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ABSTRACT:

In this paper we propose a joint approach on virtual city reconstruction and dynamic scene analysis based on point cloud sequences of
a single car-mounted Rotating Multi-Beam (RMB) Lidar sensor. The aim of the addressed work is to create 4D spatio-temporal models
of large dynamic urban scenes containing various moving and static objects. Standalone RMB Lidar devices have been frequently
applied in robot navigation tasks and proved to be efficient in moving object detection and recognition. However, they have not been
widely exploited yet for geometric approximation of ground surfaces and building facades due to the sparseness and inhomogeneous
density of the individual point cloud scans. In our approach we propose an automatic registration method of the consecutive scans
without any additional sensor information such as IMU, and introduce a process for simultaneously extracting reconstructed surfaces,
motion information and objects from the registered dense point cloud completed with point time stamp information.

1 INTRODUCTION

Vision based understanding of large dynamic scenes and 3D vir-
tual city reconstruction have been two research fields obtaining
great interest in the recent years. Although these tasks have usu-
ally been separately handled, connecting the two modalities may
lead us to realistic 4D video flows about large-scale real world
scenarios, which can be viewed and analyzed from an arbitrary
viewpoint, can be virtually modified by user interaction, result-
ing in a significantly improved visual experience for the observer.
However, the proposed integration process faces several technical
and algorithmic challenges. On one hand, moving object detec-
tion, classification, tracking and event recognition from optical
videos or 2.5D range image sequences are still challenging prob-
lems, in particular if the measurements are provided by moving
sensors. Most existing approaches extract key features first, such
as characteristic points, edges, blob centroids, trajectories or his-
tograms, and the recognition process works in a feature space
with significantly reduced dimension (Lai and Fox, 2010) com-
pared to the original data. On the other hand, virtual 3D city
visualization needs dense registered information extracted from
the scene, enabling the realistic reconstruction of fine details of
building facades, street objects etc. SICK Lidar systems are able
to provide dense and accurate point clouds from the environment
with homogeneous scanning of the surfaces and a nearly linear
increase of points as a function of the distance (Behley et al.,
2012). However, since the measurement recording frequency is
typically less then 1Hz (often significantly less), these sensors are
not well suited to dynamic event analysis.

As an example for alternative solutions of Time-of-Flight (ToF)
technologies, (Kim et al., 2012) introduced a portable stereo sys-
tem for capturing and 3D reconstruction of dynamic outdoor sce-
nes. However in this case, the observed scenario should be sur-
rounded by several (8-9) calibrated cameras beforehand, which
fact does not allow quick data acquisition over large urban areas.
In addition, the reconstruction process is extremely computation-
intensive, dealing with a short 10sec sketch takes several hours,
and full automation is difficult due to usual stereo artifacts such
as featureless regions and occlusions.

In this paper, we jointly focus on understanding and reconstruc-

tion of dense dynamic urban scenes using a single Rotating Multi-
Beam (RMB) Lidar sensor (Velodyne HDL-64E), which is moun-
ted on the top of a moving car. Velodyne’s RMB Lidar system
is able to provide a stream of full 360◦ point cloud scans with
a frame-rate of 20 Hz, yielding that we can capture the scene
from view points at about every 30-60 centimeters of distance as
the car travels with typical urban traffic speed. Due to its scan-
ning frequency, this configuration is highly appropriate for ana-
lyzing moving objects in the scene. However, a single scan is
quite sparse, consisting of around 65K points with a radius of
120 meters, moreover we can also observe a significant drop in
the sampling density at larger distances from the sensor and we
also can see a ring pattern with points in the same ring much
closer to each other than points of different rings (Benedek et al.,
2012).

