
Flexible and Efficient Distributed Resolution

of Large Entities�

András J. Molnár, András A. Benczúr, and Csaba István Sidló

Data Mining and Web Search Group, Informatics Laboratory
Institute for Computer Science and Control, Hungarian Academy of Sciences

{modras, benczur, sidlo}@ilab.sztaki.hu

Abstract. Entity resolution (ER) is a computationally hard problem of
data integration scenarios, where database records have to be grouped
according to the real-world entities they belong to. In practice these
entities may consist of only a few records from different data sources with
typos or historical data. In other cases they may contain significantly
more records, especially when we search for entities on a higher level of
a concept hierarchy than records.

In this paper we give theoretical foundation of a variety of practically
important match functions. We show that under these formulations, ER
with large entities can be solved efficiently with algorithms based on
MapReduce, a distributed computing paradigm. Our algorithm can effi-
ciently incorporate probabilistic and similarity-based record match, en-
abling flexible match function definition. We demonstrate the usability
of our model and algorithm in a real-world insurance ER scenario, where
we identify household groups of client records.

1 Introduction

Entity Resolution (ER) is the process of identifying groups of records that refer
to the same real-world entity. The process was described in several contexts under
many different names: duplicate detection, instance identification, heterogeneous
join, merge/purge, reference reconciliation, or object matching. Closely related
topics include clustering, similarity join, string similarity, data cleaning, data
warehousing, data integration and information integration.

In most cases, records are heterogeneous and erroneous and hence the map-
ping to hidden real-world entities is not straightforward. Structural and syntactic
heterogeneity originates mostly from the heterogeneity of source systems, differ-
ence in data handling policies, standards, and finally from low data quality due
to typos, missing values and other problems. ER can be therefore handled as a
data cleansing task, occurring in data integration scenarios often.

Entity resolution is an actively researched area, and the problem can be for-
mulated in many different ways. Input and output can be a set of records with
attributes, a set of XML documents or a graph. The algorithms can either pro-
duce exact results or probabilistic mappings. Match functions can be defined by

� This work was supported by the EU FP7 SEC project SCIIMS (Ref. 218223).

T. Lukasiewicz and A. Sali (Eds.): FoIKS 2012, LNCS 7153, pp. 245–264, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



246 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

exact rules, by similarities or by links between records. Results can be repre-
sented by record sets, by representative merged elements, or both. Training data
or entity activity log can be present. The architecture used to solve the prob-
lem can be distributed, can be a single database server, a standard standalone
computer or, for another example, a data mining framework.

Our main contributions are the following. We present an extended data model
and problem formulation based on indexable features that facilitate the formula-
tion of the given business logic, concentrating on match functions of independent
entity properties, and providing a framework for defining efficient indexes. Based
on the model we describe a scalable distributed algorithm for MapReduce. The
algorithm is able to scale up to hundreds of millions of records and copes with
large entities as well.

The rest of this paper is organized as follows. After giving an overview of the
related work, we describe a motivating insurance ER scenario and enumerate
issues of creating a client database. We formally define the ER problem in Sec-
tion 3 based on the concept of indexable features. Our distributed algorithm is
described in Section 5. Techniques to define indexable features for efficient res-
olution are described in Section 6. Finally, evaluation of the proposed methods
is given in Section 7.

1.1 Related Work

One of the first descriptions of record linkage appears in the influential pa-
per of Fellegi and Sunter [18] in 1969, describing a probabilistic model. Since
then, entity resolution problems have been studied in many different disciplines
and names. For overview, in [17] a survey is given on duplicate record detec-
tion, describing supervised, unsupervised and active learning, and summarizing
statistical and machine learning solutions based on various text similarity and
match measures. Recently the book [38] introduces key models, methods and
new trends from a more practical point of view.

Traditional deduplication approach uses similarity measures for attributes,
and learns when two records can be resolved to the same entity. A survey of string
similarity functions can be found in [17], along with a survey of basic duplicate
detection algorithms. In [20] a nice solution is presented for implementing string-
similarity joins using q-grams in an RDBMS environment.

