
Theme VISION

Reconstruction of 3D Urban Scenes Using a
Moving Lidar Sensor

Oszkár Józsa — Csaba Benedek

Technical Report

N° i4D-1

January 2013

Computer and Automation Research Institute
Hungarian Academy of Sciences

H-1111, Budapest Kende utca 13-17, Hungary
Telephone: +36 1 279 6000, Fax: +36 1 466 7503

http://www.sztaki.hu

Reconstruction of 3D Urban Scenes Using a Moving

Lidar Sensor

Oszkár Józsa∗, Csaba Benedek†

Theme VISION — Computer Vision
Divison: Distributed Events Analysis Research Laboratory

Research report — January 2013 — 41 pages

Abstract: In this report, we propose algorithms which interpret and display 3D environ-
ments. The input of this procedure is a LiDAR sensor mounted atop of a car. The sensor
outputs a data stream covering more than 100 meters radius of space, collecting data at 15
Hz. The recording is done in real environment on the streets of Budapest in real time, while
the processing is offline, implemented on CPU keeping in mind the future implementation
on GPUs to reach real time data processing. The aim is to segment several region classes
(such as roads, building walls, vegetation) and to identify specified objects (such as people,
vehicles, traffic signs) in the point clouds through a presegmentation step. To achieve this
classification, we need several features such as the color and geometrical properties of the
specified objects and their possible geometrical and physical interactions. Also, we need to
take into account the time domain features calculated based on the LiDAR data stream.
After this presegmentation step we are able to reconstruct building facades in 3D and to
track the detected objects in the 3D space. Also, in the future, this processed data set can
be registered against 2D images provided by conventional cameras to reproduce realistic,
colored 3D virtual spaces. The data is provided by a Velodyne HDL-64E high performance
LiDAR device

Key-words: rotating multi-beam Lidar, pointcloud analysis, city reconstruction

This work is connected to the i4D project funded by the internal R&D grant of MTA SZTAKI.

∗ The author was supported by the Grant #83438 of the Hungarian Research Fund (OTKA)
† The author was supported by the János Bolyai Research Scholarship of the Hungarian Academy of

Sciences and by the Grant #101598 of the Hungarian Research Fund (OTKA)

3D városi környezet rekonstrukciója mozgó Lidar

platform pontfelhő szekvenciáiból

Kivonat : Riportunkban bemutatunk általunk fejlesztett algoritmusokat dinamikus utcai
környezetek 3D rekonstrukciójára és virtuális megjelenítésére. Az eljárás bemenetét egy
autótetőre szerelhető LiDAR készülék szolgáltatja, aminek a segítségével nagy pontosságú
3D pontfelhő szekvencia nyerhető egy akár 100 méter feletti sugarú területről 15Hz rögzítési
sebességgel. Az adatok rögzítése valós, Budapesti utcai környezetben történik, míg a fel-
dolgozás offline, CPU-n megvalósított algoritmusokkal, szem előtt tartva a későbbi GPU-ra
való optimalizálást a valós idejű futás elérésének érdekében. A cél az egyes területosztá-
lyok elkülönítése (pl.: úttest, házfal, növényzet), és meghatározott objektumok észlelése
(emberek, jármuvek, közlekedési táblák) a pontfelhőkben egy előszegmentációs lépés során.
Az osztályozáshoz különböző jellemzők együttes felhasználása szükséges, magában foglalva
az objektumok alakját és színét, lehetséges kölcsönhatásaik modelljeit valamint a LiDAR
adatfolyam alapján számolt különféle időbeli jellemzőket. Ezt követően az előszegmentált
pontfelhők alapján lehetőség nyílik az épülethomlokzatok 3D rekonstrukciójára és az ész-
lelt objektumok követésére, valamint az így kapott feldolgozott, értelmezett ponthalmazt
későbbiekben illeszteni lehet az optikai kamerák 2D képeihez is, és ezek alapján színezett,
élethű háromdimenziós helyszínmodellek származtathatók. Az adatok rögzítése egy Velo-
dyne HDL-64E nagy teljesítményu LiDAR eszközzel történik.

Kulcsszavak : Lidar, pontfelhő analízis, város rekonstrukció

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 3

Contents

1 Introduction 1

2 Light Detection and Ranging 2

2.1 LiDAR technology . 2
2.2 The Velodyne Sensor . 4
2.3 Technical parameters . 6

2.3.1 Scanning configurations . 6
2.4 Data . 7

3 Problem formation 7

4 Related work 9

5 Class segmentation 10

5.1 Method . 10
5.1.1 Classes . 10

5.2 Results . 12

6 Point cloud registration 13

6.1 Normal Distributions Transform . 14
6.2 Related work . 14
6.3 Registering raw data . 14
6.4 Results of our algorithm . 21

7 Towards higher level scene interpretation 21

7.1 More precise object clustering . 21
7.2 Facade approximation with point clouds and triangle meshes 21
7.3 Vegetation detection . 27
7.4 Traffic analysis . 27

7.4.1 Analyzing moving and static objects on merged point clouds 28
7.4.2 Traffic sign detection . 31

8 Framework for displaying and processing data 32

8.1 Development tools . 32
8.1.1 Point Cloud Library . 33
8.1.2 Boost library . 33
8.1.3 Doxygen . 34

8.2 Implemented framework . 34
8.2.1 Descrtiption of the framework . 34
8.2.2 Implementation details . 35

8.3 Output quality . 35

DEVA Laboratory

4 O. Józsa and C. Benedek

8.4 Processing speed . 38
8.5 Robustness . 38

9 Conclusion 39

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 1

1 Introduction

Analysis of 3D spaces comes from the need to understand the environment surrounding us
and to being able to build more and more precise virtual representations of that space.
Remote sensing is a widely researched field for many decades and so is scene interpretation.
But in the last decade, as the three dimensional (3D) sensors begun to spread and the
commercially available computing capacity has grown big enough to be sufficient for large
scale 3D data processing, new methods and applications were born. In many real world
problems, 3D sensing and scene interpretation started to take the place of the conventional
2D image processing based on two dimensional imagery data.

In recent years, more and more technologies started to appear that heavily rely on these
new 3D methods. Robotic cars, ships and airplanes are successfully tested and in some cases
are already used on everyday bases. As Luettel et. al.[1] state in their summatory article,
automation of our vehicles are the "path to the future". A key element for these instruments
is 3D interpretation, detection and recognition.

But not only the automation industry depends heavily on 3D mapping and scene inter-
pretation. There are applications of this technology in industrial manufacturing, geology
and mapping, architecture, disaster and crime prevention and control, space exploration,
military intelligence and virtual gaming. All these fields have their own special tasks, where
3D data can help both the professionals and the users.

Three dimensional data can be produced in several ways. It can be generated via sound
propagation (sonars), radio wave propagation (radars) and light propagation (CCD devices,
LiDAR devices). Light Detection and Ranging (LiDAR) devices are common tools for three
dimensional mapping as they provide accurate 3D data directly from the device (so there is
no need of complex computation as via multiview cameras). These devices provide us the so
called point clouds. A point cloud is a data set with small units of data, each representing a
3D point in the space. A point essentially has at least three information: its 3 coordinates,
x, y and z (which of course can be represented in polar coordinate system or Euler angles
or lattitude, longitude, altitude in geographic data sets, etc). Additionally color, intensity
information could also be provided by some devices.