A number of automatic point cloud analysis methods have been
proposed in the literature for RMB Lidar streams. These ap-
proaches mainly focus on research towards real time point cloud
classification for robot navigation and quick intervention rather
than complex situation interpretation, and scene visualization,
which are addressed in our current work. (Douillard et al., 2011)
presents a set of clustering methods for various types of 3D point
clouds, including dense 3D data (e.g. Riegl scans) and sparse
point sets (e.g. Velodyne scans), where the main goal is to ap-
proach close to real-time performance. The object recognition
problem from a segmented point cloud sequence is often addressed
with machine learning techniques relying on training samples.
A boosting framework has been introduced in (Teichman et al.,
2011) for the classification of arbitrary object tracks obtained
from the Lidar streams. This step needs accurately separated ob-
stacles or obstacle groups as input, but it deals neither with the
context of the objects nor with large surface elements such as
wall segments. In (Xiong et al., 2011) the authors model the con-
textual relationships among the 3D points, and train this proce-
dure to use point cloud statistics and learn relational information,
e.g. tree-trunks are below vegetation, over fine and coarse scales.
This point cloud segmentation method shows its advantage on
the classes that can provide enough training samples, however
domain adaption remains a difficult challenge. (Quadros et al.,
2012) presented a feature called the line image to support object
classification that outperforms the widely used NARF descrip-
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Figure 1: The workflow of the proposed algorithm

tor but requires a computationally expensive principal component
analysis (PCA) calculation.

While the above mentioned reference techniques deal mainly with
efficient scene interpretation part, (Douillard et al., 2012) pro-
posed a method for registration of the sparse RMB Lidar scans.
However, the main issue they address is making the frame match-
ing step robust, as the distance between scans increases. Al-
though this is a significant problem for autonomous driving ap-
plications where some of the consecutive frames may be dropped
to ensure the real time response of the system, in our scenario
we observed having more registration problems due to inhomo-
geneity of the point clouds and the presence of several moving
objects in a crowded street. (Makadia et al., 2006) constructed an
automatic but computationally expensive point cloud registration
method using large histograms calculated from the surface nor-
mal fields, while (Xiao et al., 2012) used a planar-fitting method
which works best on flat regions. Recently, (Shen et al., 2011)
showed an efficient method for facade reconstruction which uses
an iterative adaptive partitioning yielding a flexible and hierar-
chical representation of the surfaces. However, the previous two
models have been tested on more homogeneous scans than our
considered RMB Lidar data. The mobile mapping system of
(Wang et al., 2012) uses a RMB Lidar within a multi sensor con-
figuration, where point cloud registration is supported by a GPS
and an IMU.

The key feature of our approach is that we simultaneously deal
with the recognition and mapping issues without relying on any
additional sensor information apart from the RMB Lidar stream.
Details of the proposed method are introduced in Sec. 2, and
evaluation on real data is provided in Sec. 3.

2 PROPOSED POINT CLOUD PROCESSING SYSTEM

The proposed method consists of six main steps, as shown in Fig.
1. First, the individual Lidar point cloud scans are segmented
into different semantic regions. Second, the Lidar frames are au-
tomatically registered, i.e. transformed to a common coordinate
system, with preserving the original time stamp for each point.
Third, vegetation is detected and the initial segmentation is re-
fined by exploiting features from the merged point cloud. Fourth,
large planar regions (e.g. facades) and other street objects are
separated with a floodfill based step. Fifth, large planar regions
are triangulated, while sixth, street objects are classified either as
static or moving entities, and trajectories of moving objects are
extracted.

Figure 2: Segmented frame of the Velodyne point cloud stream.
Note: figures of this paper are best viewed in color print.

2.1 Point cloud segmentation

The segmentation process assigns to each measured point a class
label from the following set: (i) clutter (ii) ground, (iii) tall struc-
ture objects (walls, roofs, lamps posts, traffic lights etc.), (iv)
short street objects (vehicles, pedestrians etc.) and (v) vegeta-
tion. In this section we address the discrimination of the first
four classes, while vegetation will be only removed after the point
cloud registration step.

2.1.1 Cell map segmentation In our system, point cloud seg-
mentation is achieved by a grid based approach. First, we fit a
regular 2D grid S with WS rectangle width onto the Pz=0 plane,
where s denotes a single cell. We used aWS value between 50cm
and 80cm. Smaller grid size is not viable due to the resolution;
smaller cells would not have enough points in them to calculate
good enough statistical information. On the other hand, larger
cell size can result in larger number of falsely classified points,
since within a large cell, multiple objects can occur. Near-the-
center grid cells have hundreds of points in them, while the point
density rapidly decreases as a function of the distance from the
sensor. We assign each p ∈ P point of the point cloud to the cor-
responding cell sp, which contains the projection of p to Pz=0.
Let us denote by Ps = {p ∈ P : s = sp} the point set projected
to cell s. ymax(s), ymin(s) and ŷ(s) are the maximum, minimum
and average of the elevation values within Ps.