ER can be handled as a supervised learning problem, if training data is
present. We can apply data mining classification methods, for example Bayes
methods [23,18], decision trees [31] or SVM [7,11]. Unsupervised learning meth-
ods such as latent Dirichlet allocation [3] or clustering methods can also be used,
if there is no training data. An interesting approach lying between the previous
two is called active learning: when a small set of training data is given, the al-
gorithm decides the new elements it could use the best to extend the training
set ([34]). An automated training data selection method is described in [28].
Recently, [10] shows that cost sensitive alternating decision trees are practical
for industrial applications weighting type I and II errors, while producing easily
interpretable models.



Flexible and Efficient Distributed Resolution of Large Entities 247

ER is formalized many times as generating clusters of linked records. In the
citation database scenario, with the goal of identifying authors, we do not really
have author attributes other than their names. We can however link these records
by joint papers. This way ER can be seen as a special problem of link-mining; a
survey containing link based entity resolution can be found in [19]. The approach
is called relational ER, based on the relations between records, or collective ER,
because we would like to resolve records based on the link graph as a whole.

Entity resolution as a hypergraph clustering problem can be found in [4],
under the name of relational clustering. Input data is handled as a reference
graph, with nodes as entity records and edges as links between these nodes. The
goal of the resolution process is to produce a resolved entity graph, where nodes
are entity instances that hold entity records together. Clustering is also suggested
[24]; however, general clustering methods are usually designed for larger and less
number of clusters than records of entities in ER.

A seminal paper, [2] (published first in 2005) introduces generic entity reso-
lution with black-box match and merge functions, where resolution means the
closure of the original entity set according to these functions. Simple feature
indexes are also used. The model and the algorithms are extended in [32] for
handling approximate results as records with confidences. [1] adapts the algo-
rithms to a distributed environment. Our generic ER algorithms for relational
databases were published in [35].

Other interesting approaches to ER include utilizing aggregate constraints [9],
or giving methods for query time ER [5]. In [6] a unified model is suggested for
entity identification and document categorization. [43] widens the coreference
problem with schema matching and canonization, and provides a unified model.
The role of cross-field dependencies is described in detail in [22].

Recently, several new ER results were published. A new approach can be found
in [44]: entity behavior is recorded as a transactional log. Common patterns of
these transactions are used to identify similar or identical entities. Measuring
the quality of entity resolution results is a crucial problem [33], dealing with
possible quality metrics. [41] enhances core ER algorithms by combining the
results of different blocking strategies. [21] exploits the role of constraints when
finding duplicates. [40] deals with the effect of match/merge rule evolution, and
gives methods to preserve results when rules change. [14] builds special inverted
indexes to speed up ER with blocking. A survey of indexing techniques available
for deduplication is provided in [12], including blocking, sorted neighborhood,
Q-grams and canopies.

Entity resolution frameworks including SERF, MTB, DDUpe and MARLIN
(see [29] for a survey) integrate several variations of the problem formulation in
effective systems. A practical comparison of ER approaches can be found in [30]
using the FEVER framework. The Febrl framework also provides parallelization
[13]. Other parallel algorithms are presented in [26], tested on a few thousands
of records. More recently [27] introduces parallel match and a distributed infras-
tructure, using similarity-based matchers.



248 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

In [36] we studied how efficient indexing methods can be used to speed up the
ER process. Our first results on scalable parallel ER were published in [37].

2 Motivating Example

Companies typically face the entity resolution problem when building a client
database, or manage client master data. Clients may appear multiple times in
multiple source systems, e.g. a record for a contract, another for a purchase. As
another example, the same person may appear in several marketing databases
obtained by different means. ER is the key step in producing sound and clean
client master data.

Our motivating application is the client data integration of several insurance
source systems at AEGON Hungary Insurance Ltd.1 The ER problem comes
into sight during the construction of a client data mart over legacy systems that
remained independent of each other for operational reasons during merges and
ownership changes.