These instruments can quickly produce huge amount of data which makes data processing
a hard task. Some of these devices output several million data points per second so our task
is not only to interpret the data but to select the subset of points worth interpreting also.
Efficient, fast methods are needed to filter the significant data out of these streams or high
computing power is needed to post-process all this large amount of data. Once we are able to
select the useful information, another interesting task is to merge all the data from the whole
scan sequence to produce even larger and more useful 3D data sets. Matching subsequent
scans to each other is called point cloud registration which can provide us even more useful
data sets; for example registered urban point clouds can be processed and analyzed similarly
as aerial LiDAR scans but at much higher resolution since the sensor is able to scan the
scene from a much smaller distance.

DEVA Laboratory

2 O. Józsa and C. Benedek

The analysis of 3D dynamic urban scenes can be the first step for either real time scene
interpretation tasks (essential for traffic monitoring and robotic cars), or for post processing
three dimensional data (building realistic virtual models of real cities).

2 Light Detection and Ranging

In this section, we introduce the working principles of the Light Detection and Ranging
(LiDAR) technology and show examples of devices and their usage. We also describe the
data they provide us.

2.1 LiDAR technology

Light Detection and Ranging (LiDAR) is an optical remote sensing technology used for
distance measurements. It is available in terrestrial, airborne and spaceborne devices. Wide
range of instruments are available for variety of tasks - ranging from hobby devices about 100
US dollars up to military-grade high powered multi-beam ones for hundreds of thousands of
US dollars.

The principals of LiDAR distance measurement is essentially the same as of a radar
device but instead of radio waves, a LiDAR uses light to measure distances, thus the name
Light Detection and Ranging. The distance of an object is calculated from the time it took
the light beam to bounce and arrive back from and object. Since we know the speed of light,
the total distance traveled is simply given by the time multiplied by the speed of light as
shown in Equation 1.

object distance =
time of flight ∗ speed of light

2
(1)

Also there is a special type of LiDAR devices that is used for particle detection is gases,
typically in the air. With a very high sensitivity sensor and/or using multiple laser frequen-
cies several types of particles can be detected in gases. Such a device was in operation on
the Phoenix spacecraft (Martian rover).1

A big advantage of this technology over conventional optical (CCD) imagery that it is
not affected by lighting conditions. LiDAR is an active sensing technology, meaning that
it illuminates its target so lack of external lightning (e.g. at night) does not corrupt the
measurement. Also, special types of LiDARs are able to "see" through water, thus being
able to scan underwater surfaces.2

In most cases, terrestrial LiDAR devices operate while surrounded by people. For safety
reasons, these devices use eye safe (Class 1 laser) laser emitters, usually between 600 and

1For detailed description of this device, please refer to the Phoenix mission webpage:
http://phoenix.lpl.arizona.edu/science_met.php

2So called hydrographic mapping are provided by companies such as Optech (http://optech.ca/) and
Fugro (http://www.fugro-uae.com/)

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 3

Figure 1: The internal structure
and the working principle of the
Velodyne HDL-64E sensor. It has
a rotating head and 64 laser beams
aligned along a single line. With
this line, it scans the surround-
ing 3D space as the head rotates
around in 360 ◦. The four shining
plates on the face of the device are
the laser emitters and sensors (two
of each) (image source: Argocorp
product description)

1000 nanometers of wavelength.3 This light is in infrared range which makes the light beams
invisible to human eye.

Different LiDARs have different operation principles. Some devices (such as the SICK
LiDARs, or the industrial stationary laser scanners) have one laser beam that sweeps back
and forth in one dimension, along a single line. Either the scanned object or the scanning
platform has to move to for a complete 3D scan to be performed. Other types of LiDAR
scanners, such as the Velodyne devices, have a revolving head which sweeps in a circle
around the sensor, resulting in a full 360 ◦ scan. These sensors provide 3D images even at a
stationary position, though in most cases these are used on a moving platform, also.

3Source: www.LiDAR-uk.com/how-LiDAR-works/

DEVA Laboratory

4 O. Józsa and C. Benedek

2.2 The Velodyne Sensor

The data processed in this report is provided by the Velodyne HDL-64E high performance
LiDAR sensor. According to it’s website, the HDL-64E LiDAR sensor is designed for obstacle
detection and navigation of autonomous ground vehicles and marine vessels. Its durability,
360 ◦ field of view and very high data rate makes this sensor ideal for the most demanding
perception applications as well as 3D mobile data collection and mapping applications."4

The typical usage of this sensor is to mount it on a moving platform, practically onto
a car (Figure 2 shows the actual device while recording on the streets of Budapest). The
LiDAR has a fast enough scanning speed to scan the whole 3D space at about every 30-
60 centimeters of distance as the car travels with typical urban traffic speed. With each
rotation, a full 3D scan is made, and overall the device outputs more than 1.3 million 3D
points per second via an unshielded twisted pair (UTP) Ethernet cable.

Alternatively, it can be used as a stationary sensor at outdoor or relatively large indoor
scenes (e.g.: warehouses, manufacturing halls). In this configuration, the sensor scans the
same space with every rotation. Applications of this static configuration will not be discussed
in this this report, instead, we will be focusing on the more challenging moving platform.

Along the 3D (x-y-z) data, the sensor also gives a fourth value for each point, called
intensity. This value shows how strong the reflection from that particular point was. In
other words, how big fraction of the emitted light returned to the sensor. This intensity
value mostly depends on the objects’ surface quality: shiny, flat surfaces reflect light much
better than matte, scattered surfaces (such as roads or vegetation). The angle of attack can
also affect this intensity value i.e. if the beam hits the surface in a high angle, the light can
scatter and thus the returning intensity will be lower. Although the algorithms implemented
so far do not exploit the intensity information, in Section 7 we will present our research on
where it might highly support some of the proposed detection tasks.

4For full product description, visit the official product website
http://www.velodyneLiDAR.com/LiDAR/hdlproducts/hdl64e.aspx

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 5

Figure 2: Velodyne HDL-64E sensor on the streets of Budapest (pictured in front of Gellért
Bath)

Figure 3: Data sheet of the Velodyne HDL-64E LiDAR (image source: data sheet on the
product website)

DEVA Laboratory

6 O. Józsa and C. Benedek

Figure 4: Data sheet of the Velodyne HDL-64E LiDAR (image source: product manual
sheet)

2.3 Technical parameters

The sensor provides the data in an UDP stream through a standard Ethernet cable. The
packet structure is detailed by the manual as follows:

2.3.1 Scanning configurations

The sensor has two main configurations when mounted atop of a vehicle. It can be either
facing forward and thus, looking down in an angle of about 25 degrees or it can be tilted to
face upwards. The former, forward facing configuration is more suitable for road mapping,
traffic monitoring, object detection and tracking, etc. The latter configuration, because of
its upward looking nature, is more suitable for scanning building facades. A typical angle
in the tilted configuration is 45 ◦ which allows the sensor to see up several stories high from
street level.

