with G′′ ∩P, we gain one green edge,
and lose one yellow (the one with vk as end vertex). But
still we have y yellow matching edges disjoint from the
g green ones.

∙ If both of the end vertices are in Y , then similarly to the
case of odd number of vertices, the Y matching will be

Figure 2: Edges of the matchings are colored black, the
other edges are colored grey. a) v1, . . . ,v6: alternating path
with one end in X and one in Y . b) v1, . . . ,v4: alternating
path with end vertices corresponding to one edge in Y . c)
v1, . . . ,v8: alternating path with end vertices corresponding
to two edges in Y .

decreased by one or two edges. Since X contains at least
two vertices, connected by yellow edges to Y , there is
at least one edge to increase the yellow matching with.
The size of Y was y+ 1, so at least y yellow edges
remain.

We have proved that if the G′ matching contained less
than g edges, we could always extend it with at least one
green edge by keeping at least y independent yellow edges.
□

Theorem 4 deals with the case when n = 2t and y+g < t.
If y + g = t, Theorem 2 does not hold, as the following
example shows.

Example 1. Let n = 2t and y+ g = t. Then there exists a
complete graph Kn edge colored with two colors, with the
following properties: Kn contains a yellow matching of size
y = t−1 and a green matching of size g = 1, but there is no
(t− 1,1) matching. An example is presented in Fig. 3. for
n = 6, y = 2, g = 1.

E. Conclusions of our theorems

Our theorems state that if a yellow matching of size y
and a green matching of size g appears in a complete or a
complete bipartite graph somewhere, and y+g < n/2, then

898989



Figure 3: An example graph with 6 vertices, where a yellow
2-matching and a green 1-matching exist, but there is no
(2,1) matching.

there is a (y,g) colored matching. We have also presented
methods to find a colored matching with the given property.

Suppose, there are edges in the graph with no information
of their colors, and denote this set with T . Our theorems also
mean that, if we have found a yellow and a green matching
in this graph of the given size, no matter how we choose
the colors of the edges in T , the gained colored complete
graph will have a (y,g) matching.

V. ALGORITHM FOR FINDING COLORED MATCHINGS IN

l-EDGE-COLORED GRAPHS

In subsection V-C we give an algorithm for finding
(c1,c2, . . . ,cl) colored matchings in an l-edge-colored graph,
but the first two subsections contain some remarks on
colored matchings in case of restrictions on the number of
colors and on the graph structure.

A. Perfect colored matchings in 2-edge-colored graphs Kn

Note that perfect matchings can occur only in graphs with
even number of vertices. Hence in this subsection we will
assume that n = 2t. As explained in the previous sections, in
case of 2-edge-colored complete graphs, Theorem 1 holds
only if y+g < n/2 (see Example 1). In this subsection we
present an algorithm to decide if there exists a perfect (y,g)
colored matching in Kn, that is y+g = n/2. The basic idea
of the algorithm is the following. Instead of analyzing the
graph Kn, we select the edges corresponding to one of the
colors, and process the graph formed by these edges.

Assume that the yellow edges were selected. Let Gy =
(Vy,Ey) denote the graph induced by the yellow edges. In
this graph each matching of size y should be checked if it
can be augmented by a green matching of size g.

B. Perfect colored matchings in l-edge-colored graphs Kn

Our conjecture for three (or more) colors is that it is NP-
complete to decide if a graph has a (r,y,g, . . .) matching of
red, yellow and green, etc. colors with a given number of
edges in each color.

A simple example is presented in Fig. 4m with a complete
graph colored with 3 colors. There exists a red and a green
matching of size one in the graph separately, but there is no
(1,0,1) colored matching. Note that r+ y+ g = 2 < n/2 =

Figure 4: An example graph with 6 vertices and three
different colors (red, yellow, green) on the edges. There is a
red matching (dotted line) of size one, and a green matching
(dashed line) of size one as well, but there is not (1,0,1)
colored matching in the graph.

3, so in case of more than two colors, the existence of a
(r,y,g, . . .) colored matching cannot be guaranteed even if
its size is less than n/2.

However, matchings corresponding to each color are use-
ful in case of inexact graph matching, even if the colors
are handled separately. In case of colored matchings, the
effectiveness of the comparison depends on the size of the
matchings.

C. Algorithm for finding colored matchings

The method presented in Algorithm 1 is based on the
recursive function ColMatch. The graphs induced by the
colors are handled in the different levels of the recursion.
Note that ranking the colors can decrease the running time.
Colors should be ranked based on the number of their
occurrence in the graph. The smaller the number of edges,
the faster the algorithm can rule out the existence of the
colored matching (if there is no such matching).

Note that before running this algorithm it is worth check-
ing for matchings of the required size in case of each
color separately, since it can be carried out by Edmonds’s
algorithm in polynomial time.

Further simplification of the method in case of special
graph classes is in progress.

VI. TEST RESULTS

Our suggested method for speeding up graph query was
tested on a dataset of ’AIDS Screened’ chemical structural
data available at

http://dtp.nci.nih.gov/docs/aids/aids data.html.
The dataset contains the structure of 42390 chemical com-
pounds. The description of this dataset (number of vertices
of the graphs modeling the compounds and the correspond-
ing maximum matchings) is presented in Fig. 5. For a fixed
number of vertices the size of the maximum matchings might
be different. The small histograms show the size distribution
of the maximum matchings in case of 30,50,75 and 100
vertices. As the number of vertices increases the deviation
of the size of the maximum matchings also increases.

Tests were carried out on this dataset in order to evaluate
the efficiency of using maximum matching as a descriptor
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Figure 5: Description of the test dataset. For 42390 chemical compounds the size of the graphs and the size of the
corresponding maximum matchings are visualized. Detailed description for graphs with 30,50,75,100 vertices is also
presented. Each histogram shows the distribution of the size of the maximum matchings for graphs with 30,50,75,100
vertices.