First, local point cloud density is calculated for each cell to ex-
tract points of the clutter class. From these cells, encapsulating
only a few or no points, we can only obtain very limited and prob-
ably misleading information regarding the scene structure and the
objects, therefore we will neglect these regions in the later model
phases. The exact density threshold depends on the sensor’s re-
volving speed, we used 4-8 points for a given cell.

The next step is terrain modeling. Planar ground models are fre-
quently adopted in the literature relying on robust plane estima-
tion methods such as RANSAC. However, in the considered ur-
ban scenes we experienced significant elevation differences (of-
ten up to a few meters) between the opposite sides and central
parts of the observed roads and squares. In these cases, planar
ground estimation yields significant errors in the extracted object
shapes, e.g. bottom parts can be cut off, or the objects may drift
over the ground. On the contrary, we apply a locally adaptive ter-
rain modeling approach. As a first evidence, we can notice that in
the ground cells the differences of the observed elevation values
are low. Therefore we can perform an initial classification, where
each cell s is classified either as ground candidate (1G(s) = 1)
or as undefined region (1G(s) = 0) by a straightforward thresh-
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Figure 3: Image sequence showing the registration process. Right side image contains 20 registered scans

olding:

1G(s) = 1 iff
(
ymax(s)− ymin(s) < τgr

)
,

where we used τgr =25cm. Given a cell with 60 centimeters of
width, this allows 22.6 ◦ of elevation within a cell; higher eleva-
tions are rarely expected in an urban scene. This preliminary map
can only be considered as a coarse estimation of the ground, since
cells of flat car roof or engine hood regions may be erroneously
classified as ground, for example. However, these outlier cells
can be efficiently eliminated by spatial filtering. With denoting by
Nν
s the ν × ν neighborhood of s, and γG(s) =

∑
r∈Nνs

1G(s),
we can obtain a terrain model of scene:

ygr(s) =

{
1

γG(s)
·
∑

r∈Nνs
ŷ(s) · 1G(s) if γG(s) > 0

undefined otherwise.

where ygr(s) is the estimated ground-elevation value at cell s.
The ygr(s) feature can be efficiently calculated by deriving the
integral images of the ŷ(.) and 1G(.) maps. We used here a large
neighborhood (ν = 17 for cell maps with a size around 400 ×
300). Finally a cell is classified as ground cell iff 1G(s) = 1 and
ŷ(s)− ygr(s) < 20 cm.

A cell corresponds to tall structure objects, if either the difference
of the maximal and minimal elevations of the included points is
larger than a threshold (used 310 centimeters), or the maximal ob-
served elevation is larger than a predefined value from the sensor
(used 140 centimeters):

ymax(s) > 140 ∨ ymax(s)− ymin(s) > 310 (1)

The second criterion is needed for dealing with objects standing
on a lower point of the ground.

The rest of the cells are assigned to class short street objects like
vehicles, pedestrians, short road signs, line posts etc. These en-
tities can be either dynamic or static, which attribute can only be
determined later after further, more complex investigation of the
point cloud sequence.

2.1.2 Point cloud labeling After classifying the cells of the
2D cell map, we have to assign a class to each point of the 3D
point cloud as well. Usually, each point p obtains the label of
its parent cell s. However, for cells contain both ground and tall
(or short) object regions, the classification yields that ground seg-
ments are attached to the object blobs, showing a typical ‘carpet’
pattern. Therefore, we also cluster p as ground, if although its
cell s has any kind of object label, s is neighbored with a ground
cell r and |y(p)− ŷ(r)| < 15 cm.

2.2 Point cloud registration

Although a single RMB Lidar scan has a large amount of points,
it covers a large area, and the resolution is sufficiently good only
within few meters of distance. Though the device has a sensing
distance of more than 100 meters, the measurements at more than
15 meters of distance are too sparse for many detection or surface
reconstruction algorithms.