Though this report focuses on the forward facing configuration, the Velodyne HDL-64E
LiDAR can be used in both configurations and some results of the different measurements
and the possible uses of them will be briefly discussed later.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 7

(a) Forward facing LiDAR (b) Tilted LiDAR

Figure 5: The two scanning configurations

2.4 Data

All the data had been recently recorded in urban areas, on the streets of Budapest. Several
types of streets have been scanned to test the algorithms as well as bridges and large squares.
The types of streets range from avenues to small hillside roads.

The data recording has been done with a software tool developed earlier at the Dis-
tributed Events Analysis Laboratory (DEVA). This tool saves the data into the standard
pcap (packet capture) format which contains the raw UDP stream with timestamp and
header information along with the 3D data (see Figure 4 for the packet structure). Also,
this program can export the data into the simple .pcd file format provided by the Point Cloud
Library (for more detail, see Section 8). In this format, the recording is a file sequence with
every file containing one 360 ◦ scan.

The processing framework uses the PCD sequence format. A typical sequence contains a
few hundred scans and covers a whole street or a segment from an avenue. A scan recorded
with 10-15 Hz of rotation has a size about 2 to 6 megabytes so a sequence can reach multiple
gigabytes in size. We call the acquired sequence 4D data since each frame is a 3D point
cloud and the time domain represents the fourth dimension.

Different scans have been recorded with different rotational speeds, ranging from 5 to 15
Hz. The test showed that there are no differences in processing these data, though in case
of a car moving around 50 kph, a faster recording speed is more suitable as there will be
less movement during a single scan.

3 Problem formation

Though the LiDAR sensor provides high amount of data with each revolution, often this
3D information is not sufficient to understand a whole scene which sometimes spans over
200 meters. Typical challenging problems are occlusion (and thus, large “shadows” on the
occluded background surface), sparse data and noise. Though the sensor has one sigma

DEVA Laboratory

8 O. Józsa and C. Benedek

accuracy, even a few centimeters of fluctuating noise can damage the surface reconstruction
and make identification tasks challenging.

Also, the density of the provided point cloud is highly inhomogeneous: the further an
object from the sensor is, the sparser its 3D scan will be. This fact hurts lots of existing
processing methods developed for the analysis of homogeneous aerial LiDAR scans will not
give the same results for the same object when it is close to the sensor and when it is far
away.

As the sensor does not see directly down to the ground, each scan has a "hole" of about
3 meters radius in the center. Some registration algorithms consider this "edge" in the data
as a significant feature. Once identifying these points as keypoints, they register two point
clouds along these points which obviously results in a false registration since the "hole" in
the data moves along with the car and should not be aligned in consecutive point clouds.

In addition to noise, moving points can cause hard challenges for the processing algo-
rithms even more. In a realistic street scene, there are number of moving objects: people,
vehicles, vegetation. All the points belonging to these objects change from frame to frame.
A false registration can easily occur when the algorithm falsely detects moving points as
significant points and tries to align consecutive point clouds along these moving points.

If we were able to register all the clouds in a sequence against each other and concatenate
them into a large point cloud (within the same reference coordinate system), huge resolution
could be achieved and most of the problems mentioned in this section could be overcome.
Once we have the registered cloud, the resolution will be uniform and most of the occlusion
will be gone due to the moving platform which helps the sensor to measure objects from
different angles. Also, in this significantly larger resolution, effective noise reduction can be
applied and detection algorithms can perform much better.

In summary: a data preprocessing method is needed that helps the point cloud registra-
tion process. In particular, a segmentation method, which removes (and optimally classifies)
all the points that harden the registration task such as the road surface, moving objects and
noise. Our aim is to select a set of points that are stable, static in each frame and can be
confidently used as keypoints for point cloud registration.

The key contributions of this report are as follows. In Section 5, we present our preseg-
mentation method which aims to help resolve the basic point cloud classification problem,
i.e. separating ground, wall, object etc. regions in the point cloud. In Section 6, we intro-
duce a new algorithm to transform the consecutive Velodyne frames into a joint coordinate
system, in such difficult scenarios, when both the LiDAR sensor is moving and in and several
moving objects are also present on the street. In addition, it should be highlighted that we
do not use any special sensor information (IMU) about vehicle speed and acceleration for
matching the frames.

In Section 7, we present our results on these registered data and some future plans for
improving the current results. In Section 8, we present the framework we developed for the
workflow (preprocessing, registration and visualization of the data). Finally, in Section 9,
we will draw the conclusion and analyze the results.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 9

4 Related work

Hereby we present a short overview of the state of the art results on this topic as the result
of our literature research. Most researches are focusing on automation, robotic vehicles only
fewer researches are made on the topic of virtual city reconstruction and building facade
reconstruction.

In most cases, for point cloud registration in robotic environments the ICP [2] algorithm
is used for matching which performs well in homogeneous 3D scans but often fails in noisy,
fast-changing real world environments or has to be modified to be scene specific. In robotic
applications, the main task is to detect and track moving objects[3, 4], while our current
task is to understand a scene with both moving and static objects and build realistic virtual
representation of that scene.

Douillard et. al. have developed a method to extract “segments” (interest regions) from
the point cloud [5] [6]. This approach is similar to mine: with the preprocessing step, we
also try to find sets of points that will later help the registration step. Makadia et. al.
constructed an automatic registration method using large histograms calculated from the
surface normal fields[7] but is computationally expensive and works well on homogeneous
scans, not on LiDAR data.

Others have taken a different approach Behley et. al. [8] constructed a multiscale
3D histogram descriptor that can be efficiently used for point matching. Quadros et. al.
presented a feature called the line image to support point matching that outperforms the
widely used NARF descriptor but requires a computationally expensive principal component
analysis (PCA) calculation[9].

After the registration is done, next step is virtual reconstruction. Since the scans are
noisy by nature and possibly have several holes in them (e.g.: occlusion caused by trees and
parking cars standing in front of buildings, etc.), reconstruction is not trivial. Recently, Shen
et. al. showed an efficient method for virtual facade reconstruction which uses an iterative
adaptive partitioning and is robust against the aforementioned issues [10]. Also, Wang et.
al. of the NAVTEQ Corporation showed a method to upsample sparse LiDAR data and to
clean the points corresponding to building interiors (since the laser beam travels through
windows also, the LiDAR also scans the interiors of buildings)[11].

Also, for already registered, large data sets, there are effective detection, segmentation
and recognition algorithms available. Velizhev et. al. developed a highly effective algorithm
to interpret large outdoor urban scenes[12]. They method is proposed for mobile robot
mapping; though, once we register LiDAR data with the method presented in this report,
our data sets will be similar to theirs.

Though in our method, running time is not a bottleneck, in future development paral-
lelisation might fasten up the algorithms greatly. Hu et. al. numerically proved that point
cloud filtering and segmentation can be greatly faster with a graphics processing unit (GPU)
implementation[13].

DEVA Laboratory

10 O. Józsa and C. Benedek

5 Class segmentation

To achieve the aforementioned goals, we developed a novel method to preprocess and process
3D LiDAR data. The key idea is to insert a simple and fast preprocessing step that will
help the registration step, hence scene reconstruction and scene interpretation also.