Figure 6: Test results on the dataset described in Fig. 5. This figure shows the ratio of the graphs with n vertices that can be
excluded based on their maximum matching. Tests were carried out with each graph selected as query. The black stars and
the red dots show the best and the worst exclusion ratios among the graphs with a given number of vertices, respectively.

of graphs. Each graph in the dataset was used as query to
search the dataset. Since the number of vertices is a property
that is easy to check, we only ran the query within graphs
of the same order.

Test results on the exclusion ratio, i.e. the ratio of the
graphs excluded by the query within graphs of the same
order are presented in Fig. 6. The exclusion ratio (ER) was
computed in the following way: ER(G) = 1− NM−1

NV−1 , where
NV is the number of graphs in the database with the same
order as graph G, and NM is the number of graphs with the
same order as G in which the corresponding matching has
the same size as in case of G.

A query was run with each graph and for all different
graph orders; the best and the worst result is shown in the

figure marked with black and red, respectively. A query is
considered to be better than another, if the corresponding
exclusion ratio is higher, i.e. the larger number of graphs
could be excluded.

With a few exceptions, even the worst excluding ratios
(red marks) reach 0.5, that is, at least half of the graphs of a
given order can be excluded regardless of the selected query
graph.

Two types of edges are marked in the database depending
on the strength of the connection between the elements of
the compounds. For further analysis, the types (labels) of
the edges are also taken into consideration. For each 2-
edge-labeled graph, two new graphs were generated keeping
only the edges of type 1 and 2, respectively. The maximum
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(a) Maximum matchings in the graphs of edge type 1. (b) Exclusion ratios for edge type 1.

(c) Maximum matchings in the graphs of edge type 2. (d) Exclusion ratios for edge type 2.

Figure 7: Distribution of the maximum matchings in the graphs of edge types 1 (a) and 2 (c). Corresponding exclusion
ratios on (b) and (d)m respectively.

Figure 8: Best (red) and worst (black) exclusion ratios based on the colored matchings (output of Algorithm 1).
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Algorithm 1 Finds a (c1,c2,c3, . . . ,cl) matching in l-edge-
colored arbitrary graphs (if exists).

1: function ISINDEPENDENT(e1,e2)
2: if e1∩ e2 = /0 then return true
3: elsereturn false
4: end if
5: end function
6:

7: function COLMATCH(Erem,M,Size,Color, level)
8: Mlevel = {e ∈M∣c(e) =Color(level)};
9: if ∣Mlevel ∣= Size(level) then

10: if ∣Color∣= level then return M
11: else
12: l = level +1;
13: Res =COLMATCH(Erem,M,Size,Color, l);
14: return Res
15: end if
16: else
17: Elevel = {e ∈ Erem∣c(e) =Color(level)};
18: for i = 1; i≤ ∣Elevel ∣; i++; do
19: if ISINDEPENDENT(M,Elevel(i)) then
20: R = Erem ∖Elevel(i);
21: E ′ = {e ∈ R∣e∩Elevel(i) ∕= /0};
22: R = R∖E ′;
23: m = M∪Elevel(i);
24: Res =COLMATCH(R,m,Size,Color, level);
25: if Res ∕= /0 then return Res
26: end if
27: end if
28: end for
29: return /0
30: end if
31: end function
32:

33: function MAIN(E,Size,Color)
34: level = 1; Erem = E; M = /0;
35: Res =COLMATCH(Erem,M,Size,Color, level);
36: if Res ∕= /0 then Output: Res
37: elseOutput: No such matching.
38: end if
39: end function

matchings (Figs. 7a, 7c) and the exclusion ratios (Figs. 7b,
7d) were also computed for these new graphs as in the
unlabeled case. The results clearly show that matchings of
edges of type 2 tend to be more unique. Due to this, the
corresponding exclusion ratios tend to be higher than in case
of edge type 1.

Another interesting conclusion of the tests are the results
of the 2-edge-labeled case, where colored matchings were
compared. Algorithm 1 was run to compute the colored
matchings. Since the edges of type 2 performed better, this

color was chosen at first. The exclusion ratios are presented
in Fig. 8.

The worst exclusion ratios clearly outperform the ones
corresponding to the unlabeled case. The tests confirm
that colored matchings perform better than standard ones,
however these are more complicated to compute.

VII. CONCLUSION

We have presented the first steps toward a graph matching
method based on comparison of matchings. Our aim was
to introduce a novel approach to compare graphs even if
their edges are colored (or labeled). Our suggestion is to
use matchings of graphs as a basis of distance measures, to
overcome some of the complexity issues of graph compari-
son. We have shown some properties of colored matchings
in case of two colors. We have analyzed the circumstances of
the appearance of colored matchings using the well known
method of finding matchings in graphs without edge colors.
An algorithm was suggested to find colored matchings in l-
edge-colored graphs. Tests were run on a dataset of chemical
compounds. We have shown that comparing matchings is
a useful descriptor in graph comparison in this application
field. It remains for future research to analyze further the
properties of edge colored graphs in case of more than
two colors, concerning algorithmic complexity as well. We
close the paper with explicitly stating the following problem
mentioned in Subsection V-B.

Conjecture 1. The following decision problem is NP-
complete for every integer l ≥ 3. Given a complete graph
Kn (where n is even) with a coloring on its edges with l
colors c1, . . . ,cl , and an l-tuple (e1, . . . ,el) of integers with
e1 + ⋅ ⋅ ⋅+ el = n/2, does there exist a perfect matching in
which color ci occurs on precisely ei edges?
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