In this section, we propose a method for automatic registration
of the consecutive Lidar scans, yielding dense and detailed point
clouds of large street scenes. Although various established tech-
niques do exist for point cloud registration, such as Iterative Clos-
est Point (ICP) (Zhang, 1994) and Normal Distribution Trans-
form (NDT) (Magnusson, 2009), these methods fail, if we try to
apply them for the raw Velodyne Lidar point clouds for two rea-
sons:
• All points reflected from moving objects appear as outliers for
the matching process, and since in a crowded street scene we ex-
pect a large number of moving objects, many frames are erro-
neously aligned.
•Due to the strongly inhomogeneous density of the Lidar clouds,
even the static ground points mislead the registration process.
The above algorithms often match the concentric circles of the
ground (see Fig. 2), which yields that the best match erroneously
corresponds to a near zero displacement between two consecutive
frames. However, we have also observed that the point density is
quite uniform in local wall regions which are perpendicular to the
ground.

Our key idea is to utilize the point classification result from the
previous section to support the registration process. As input of
the registration algorithm, we only use the points segmented as
tall structure objects. We expect that in majority, these points
correspond to stationary objects (such as buildings), thus they
provide stable features for registration. The NDT algorithm was
applied to match the selected regions of the consecutive frames of
the point cloud, since it proved to be efficient with the considered
data and it is significantly quicker than the ICP.

After calculating the optimal transformation, the whole point cloud
of each frame is registered to a joint world coordinate system.
This step yields a large and dense point cloud about the scene.
However, to enable us exploiting the temporal information stored
in the Lidar sequence in the further processing steps, we also
maintain for each point its original time stamp in the merged
cloud. We note that the proposed registration method is able
to deal both with the standard horizontal configuration and with
tilted configurations of the Lidar sensor when mounted atop of
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(a) Palace with 48m tall twin towers: result of automatic merging of
30 point cloud frames captured with the tilted configuration.

(b) A triangulation result of the facade of the Great Market Hall

Figure 4: Sample results on facade approximation based on RMB
Lidar data with the proposed approach

a vehicle. The horizontal configuration is more suitable for road
mapping, traffic monitoring, object detection and tracking, while
tilted mounting may result in complete models of tall building
facades based on the RMB Lidar data, as shown in Fig. 4.

2.3 Tree crown detection and segmentation refinement

Tree crown detection is a significant step for two reasons. On one
hand, vegetation mapping is important for calculating the green
area in a city and marking the trees in the reconstructed city mod-
els. On the other hand, the removal of the detected vegetation
data from the point cloud can help detection algorithms, for ex-
ample in the case of trees hanging over parking cars. We have
developed a tree crown removal algorithm for the merged point
cloud, which calculates a statistical feature for each point based
on the distance and irregularity of its neighbors, and also exploits
the intensity channel which is an additional indicator of vegeta-
tion, which reflects the laser beam with a lower intensity (see Fig.
5). Thereafter, we also refine the separation of ground, tall and
short street objects in the registered cloud, using the classification
steps introduced in Sec. 2.1.

2.4 Object separation with spatio-temporal floodfill

After removing ground and clutter points from the merged and
segmented point cloud, the different objects and surface compo-
nents are separated with floodfill propagation starting from ran-
dom seed points, which step is repeated until every point receives
a unique object label. The proposed algorithm has two key prop-
erties. First, we separately apply the recursive floodfill steps for

Figure 5: Tree crown detection (marked with purple).

point cloud regions of tall structure objects and short street ob-
jects. In this way, pedestrians walking close to walls or lamp
posts are efficiently separated from the structure elements. Sec-
ond, since moving objects yield large connected regions in the
merged point cloud (Fig. 6-8), different object blobs may erro-
neously be connected due to motion. For this reason, when we
create the connected components with the floodfill algorithm, we
also consider the time stamps of the points: for a given seed point
we only assign a neighbor to the same segment, if the distances
of both the locations and time stamps are below given thresholds.
Point cloud segments with large extent are considered as facade
segments and - together with terrain regions - they are transferred
to the upcoming surface approximation step. Small connected
components of the short object class are excluded from the fur-
ther investigations.

2.5 Surface approximation with triangle meshes

Raw RMB Lidar point cloud frames are not suitable for geomet-
ric surface reconstruction due to the low and strongly inhomoge-
neous density of the individual scans. However, after registering
several point clouds against each other with our technique pro-
posed in Sec. 2.2, the resolution can be sufficiently high and uni-
form to create realistic building facade reconstruction. As the car
passes by a building, it collects data from several point of view
so most of the holes on the walls due to occlusion can be filled in.
Also, after concatenating a few dozen scans, the resolution of the
data will be significantly higher which results in a precise 3D re-
construction of wall surfaces and more efficient noise reduction
also. Fig. 4(a) shows a large registered point cloud of a build-
ing facade and Fig. 4(b) displays a triangulated mesh obtained
with the Poisson surface reconstruction algorithm (Kazhdan et
al., 2006).