We have defined four classes5

• Road surface (including sidewalks)

• Short street objects (which are moving objects in lots of cases, such as cars, people)

• Walls and tall static objects (lamps posts, traffic lights, etc.)

• Sparse data / noise

This classification is based on local point properties. Using some statistical descriptors,
we segment the data into one of these semantic classes which later can be used together or
separately for various tasks (eg. using only the object class for object detection).

5.1 Method

As mentioned before, point cloud segmentation is done by a grid based approach. First, we
fit a regular 2D grid S with WS rectangle width onto the Pz=0 plane, where s denotes a single
cell. We used a WS value between 50cm and 80cm. Smaller grid size is not viable due to
the resolution; smaller cells would not have enough points in them to calculate good enough
statistical information. On the other hand, larger cell size can result in larger number of
falsely classified points, since within a large cell, multiple objects can occur. Near-the-center
grid cells within the above specified range have hundreds of points in them (grid cells further
away obviously have less and less points).

Then, we assign to each p ∈ P point of the point cloud to the corresponding cell sp,
which contains the projection of p to Pz=0. Let us denote by Ps = {p ∈ P : s = sp} the
point set projected to cell s. ymax(s), ymin(s) and ŷ(s) are the maximum, minimum and
average of the elevation values within Ps.

The first step of the process is the segmentation of the cell-map, i.e. we assign to
each cell (and to each point in that cell) s ∈ S an ωs class label from the finite label set:
L = {lto, lso, lgr, lsp}, corresponding to the classes (i) tall structure object, (ii) short street
object, (iii) ground and (iv) sparse region.

5.1.1 Classes

At first, sparse regions (lsp) are detected. These encapsulate only a few or not any points: we
can obtain only very limited, and probably misleading information from these cells regarding
the scene structure and objects, therefore we will neglect these regions in the later model

5in the source code, there is a fifth class called NOCLASS for initialization purposes

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 11

phases. The threshold of a cell s being considered as a sparse cell is typically 4-8 points
- any cell containing less points than this threshold is considered sparse (the exact value
of this threshold also depends on the sensors revolving speed, slower speeds allow to have
larger threshold). Sparse data is classified first, so in later processing we will know not to
check these grid cells, thus save some processing time.

A cell should belong to the lto class if it contains a tall object of the street structure,
such us building walls, lamp post or tree trunk. These object can be considered static in the
scene, since these 3D points obviously belong to objects that are not moving and are large
enough to be present in several consecutive scans. These points will be used later for point
cloud registration of the consecutive time frames. The two criteria for a grid cell to belong
in this class are:

ymax(s) < 140 || ymax(s) − ymin(s) > 310 (2)

So either the maximal height is larger than 140 centimeters, either the height difference
is larger than 310 centimeters. The two criteria are similar. The first one says that if there
are points in the grid cell which are higher than the sensor height plus 120 centimeters, than
the cell should be considered as a tall object (the sensor has a height about 2 meters). The
second criteria says that if there is a height difference of more than 310 centimeters within
the cell, it should be considered as a wall. The second criteria is needed for dealing objects
standing on a lower point of the ground compared where the car travels (e.g.: elevation
differences, walls seen from an overpass road, etc).

Next, the ground cells (lgr) are identified. These cells contain only a surface which is not
covered by any objects, but contains a considerable number of ground points. The criteria
for the grid cell to belong into this class is:

ymax(s) − ymin(s) < 25 && ymax(s) < −50 (3)

In words: if the points within a cell are "flat" enough, and the maximal height is below
-100 centimeters, the grid cell is considered as road surface. The first criteria ensures the
flatness or homogeneity of the points. Given a cell with 60 centimeters if width, this allows
22.6 ◦ of elevation within a cell; higher elevations are highly unrealistic in an urban scene.
The second criteria ensures that this patch of flat surface is under the car; again, the sensor
is at about 200 centimeters of height so the road surface directly beneath the car has a height
of about -200 centimeters. Less than -50 criteria is used to deal with elevation differences
that can occur within the field of view of the sensor.

The rest of the point cloud is assigned to class lso. These points belong to short objects
like vehicles, pedestrians, short road signs, line posts etc. These entities can be either
dynamic or static, which attribute can only be determined later, after further, more complex
investigation of the point cloud sequence.

DEVA Laboratory

12 O. Józsa and C. Benedek

(a) Bartók Béla street (b) Villányi street

Figure 6: Streets “cleaned” from noise and objects

(a) Parking cars on the side of Villányi street
(b) Traffic at red light, some parking cars and a
person passing by on a small street

Figure 7: Streets with only the object clouds displayed

5.2 Results

Here we present some images that show the results of the segmentation. For detailed de-
scription about the processing framework, see Section 8.

Notice, that on Fig. 8 there are seemingly large amount of noise. Actually, since the
majority of those points are in the sparse region, in most of the cases the amount of the
noise/sparse data is below 10%.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 13

(a) Intersecting one-way streets (b) A multi-lane street

Figure 8: Street segments with sparse and noise data included (blue points)

6 Point cloud registration

A single scan has many points but but since it covers a large area, the resolution is sufficiently
good only within few meters of distance. Though the device has a sensing distance of more
than 100 meters, the measurements at more than 15 meters of distance are too sparse for
many detection or reconstruction algorithms. But since the sensor is on a moving platform,
it is a good idea to register, or in other words, concatenate the consecutive scans in the
sequence. Registration will help us to fill in the holes due to occlusion and we can achieve
very high point density after registering several point clouds.

Although various established techniques do exist for point cloud registration, such as
Iterative Closest Point (ICP) [2] and Normal Distribution Transform (NDT) [14], these
methods fail, if we try to apply them for the raw Velodyne LIDAR point clouds for two
reasons:

1. All moving points appear as outliers for the matching process, and since in a crowded
street scene we expect several moving objects, many frames are erroneously aligned.

2. Due to the strongly inhomogeneous density of the LIDAR clouds, even the static
ground points mislead the registration process. The above algorithms often match
the concentric circles of the ground (See Fig. 6), which yields that the best match
erroneously corresponds to a near zero displacement between two consecutive frames.
However, we have also observed that the point density is quite uniform in local wall
regions which are perpendicular to the ground.

Our key idea is to utilize the point classification result from the previous section to
support the registration process. We only use as input of the registration algorithm the
points segmented as high objects, since we expect that in majority, these points correspond
to stationary objects (such as buildings), thus they provide stable features for registration.
Details and test results are in the following sections.

DEVA Laboratory

14 O. Józsa and C. Benedek

6.1 Normal Distributions Transform

This method was introduced in Martin Magnusson’s doctoral thesis, The Three-Dimensional
Normal-Distributions Transform – an Efficient Representation for Registration, Surface
Analysis, and Loop Detection [14] which is a 3D implementation of the 2D Normal Dis-
tributions Transform developed by Biber and Straßer.[15]

The Normal Distributions Transform itself uses a grid based approach also. First, it
divides the space into cubes. For each cube, calculates its so-called local probability den-
sity function (PDF) to describe that cube: “Each PDF can be seen as an approximation
of the local surface, describing the position of the surface as well as its orientation and
smoothness.”[14]

For the registration step, it uses Newton’s optimization method to find the rotation and
translation between the two point clouds, searching for the best match between the PDFs
of the two scans. This method is robust to outliers.