Client records may consist of attributes, both of persons (birth data, tax and
social security numbers, postal address, etc.) and of organizations (client ID,
contract number). Attribute values are often missing or erroneous, and some
attributes change in time (name, postal address).

In addition to finding records of clients, another useful ER task is to find
household entities. The use of households enable efficient marketing and a better
knowledge of clients. The task requires however more complex match strategies,
using for example postal addresses or phone numbers to deduce relationships
between clients. Furthermore, household entities contain more records in average
than usual ER subjects: usually more than one client belongs to a household.

Match between records might be based on pairwise equality of one or more at-
tributes. There are cases, however, when the definition of match is more
complex. Some of the attributes might refer to the same concept with possible
cross-matches (e.g. home address and postal address, general phone number and
mobile phone, or a name and a maiden name). There might be frequent, dummy
phone numbers or incomplete addresses that produce false merges unless we can
use some filtering, for instance, based on frequencies in a probabilisticmodel. Some
records might be ambiguous and belong to more than one entity at the same time.
Some of the overlapping entities might bemerged, some othersmight be not, based
on the desired match logic of the actual entity resolution task.

Figure 1 depicts such an overlapping situation. Nodes represent data records,
containing customer names and addresses with edges showing the match rela-
tionship. Sets correspond to discovered households as entities. The two examples
demonstrate that the match logic in such a case must be more explicitly defined
and is not implied by the pairwise matches alone: the entities on the left can be
merged while on the right not.

1 AEGON Hungary has been a member of the AEGON Group since 1992, one of the
world’s largest life insurance and pension groups, and a strong provider of investment
products.



Flexible and Efficient Distributed Resolution of Large Entities 249

Fig. 1. An example of overlapping entities

In the first case the married name is different from the maiden name. Record
r1 contains maiden name only, while r2 the current name and r3 both names.
Other attributes might also be equal, giving enough confidence for match except
between r1 and r2 due to the lack of a common name. In this case, we can
conclude that these three records belong to the same person and hence, the
same household, so the records can be unified as a single entity.

In the second case we see the addresses of the same person with the address of
the parents in r1 and of the husband in r2. We have two overlapping households:
one with the parents and another, distinct one with the husband. In such a case,
the three records can not be unified.

This simple match pattern demonstrates the motivation behind considering
the entities as record sets instead of single representative records and the match
relation to be defined over the sets instead of record pairs only. More complex
match logic can be treated in this way, as well. In the following, we give a
more general model, which can serve as a basis for different entity resolution
approaches, one of them being the reachable subset model we introduce later.

3 Problem Formulation

3.1 The General Model

Let a set of records be R = {r1, r2, ...rm}, where each rj is described by its
k attribute values arj1, . . . , arjk such as ID, name, address etc. Each record
has the same k number attributes. Some attribute values may be missing, e.g.
we may not know the e-mail address of customer j, that we denote by arj� = ∅
(NULL value).

More formally, for a fixed k and for each i ∈ [1..k] the ith attribute is a
function a·i : R → DOM∗

i = DOMi ∪ {∅}, where DOMi can be any set as the
attribute domain. a·i(r) is denoted as ari for simplicity.

For a general formulation of our problem we introduce a partial algebra with
a binary merge operation 〈·, ·〉 over R and a binary match relation ∼:

E = (E, 〈·, ·〉,∼)

The base set E of this partial algebra is called the set of entities. The algebra
is generated by a subset R ⊆ E called the record set R.



250 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

The match relation ∼ is a general construct on entities, and might be defined
arbitrarily. In practice it is defined according to the actual entity resolution task,
and is based on or related to the attributes of records. We introduce features as
a practical way to define entity matching in Section 4.

The base set E is generated by R, i.e. we may define

E0 = R, Ei = Ei−1 ∪ {〈x, y〉|x, y ∈ Ei−1 ∧ x ∼ y}, E =

∞⋃

i=0

Ei.