2.6 Object level analysis

As mentioned in Sec. 2.4, the regions of moving objects in the
merged point cloud cause blurred object blobs, which should be
indicated. Although dynamic regions have generally a lower point
density, in our experiments region-level local features proved to
be inefficient for motion separation. Instead, we utilize blob-level
features: after we extracted the connected blobs of the short street
objects regions in the merged cloud with floodfill propagation
(Sec. 2.4), within each blob we separate the points correspond-
ing to the different time stamps and determine their centroids.
Assuming that the centroids of the same object follow lines or
curves if the object is moving and stay within a certain region
if the object is static (Fig. 6), we can cluster the moving and
static object regions as shown in Fig. 7. Fig. 8 demonstrates
that with using object size assumptions we can distinguish mov-
ing and static pedestrians, respectively vehicles in larger scenes.
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An important impact of this clustering step is that the static ob-
jects can be analyzed henceforward in the merged point cloud,
which may provide significant higher level information about the
entities, e.g. for recognizing various car types (Fig. 3).

3 EXPERIMENTS

In this section, we present quantitative evaluation of the proposed
methods on real urban point cloud streams. First, we show the
effectiveness of using our point cloud segmentation algorithm
(i.e. presegmentation) to support the automatic registration pro-
cess of the consecutive Lidar frames. Second, we present an ob-
ject level analysis of the proposed detector using the registered
‘spatio-temporal’ point clouds.

3.1 Presegmentation and registration

As a quantitative evaluation metrics for the proposed registration
algorithm (Sec. 2.2), we used the crispness feature of (Douillard
et al., 2012). The crispness is calculated on a regularly voxelised
point cloud by counting the number of occupied voxels. As the
authors assume there, the lower this number, the more crisp the
point cloud and in turn the more accurate the alignment.

We compared the results obtained by the proposed method with
the presegmentation step (Pre+NDT) to the output of the NDT
algorithm applied on the raw Velodyne frames (Raw NDT). Table
1. shows the evaluation results of six scenes comparing the two
methods using a 10cm voxel grid. The scenes were selected in
a way that they represent different city-scenarios, including both
slow and high speed sensor movement recorded in streets and
squares. In all six cases, 10 consecutive point clouds have been
registered against each other. Speed columns show the overall
registration time that was needed to register 10 point clouds. The
crispness feature was calculated on the tall structure objects class
so the false positives (moving objects) did not interfere with this
feature.

The proposed Pre+NDT registration approach outperformed the
Raw NDT registration in all six cases, both in processing speed
and crispness. In scenes Slow movement, wide street, Fast move-
ment, wide street and Slow movement, large square the Raw NDT
registration resulted in seemingly good matches but the crispness
values show that even when the full cloud registration succeeds,
the Pre+NDT version is more accurate. In the remaining three
scenes, the Raw NDT matching failed completely, matching ei-
ther the concentric circles on the ground or yielding errors of sev-
eral meters. Denoting by ĈProp. and ĈRaw the average crispness
values measured with the two methods, and taking the ratio of the
difference and the average of the quality factors:

ĈProp. − ĈRaw(
ĈProp. + ĈRaw

)
/2

we get that with the proposed Pre+NDT technique, the registra-
tion is overall 33.35% more accurate.

In terms of processing time, our proposed method outperformed
the Raw NDT registration by an order of magnitude. Using the
proposed method (once the data is in the memory), the segmenta-
tion step runs in real time on a standard CPU.1 Besides the preseg-
mentation step being fast, it significantly fastens up the registra-
tion step also, since a significant amount of noise and interfering

1The test environment has an Intel Core i7 processor and 8 gigabytes
of DDR3 RAM

Figure 6: Representation of cendroid points distribution as a fea-
ture. On the top the centroids follow big elongated line in case
of moving vehicle, while on the bottom the centroids movements
stay in a certain region.