6.2 Related work

In many cases, this registration is done by the help of external sensors such as Inertial
Measurement Units (IMU), Global Positioning System (GPS) or other sensors on the car
(e.g. speedometers, wheel rotation sensors, radars).

Han et. al. presented a method to detect road boundaries and road segments based
on LiDAR data and vehicle movement information [16]. Robotic cars such as Stanley and
Junior built for the DARPA Grand Challenges[17] [18], the AnnieWAY self driving car [19]
and Carnegie Mellon’s Car, Boss[20] for example. use a huge amount of sensors to map their
environment and interpret the scene surrounding them.

All of the results above incorporate additional sensors. The novelty of our method that
it does not need any supplementary sensory information, also does not need any learning
algorithms or huge sample database. Once the first correspondence is found, the calculated
transformation matrix is used as a prediction for the next movement step, the NDT algorithm
only has to "refine" this prediction according to changes in the movement of the car.

6.3 Registering raw data

Here we present the two typical types of false point cloud registration. The first one is shown
in Fig. 9. In this case, the algorithm picked the hole in the middle of the scan (due to the
sensor’s field of view) as the key feature.

The latter one, shown in Fig. 10, displays a completely misaligned registration. Here,
the algorithm aligned the flooring of the bridge on the last two scans to the stanchions of
the bridge in the previous scan.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 15

Figure 9: Misregistered street segment

DEVA Laboratory

16 O. Józsa and C. Benedek

Figure 10: Misregistered Liberty Bridge (Szabadság híd). See Fig. 11 for proper registration

Figure 11: Liberty Bridge (Szabadság híd) with boats in the background

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 17

(a) First scan. (b) Second scan. (c) Third scan.

(d) The resulting registered scan (made out of 20 scans, not only the 3 above).

Figure 12: An image sequence showing the registration process.

DEVA Laboratory

18 O. Józsa and C. Benedek

(a) Upper view of the street. Notice, how the interiors of the building gets visible as the
scanner passes the door.

(b) Zoomed in picture.

Figure 13: A large registration of Kende street showing only the building class. Scan
sequence starts at the middle of the street and runs to its end. The point cloud is made out
of 230 point clouds, the full cloud contains more than 20 million points.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 19

(a) The whole registered street segment

(b) Part of the street, zoomed in. Note the level of detail, even objects in the store window
are visible.

Figure 14: Registered street segment. For registration, 30 point clouds were used, final cloud
contains almost 10 million points.

DEVA Laboratory

20 O. Józsa and C. Benedek

Figure 15: Cars with a layer of "carpet" under them. Blue color means it is classified as
sparse/noise data

Figure 16: Cars without the detected road patches. It can be seen that this simple removal
method is not sufficient to remove all the misclassified points

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 21

6.4 Results of our algorithm

In this section, we present some images showing the results of the point cloud registration
done with the help of the pre-segmentation step we have developed.

Fig 11 shows an upper view of a large registered point cloud of a bridge (generated
using the same data set that is shown in Fig. 10 where the registration failed without the
presegmentation step). Fig 12 presents the process of the point cloud registration on a street
segment, showing how radical improvement on the point cloud is possible. Lastly, Fig 13
and Fig 14 present two registration result, both recorded on the streets of Budapest.

7 Towards higher level scene interpretation

In this section we present various algorithms and test results of our work and some future
plans, which point towards complex scene analysis and reconstruction. First, we introduce
a point filtering algorithm, which is able to refine the grid based coarse point cloud classi-
fication step (Sec. 7.1). Then, we present our initial results on surface reconstruction and
object detection in street scenes. Finally, models on higher level object and scene analysis
are discussed.

7.1 More precise object clustering

As mentioned before, the grid is defined as a cuboid with a base of 50x50 to 80x80 centime-
ters. A classification is done for the whole cell meaning all points in the cell will be classified
into the same class at all times. This means that if a wall is (correctly) classified as wall,
some road points are (incorrectly) also classified as wall at the foot of the wall. These points
are necessarily misclassified due to the nature of grid-based processing.

As Fig. 15 and 16 show, currently this small patch of misclassified road is simply removed
from the data by cutting down a few centimeters of each cell that has object class. If possible,
it should be further investigated and reclassified to road class if it belongs to the road surface.

7.2 Facade approximation with point clouds and triangle meshes

As mentioned before, the long-term aim is to build realistic, virtual 3D models of the streets
of Budapest. For this task, the existing triangulation methods should be investigated and
tested, as well as data smoothing methods. According to plans, later an RGB camera will
be available - either a 360 ◦ field-of-view panoramic camera or a 360 ◦ looking multicamera
system such as the PointGrey Ladybug camera6. Once such a camera is available, the point
cloud can be colored and that additional color information could be used as a base of the
3D surface texturing methods.

After registering several point clouds against each other, the resolution can be high
enough and uniform enough to create realistic building facade reconstruction. As the car

6Product description at http://www.ptgrey.com/products/spherical.asp

DEVA Laboratory

22 O. Józsa and C. Benedek

Figure 17: A clusterization result. Each color represents a separate cluster (colors do not
have any particular meaning, they were assigned randomly).

Figure 18: A triangulation result. It depicts a building on Móricz square.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 23

Figure 19: A second triangulation result for the Móricz square data sample

Figure 20: A reconstructed facade on Karinthy street. Though it looks noisy, the
point cloud was highly sparse and once texturing is available, the visual experience
will be much more realistic.

DEVA Laboratory

24 O. Józsa and C. Benedek

passes by a building, it collects data from several point of view so most of the wholes on
the walls due to occlusion can be filled in. Also, after concatenating a few dozen scans, the
resolution of the data will be significantly higher which results in a precise 3D reconstruction
of wall surfaces. For noise reduction, we used the moving least squares (MLS) method. It
is not edge preserving, but it is fast and highly helps the triangulation steps. After running
MLS, the edges become a bit curvy, but after the texturing will be done, it will not have a
great effect on the visual experience.

The current workflow we developed is as follows. After the transformation matrices are
calculated via the NDT algorithm, they are applied only to the point clouds that contain
the static tall points. After transforming these clouds into a mutual reference frame, we
will get a large point cloud, which only contains walls, lamp posts, trees ans similar tall
objects. On this larger, registered pointcloud a clusterization is done which separates the
aforementioned objects into separate point clouds. With the help of a flood-fill algorithm
(an Euclidean clustering in this case, see Fig. 17), the separate building components can be
extracted from the data set.

Once we have the separate point clouds, each representing an object, we need to "clean"
it and to smooth it. Cleaning is necessary because most likely there are outliers around the
object and smoothing is required because of the noise. Since the resolution is high (millions
of data points along a single facade), the noise can be eliminated and the reconstructed
surface will be smooth enough.

After researching the available triangulation methods, the Ball-Pivoting algorithm [21]
proved to be the best, though there is no available numerical measurement or analysis
method for this but the human eye. Figures 18, 19 and 20 show three results of the trian-
gulation step.