Let the entity resolution ER(E) be the null elements of E, i.e. the set of
all “maximal” elements of E that cannot be extended by merging matching
elements:

ER(E) = {x ∈ E | ∀y ∈ E : (y ∼ x ⇒ 〈y, x〉 = x) ∧ (x ∼ y ⇒ 〈x, y〉 = x)}
The base set E is not necessarily finite and maximal elements may also be
generated by applying the 〈, 〉 operator infinitely many times. This may happen
if we concatenate values of the attributes without removing duplicates, growing
attribute values longer and longer.

As another example, E may not contain null elements at all, i.e. there may
be no maximal, non-extendible entities in the data. A (cyclic) group is clearly
an algebraic example; the corresponding ER task keeps the most recently added
attribute value a1 of x1 and a2 of x2 when defining 〈, 〉. In this case

〈. . . 〈〈〈x1, x2〉, x1〉, x2〉 . . . xi〉 (1)

is equal to the last element xi = x1 or x2 of the expression.
Different algebras may result in different models of entity resolution. For in-

stance, the model used by [2] corresponds to the setting E ⊆ ×k
i=1DOM∗

i , so
that the merge operation maps to single, unified representative records. It also in-
troduces the Swoosh algorithm and the so-called ICAR conditions for the merge
operation and match relation to make sure the algorithm works correctly.

The definition for ER above, as shown by the examples, is too general for
practice. Next we introduce further constraints to reduce the complexity of the
general ER problem.

3.2 The ICAR Conditions and Their Limitation

The ICAR conditions of [2] are considered a standard definition of the entity
resolution problem. After giving the definition we will show that the fourth
representativity condition is too strong and introduces inflexibility for practical
applications, especially if entity boundaries are not sharp and may overlap.

Idempotence: For all r, r ∼ r and 〈r, r〉 = r. A record always matches itself,
and merging it with itself still yields the same record.

Commutativity: For all r1, r2, r1 ∼ r2 iff r2 ∼ r1, and if r1 ∼ r2, then
〈r1, r2〉 = 〈r2, r1〉.



Flexible and Efficient Distributed Resolution of Large Entities 251

(Weak) Associativity: For all r1, r3 ∈ R and X ∈ E such that 〈〈r1, X〉, r3〉
and 〈r1, 〈X, r3〉〉 exist, 〈〈r1, X〉, r3〉 = 〈r1, 〈X, r3〉〉. This constraint is required
for records X only in [2].

Representativity: If r3 = 〈r1, r2〉, then for any r4 such that r1 ∼ r4, we also
have r3 ∼ r4.

Representativity is too strong in that it does not allow overlapping entities. In the
example of households, we may however have a household consisting of a person
with parent and another distinct one with spouse, a practically important case
of overlapping entities.

Although the original paper [2] defines the third property as associativity, it
is in fact weaker than the usual definition that also requires the existence of
〈r1, 〈r2, r3〉〉, whenever 〈〈r1, r2〉, r3〉 exist. The stronger version of associativity
does not hold in practice either, since r1 may share an attribute with r3 but may
be distinct from r2. In the example of Fig. 1, r1 may not be similar to r2 while
〈〈r1, r2〉, r3〉 may exist and correspond to the person as an entity.

Also note that Idempotence and Commutativity implies the reflexivity and
symmetry of the ∼ relation. Note that if associativity is further strengthened to
imply transitivity, the match relation becomes an equivalence of the records.

Instead of associativity and as a weaker version of representativity, a better
motivated definition that can be easily checked over the example of Fig. 1 is

〈X, r2〉 ∼ r3 implies either X ∼ r2 and 〈〈X, r2〉, r3〉 = 〈X, 〈r2, r3〉〉, or (2)

X ∼ r3 and 〈〈X, r2〉, r3〉 = 〈r2, 〈X, r3〉〉.

Under the additional constraints in the next section, the definition in (3) is
equivalent to weak associativity. For this reason, we give no motivation for weak
associativity, simply use as a notion from [2].