Figure 7: Blobs of two moving pedestrians (orange) and a stand-
ing person (blue) on the merged and segmented point cloud.
Trajectories of object centroids in the separate time frames are
marked with black.

moving points are removed. As the registration algorithm tries
to match up points, the overall error will be smaller thanks to the
”clean” point cloud and the NDT algorithm will converge faster
towards the termination criteria. Registering two point clouds
containing only stable, stationary points typically takes less than
a second while registering two full point clouds typically takes 4-
20 seconds (these values depend on the scanning rotation speed,
on the number of moving objects and also on the traveling speed
of the sensor platform).

Also, the proposed workflow is robust enough to perform well
in challenging, noisy real life environments. Our algorithm has
been tested on more than 3000 scans, including several different
types of scenes (such as avenues, narrow streets, hillside streets,
squares, bridges, etc.).

3.2 Object detection

For the proposed object level analysis method (Sec. 2.4) we have
done quantitative evaluation in two complex scenes. These data
sets were selected from the aforementioned scenes in a way, that
they contain several objects from the classes parking cars, moving
cars, standing and walking pedestrians. The two scenes contain
29 street objects (see Table 2) in aggregate.

For accurate Ground Truth (GT) generation, we projected the de-
tection result onto the ground, and manually draw GT rectangles
around each object in the imaged ground plane. We performed
quantitative evaluation both at object and pixel level. At object
level, we counted the Number of real Objects (NO), False Ob-
jects (FO) and Missing Objects (MO), where we also counted as
error if a moving vehicle was classified as a static car etc. At
pixel level, we compared the objects silhouette mask to the GT
mask, and calculated the F-rate (harmonic mean of precision and
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Dataset description
Number of
points (NP)

Crispness by prop.
Pre+NDT method

Crispness by NDT
on raw data

Speed with the
prop. preseg-

mentation (sec)

Speed without
the preseg-

mentation (sec)
Fast movement, small square 237K 42082 88601* 20.00 331.29*

Slow movement, wide street 175K 35829 39892 6.46 53.82
Fast movement, wide street 116K 32650 34952 3.55 42.98
Fast movement, wide street 2 81K 23747 34634* 7.73 38.39*

Slow movement, large square 56K 16296 16565 1.40 35.81
Very slow movement, large square 36K 12860 26256* 0.90 42.07*

Table 1: Speed and crispness comparison (lower values mean better registration. * denotes failed registration on the full point cloud)

DataSet NO
Obj. Errors

NP
F-rate %

FO MO Static Moving
Set#1 13 3 0 580K 92 89
Set#2 16 0 0 775K 90 91
Overall 29 3 0 1.4M 91 90

Table 2: Numerical evaluation of the detection results obtained by
the proposed object level analysis. Number of real Objects (NO),
Missing Objects (MO), False Objects (FO), Number of Points
(NP) and pixel level F-rates (in %) are listed for each data set,
also and in aggregate.

Figure 8: Demonstration of detecting different moving and static
object regions in the point cloud. Color codes: dark green - static
objects, light green - ground, red - static vehicles, blue - moving
vehicles, light brown - moving pedestrian

recall) of the match. Results in Table 2 report notably accuarcy
regarding the test sets.

4 CONCLUSION AND FURTHER WORK

The results above show the success of the simple, yet useful pre-
segmentation step that has a great positive effect on the point
cloud registration. Dividing the initial point cloud into multiple
semantic classes and using only the relevant points results in a
faster, more stable and more accurate registration. On this reg-
istered data, both high level object detection and scene interpre-
tation is possible and it is suitable for virtual city reconstruction
also.

Future work will focus on higher level scene interpretation such
as dividing the road class into smaller semantic units e.g.: side-
walks, lanes, parking lots, road intersections. Also, additional
semantic classes can be extracted from the scenes such as traffic
signs, traffic lamps, crosswalks, etc.

Also, future work will be done on fusing 3D and RGB data. Hav-
ing RGB data that is registered to the point cloud, the recon-
structed city models can be textured, obtaining a higher level of
visual experience.

This work is connected to the i4D project funded by the internal
R&D grant of MTA SZTAKI. Csaba Benedek also acknowledges
the support of the János Bolyai Research Scholarship of the Hun-
garian Academy of Sciences and the Grant #101598 of the Hun-
garian Research Fund (OTKA).
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