For this task, a tilted, upward looking LiDAR configuration is even more suitable than
the forward facing configuration (see Fig 20 where the LiDAR scanned the building only up
to about 3 meters of height).

In the upward tilted case, the data is much more unfitting for traffic monitoring but
more suitable for scanning buildings. As the sensor looks up it can scan the buildings up
to their roofs. When registering this data, we can achieve incredibly high-detailed building
facades.

We extended the framework for handle this different type of data and to be able to
register these scans automatically, also. Results can be seen in Figures 21, 22 and 23.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 25

Figure 21: An example of the tilted configuration. It depicts the Klotild Palace,
near the Elizabeth bridge in Budapest

Figure 22: A block of building in the Fifth District of Budapest with amazing
detail.

DEVA Laboratory

26 O. Józsa and C. Benedek

Figure 23: Example 3 - building of the Great Market Hall

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 27

(a) The detected leaf points are marked with red
and purple.

(b) Point cloud after the leaf points are removed.
The points are colored by their height for better
visibility.

Figure 24: An example of vegetation removal

7.3 Vegetation detection

Another well defined task is vegetation (typically: trees and bushes) detection. The removal
of the detected vegetation data from the point cloud can help detection algorithms, for
example in the case of trees hanging over parking cars.

We have developed a multifeature descriptor for vegetation removal. It calculates a
statistical feature for each point based on:

• the distance and irregularity of its neighbors (typically 20-40 neighbors)

• the intensity channel: vegetation reflects the laser beam with less intensity (though
according to the tests, this feature is not as strong as expected)

• the height of the given point (as the main task is tree removal - bushes, grass, etc. is
not as important to remove for object detection tasks)

Examples of the output can be seen on Figures 24, 25 and 26.

7.4 Traffic analysis

The next step of virtual city reconstruction is traffic interpretation. It is a highly researched
area, and there are existing effective methods for aerial LiDAR data. After registering a
whole street sequence, the data can be used similarly as of an aerial LiDAR data, with much
higher resolution. For state of the art results on this topic please refer to the recent paper
by Börcs et al.[22]. A longer overview and results in the topic of aerial LiDAR data can be
found in [23].

For higher level traffic monitoring, efficient road interpretation and vehicle detection
is necessary. Detailed information of the road surface is required for this task; such as
dividing the road class into smaller semantic units e.g.: sidewalks, lanes, parking lots, road

DEVA Laboratory

28 O. Józsa and C. Benedek

Figure 25: Second example of vegetation removal - original picture is on the right, "cleaned"
is on the left. Again, majority of the leaf points are removed which should greatly help the
car detection.

intersections. Lanes (and parking spots) can be identified by the lane markings. Lane
markings are made out of bright painting which makes them fairly easily detectable. Also,
later RGB information can be used to support this method.

7.4.1 Analyzing moving and static objects on merged point clouds

General 3D object reconstruction is a much harder task than reconstructing walls or road
surface. While these have a well defined, and mostly flat surface, a general street object
can have virtually any shape and due to small resolution and the fact that the LiDAR only
scans one side of the object, the reconstruction is sometimes impossible.

Moving objects are even harder to reconstruct based solely on LiDAR data. As these
objects (typically vehicles, people) are moving through the scene, they appear at different
spots in each scan which make them appear like a long-drawn shadow in the registered point
cloud.

Instead of reconstructing these objects from the LiDAR cloud, our plan is only to detect
them in the cloud. Once they are detected, they can be replaced with realistic, full-scale 3D
models in virtual space. Free 3D models of vehicles, vegetation, trash cans, etc are available
to use for this purpose. Also, the Geometric Modeling and Computer Vision Laboratory
of the Computer and Automation Research Institute has the capabilities to scan dynamic

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 29

(a) Before vegetation removal

(b) After removal - most of the overhead tree leaf points are removed, though not all of
them

Figure 26: Third example of vegetation removal

DEVA Laboratory

30 O. Józsa and C. Benedek

Figure 27: An example of how moving persons look like in the registered point cloud (the
two blue boxes) versus a person who was standing still during the whole scanning process
(red box)

Figure 28: Another example of moving objects appearing as a smudge in the registered
cloud. Here, a car turned onto the main street after stopping at the red light

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 31

Figure 29: Typical centroid points of a moving car in the registered cloud

(a) Centroid points inside a car
(b) Centroid points inside a car

Figure 30: Typical centroid points of standing cars in the registered cloud

models, such as walking people. These dynamic models can be inserted into our virtual
space to achieve a realistic 3D world.7

The first step here is to modify the registering algorithm so it will support the distinction
between standing and moving vehicles. For this we implemented a timestamping algorithm
that extracts and identifies the original separate scans in a detected vehicle blob. After
detection, we calculate the 3D centroids of these separate segments. First tests show that
the distribution of these centroids using 10-30 scans is a very effective marker in moving and
standing vehicle distinction (more tests and evaluation will be done later on).

Figures 29, 30 and 31 show the results of this development.

7.4.2 Traffic sign detection

A popular task on urban scenes is traffic sign detection. It is a crucial task in intelligent
vehicles but also can be used by route authorities to inspect whether the necessary traffic
signs are present where they should be.

The possibilities of traffic sign detection should be investigated in two aspects:

7For initial results on this topic, see the demo video at the website
http://web.eee.sztaki.hu/home4/node/14

DEVA Laboratory

32 O. Józsa and C. Benedek

Figure 31: A turning car colored as a sequence in the registered, concatenated
point cloud. Left side of the picture shows the centroid points (trajectory)

• Intensity channel - traffic signs have highly reflective paintings on them for better
visibility. This can be a strong indicator of a traffic sign.

• Physical constraints - as the walls or the road surface, a traffic sing also has a
well definable physical constraint. A model should be developed to represent these
constraints. Also it should be investigated whether this model should be used in the
existing grid-based processing or on full clouds without grid representation.

Even further development is traffic sign identification. For this task, a simple 3D data is
not enough, color information is also needed to identify similarly shaped but different traffic
signs. Once RGB referenced 3D data and the traffic sign detection method is available, the
possibilities of pattern matching for identification should be investigated.

8 Framework for displaying and processing data

8.1 Development tools

The framework is written in the C++ programming language on the Microsoft Windows
platform (Visual Studio 2010) but using only multiplatform technologies and software com-
ponents.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 33

8.1.1 Point Cloud Library

The Point Cloud Library (PCL)8 is a free, open source C++ library for point cloud pro-
cessing. It is available for all major platforms and the source code is licensed with the BSD
license. It is developed by Willow Garage and many universities around the Globe and
financially supported by companies such as Google, nVidia, Trimble, Velodyne. The library
provides both high and low level 3D point cloud processing algorithms. For details on this
software library, please refer to [24]

The library also defines a widely used file format for storing point clouds. It is a simple
format containing a header and the 3D information, functions to read and write this format
are available in the library. 9. We store the Velodyne LiDAR data in this file format. It
is flexible enough to contain supplementary information about each point such as labels for
the classes, normal and curvature data, etc. The data is stored in binary format to speed
up disk usage time. Reading and saving LiDAR data is done with the help of the PCL’s
input-output library. For the 3D transformation data, we constructed a simple file format
which contains the calculated transformation matrices between the consecutive point clouds.

Functions we used from the PCL library:

• Input - output module (for reading .pcd files)

• Kd-trees for search within clouds

• Statistical outlier removal

• Visualization module

• Random Sample Consensus (RANSAC) model for comparison for road and wall de-
tection

• Normal Distributions Transform to register point clouds (NDT is not yet available in
the stable PCL library release at the time of writing but the code can be dowloaded
from the)

• Euclidean Cluster Extraction for clustering the objects in a point cloud

We used PCL version 1.6.0, the latest version at the time of writing this report.

8.1.2 Boost library

The Boost library10 is a well-known, industry-standard extension of the C++ language. It
is installed by the PCL library by default. We used the Boost functions for smart pointers,
parallelisation and for the signal-slot communication between the software threads.

We used Boost version 1.49.0.
8Webpage: http://pointclouds.org/
9The detailed description can be found on the webpage

10webpage: http://www.boost.org/

DEVA Laboratory

34 O. Józsa and C. Benedek

8.1.3 Doxygen

The source code is documented using the Doxygen documentation system11. The source
and documentation is available on the attached DVD (see Appendix A for the descrtiption
of the attachement).

8.2 Implemented framework

8.2.1 Descrtiption of the framework

The core of the framework is the cell-based segmenter class. It is responsible to build the
grid and to calculate the statistical information about the point cloud and each cell. Also,
it is responsible to segment the points (cells) into classes and color them accordingly for
visualization.

The framework has a simple display module for visualizing data and the results of the
algorithms. It is built atop of PCL’s visualization library (which uses the Visualization
Toolkit library’s core functions). The display module also uses the Boost library’s paral-
lelization library; we implemented visualization and keyboard handling to run in separate
threads.

The program offers command line input functionalities also. The display module can
be turned off via starting the application with the -novis option. This way, the application
will behave as a command line processing tool (additional command line options are: -help
for displaying usage information -verbose for displaying statistical information about the
processed data, -o for turning on a basic statistical outlier removal function on the point
cloud and -n for turning on normal calculation.).

Available display modes:

• Stream mode to display data sequence without processing or coloring. This mode is
useful for playback of 4D data

• Simple Segment class coloring. In this mode, the grid based segmentation will be
performed and the point cloud will be colored according the pictures shown before.

• Linear coloring based on average height in a cell. In this mode, the processing
function calculates the average height within a grid cell and colors the point cloud
accordingly (similarly to a heatmap)

• Linear coloring based on the point density in a cell. In this mode one can easily
check visually the point density distribution in a point cloud.

• Linear coloring based on minimum-maximum height difference in a cell. Similarly
to the previous two, the processing module calculates a statistical information about
each cell and colors the cloud accordingly. Useful for visually evaluating the height
differences.

11webpage: http://www.stack.nl/ dimitri/doxygen/

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 35

The framework has some additional functionalities for evaluation and helping develop-
ment. If the user clicks on a point, it displays information about the point and the grid cell
the point belongs to. Also, the threshold parameters can be changed during 4D playback
for faster evaluation. If the file save flag is set to true, the framework outputs the data into
several files after processing the input:

• A colored point cloud. The colors correspond to the four classes.

• A point cloud containing only the walls and high objects.

• A point cloud containing only the street objects.

And finally, the registration workflow is as follows: first, the point clouds containing
only the static wall points are loaded. Then going through this list of point clouds each
pair is registered each against with the Normal Distribution Transform. Once this is done,
we know all the transformation matrices that represent a single transformation between the
coordinate systems of consecutive scans. Using these matrices, we can transform any point
cloud (the full cloud, cloud with only the walls, etc) into one mutual coordinate system.
After this, we only have to concatenate the point clouds and save the result onto the hard
drive.

8.2.2 Implementation details

As Fig. 32 shows, the program consists of 3 main modules.
The IO module is responsible for reading the .pcd PCL files, for displayig the 4D data

as a 3D video stream (with keyboard and mouse functionalities such as turning features on
and off) and for parsing the command line input and saving the input parameters.

The Point Cloud Processing module contains the implementations of the cell grid
structure. These are responsible to build the grid representation, to calculate the statistical
information and to segment the data. There is a separate class for the remaining point cloud
task such as putting the grids back together into a whole point cloud.

Also there is a statemachine class that is used by the two previous modules containing
all the important variables and constants (Fig. 33 is a screen from the documentation
showing all these parameters).

A future task is to refactor the code and make the structure of the program more object-
oriented.

8.3 Output quality

As it can be seen in the pictures above, successful point cloud registration can be done on
the segmented, preprocessed data. The registration is accurate and can be easily performed
on the static points.

The big advantage of the road surface detection method over a RANSAC-based plane
matching that it can deal with curvatures, elevation changes in the scene. RANSAC can

DEVA Laboratory

36 O. Józsa and C. Benedek

Figure 32: Outline of the program structure

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 37

Figure 33: State variables of the program

DEVA Laboratory

38 O. Józsa and C. Benedek

Dataset name Number of scans
Speed with

presegmenatation (s)
Without

presegmenatation (s)
Tas Vezér street 10 0.3209 5.3061
Tas Vezér street 10 0.2709 6.8782
Bartók Béla street 10 0.5888 6.3983
Bartók Béla street 15 0.5056 5.8474
Bartók Béla street 15 0.0868 4.0099*

Table 1: Speed comparison. * denotes failed registration

find the best fitting plane for the road surface but in real world, the road surfaces are not
planars, especially in cities built on or next to a hill. Using the proposed method, such
difficulties can be overcome and once the surface grid cells are detected, even an elevation
map can be built.

One other benefit of the grid based segmentation that is also removes noise. Grids
containing too few points are not useful, they make computation harder. The segmentation
filters these points out also.

8.4 Processing speed

For the segmentation step, the main aim was to implement a fast algorithm that performs
a presegmentation step. This aim has been met; once the data is in the memory (reading
from the disk is the slowest step), the algorithm runs in real time on a modern CPU.12

Besides the segmentation being fast, it fastens up the registration step also. Once all the
noise and interfering moving points are removed, the registration is easier, thus faster. As
the registration algorithm tries to match up points, the overall error will be smaller thanks
to the "clean" point cloud and the algorithm will converge faster towards the termination
criteria. Registering point clouds containing only stable, stationary points takes only 1-4
seconds (this value depends on the scanning rotation speed and on the amount of points left
in the cloud after segmentation). Registering a full cloud takes 5-10 second - if it converges,
since in some cases the registration fails.

8.5 Robustness

The proposed workflow is robust enough to perform extremely well in real life environments
(some experiments on this topic use only more sterile indoor or even more sterile artificial
data sets).

The algorithm has been tested in lots of data sets as summarized in Table 2. The
proposed workflow can concatenate these whole street segments - although the resulting
point clouds can be hard to work with due to their size (hundreds of megabytes and tens of
millions of data points). For typical use, 10-50 concatenated point clouds is reasonable.

12The test environment has an Intel Core i7 processor and 8 gigabytes of DDR3 RAM

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 39

Street name Number of scans
Kende street 496
Bertalan Lajos street 154
Bartók Béla street 581
Villányi street 646
Tas Vezér street 345
Edömér street 24
Diószegi street 824
Dávid Ferenc street 972
Szüret street 770
Somlói street 945
Liberty Bridge 160
Andrássy street 125

Table 2: The data sets used to test the algorithm. Most of the data recordings had been
done in the 11th District of Budapest

9 Conclusion

The results above show the success of the simple, yet useful presegmentation step that has
a great positive effect on the point cloud registration. Dividing the initial point cloud into
multiple semantic classes and using only the relevant points results in a faster, more stable
registration.

Also, the proposed software framework has been successfully implemented atop of the
PCL library for handling, processing and visualizing the Velodyne LiDAR data. The future
development ideas have been presented and will be implemented in the near future.

DEVA Laboratory

40 O. Józsa and C. Benedek

References

[1] T. Luettel, M. Himmelsbach, and H.-J. Wuensche. Autonomous ground vehicles: Con-
cepts and a path to the future. Proceedings of the IEEE, 100(Special Centennial Is-
sue):1831 –1839, 13 2012.

[2] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.
International journal of computer vision, 13(2):119–152, 1994.

[3] N. Wojke and M. Haselich. Moving vehicle detection and tracking in unstructured
environments. In IEEE International Conference on Robotics and Automation (ICRA),
pages 3082 –3087, may 2012.

[4] A. Azim and O. Aycard. Detection, classification and tracking of moving objects in a
3d environment. In Intelligent Vehicles Symposium (IV), 2012 IEEE, pages 802 –807,
june 2012.

[5] B. Douillard, J.P. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and
A. Frenkel. On the segmentation of 3D LIDAR point clouds. In International Conference
on Robotics and Automation (ICRA), Shanghai, China, 2011.

[6] B. Douillard, A. Quadros, P. Morton, J.P. Underwood, M. De Deuge, S. Hugosson,
M. Hallstrom, and T. Bailey. Scan segments matching for pairwise 3d alignment. In
Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 3033
–3040, may 2012.

[7] A. Makadia, A.I. Patterson, and K. Daniilidis. Fully automatic registration of 3d point
clouds. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 1, pages 1297 – 1304, june 2006.

[8] J. Behley, V. Steinhage, and A.B. Cremers. Performance of histogram descriptors for the
classification of 3d laser range data in urban environments. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 4391 –4398, may 2012.

[9] A. J. Quadros, J. P. Underwood, and B. Douillard. An occlusion-aware feature for
range images. In IEEE International Conference on Robotics and Automation (ICRA),
pages 4428–4435, St. Paul, MN, USA, 2012.

[10] C. H. Shen, S. S. Huang, H. Fu, and S. M. Hu. Adaptive partitioning of urban facades.
In SIGGRAPH Asia Conference, pages 184:1–184:10, New York, NY, USA, 2011. ACM.

[11] R. Wang, J. Bach, J. Macfarlane, and F.P. Ferrie. A new upsampling method for
mobile lidar data. In Applications of Computer Vision (WACV), 2012 IEEE Workshop
on, pages 17–24. IEEE, 2012.

[12] A. Velizhev, R. Shapovalov, and K. Schindler. An implicit shape model for object
detection in 3D point clouds. In ISPRS Congress, Melbourne, Australia, 2012.

MTA SZTAKI

Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor 41

[13] X. Hu, X. Li, and Y. Zhang. Fast filtering of lidar point cloud in urban areas based
on scan line segmentation and gpu acceleration. IEEE Geoscience and Remote Sensing
Letters, 10(2):308 –312, March 2013.

[14] M. Magnusson. The Three-Dimensional Normal-Distributions Transform — an Ef-
ficient Representation for Registration, Surface Analysis, and Loop Detection. PhD
thesis, Örebro University, December 2009. Örebro Studies in Technology.

[15] P. Biber and W. Strasser. The normal distributions transform: A new approach to laser
scan matching. In IEEE International Conference on Intelligent Robots and Systems
(IROS), pages 2743–2748, Las Vegas, USA, October 2003.

[16] J. Han, D. Kim, M. Lee, and M. Sunwoo. Enhanced road boundary and obstacle
detection using a downward-looking LIDAR sensor. IEEE Transactions on Vehicular
Technology, 61(3):971 –985, march 2012.

[17] S. Thrun, M. Montemerlo, and A. Aron. Probabilistic terrain analysis for high-speed
desert driving. Proc. Robotics Science and Systems, Philadelphia, PA, USA, 2006.

[18] A. Petrovskaya and S. Thrun. Model based vehicle tracking for autonomous driving
in urban environments. Proceedings of Robotics: Science and Systems IV, Zurich,
Switzerland, 34, 2008.

[19] C. Stiller and J. Ziegler. 3d perception and planning for self-driving and cooperative
automobiles. In Systems, Signals and Devices (SSD), 2012 9th International Multi-
Conference on, pages 1–7. IEEE, 2012.

[20] W. Zhang. LIDAR-based road and road-edge detection. In Intelligent Vehicles Sympo-
sium (IV), 2010 IEEE, pages 845 –848, June 2010.

[21] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstruction. Visualization and Computer Graphics, IEEE
Transactions on, 5(4):349–359, 1999.

[22] A. Börcs and C. Benedek. Urban traffic monitoring from aerial LIDAR data with a two-
level marked point process model. In International Conference on Pattern Recognition
(ICPR), Tsukuba City, Japan, 2012.

[23] A. Börcs and Cs. Horváth. Városi környezet automatikus analízise és rekonstrukciója
légi lidar mérések alapján, 2011. TDK Dolgozat.

[24] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011.

DEVA Laboratory

Departments of the institute
http://www.sztaki.hu/departments/

3D Internet-based Control and Communications Laboratory,Cellular Sensory and Optical Wave Computing Laboratory
Computer Integrated Manufacturing Laboratory, Department of Distributed Systems, ELearning Department
Distributed Events Analysis Research Laboratory, Geometric Modelling and Computer Vision Laboratory

Informatics Laboratory, Internet Technologies and Applications Department, Laboratory of Parallel and DistributedSystems
Network Security Department, Research Laboratory on Engineering & Management Intelligence, Systems and Control Lab

MTA SZTAKI Computer and Automation Research Instititute
Hungarian Academy of Sciences

Kende utca 13-17 H-1111 Budapest (Hungary)
http://www.sztaki.hu

	Introduction
	Light Detection and Ranging
	LiDAR technology
	The Velodyne Sensor
	Technical parameters
	Scanning configurations

	Data

	Problem formation
	Related work
	Class segmentation
	Method
	Classes

	Results

	Point cloud registration
	Normal Distributions Transform
	Related work
	Registering raw data
	Results of our algorithm

	Towards higher level scene interpretation
	More precise object clustering
	Facade approximation with point clouds and triangle meshes
	Vegetation detection
	Traffic analysis
	Analyzing moving and static objects on merged point clouds
	Traffic sign detection

	Framework for displaying and processing data
	Development tools
	Point Cloud Library
	Boost library
	Doxygen

	Implemented framework
	Descrtiption of the framework
	Implementation details

	Output quality
	Processing speed
	Robustness

	Conclusion