3.3 The Accessible Subset Model

For our algorithms, we introduce the accessible subset model as an alternative
approach, which allows us to relax some of the ICAR conditions. Our model will
have a similar but weaker implication to form representative merged elements:
as in ICAR, the merge operation is simply the union of record sets. The con-
cept below is hence is a weaker version of the representativity from the ICAR
properties in [2].

For X ∈ E, let rank (X) be the minimum number of generator elements R,
with multiplicities, needed to generate X . We define the accessibility property
similar to [8] as follows:

∀X ∈ E∃r ∈ R, Y ∈ E with rank(Y ) < rank(Y ) such that X = 〈y, r〉. (3)

We extend the absorption property

〈〈r1, r2〉, r1〉 = 〈r1, r2〉 (4)



252 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

and define strong absorptivity: if two elements of E are generated by the same
set of records R, then they are equal.

By the above requirements, the elements E of the partial algebra becomes a
partial lattice of records and henceforth we may simply consider subsets of R
instead of general expressions generated by R:

Theorem 1. If (E, 〈·, ·〉,∼) is idempotent, commutative, weak associative, ac-
cessible and strong absorptive, then E is in bijection with 2R (subsets of R) and
if 〈·, ·〉 exists, then it is equal to the set union.

Proof. We only have to show that every X ∈ E can be generated as

〈. . . 〈〈ri1 , ri2〉, ri3 〉 . . . , rik〉
using every generator at most once. Let us take the lowest rank counterexample
X and use reachability to get X = 〈Y, r〉. If r appears in the description of Y
using every generator at most once, then X = Y by absorption and hence X is
not a counterexample. Otherwise 〈Y, r〉 is the required form of X .

Absorptivity is a natural constraint that basically requires the attributes of a
merged record be formed as the union of the original values. Note that it is easy to
give examples with no absorption, for example the one in Section 3.1 that always
keeps the attribute of the most recently merged record only. It remains an open
question to find the weakest possible definition of absorptivity for Theorem 1 to
hold. The condition in equation (4) is insufficient since if we merge four records
in two different order, their equality will not be guaranteed.

Reachability is a frequent requirement for set systems. It is easy to construct
counterexamples when the confidence of two entities belonging to the same
household reaches the threshold to unify them only after several duplicates of
each entity are merged by correcting and filling their attributes. However our
algorithm is not capable of solving the general problem with no reachability.
Here additional, weaker constraints may be necessary to extend our method.

3.4 Entity Closure: Towards an Efficient Algorithm

Towards solving the general entity resolution problem with the constraints as in
Theorem 1, we introduce the concept of entity closure by basically imposing an
additional weak transitivity constraint on the match relation.

The entity closure for an entity resolution problem formulated by E =
(2R,∪,∼) is defined by E∗ = (2R,∪,∼∗) where ∼∗ is the transitive closure of
∼. The entity resolution for the closure is an upper bound for the solution of
the original entity resolution problem and can be generated by computing the
maximal connected components of the graph defined by (R,∼ |R×R).

Given the entity closure, the solution of the original entity resolution prob-
lem can be reached by post-processing, i.e. by separating larger entities. We will
first compute the transitive closure in an efficient scalable distributed way that
provides an upper bound for non-transitive cases for post-processing. The ratio-
nale of the algorithm is that in real data, most matches have minor number of



Flexible and Efficient Distributed Resolution of Large Entities 253

non-transitive instances, but some of the entities in the closure have to be split,
e.g. when an ambiguous record belongs to more than one entities. Computing by
closure followed by post-processing can be done efficiently, provided the entities
in the closure are small.

4 Features

The entity match relation can be defined in many ways. In its simplest form,
we may match entities with identical attribute values. For example, two client
entities can be merged if we find two identical social security numbers or id
card numbers. In such a case, match between record sets can be generated from
match between record pairs: If two records can be connected through pairwise
matches, then these two records belong to the same entity. Two entities match,
if they have a matching record pair.

As shown in the example of Fig. 1, we may not necessary want to merge
entities with just a few equal attributes but instead assign confidence thresholds
that may result in overlapping entities. In this case the match relation generated
by the record pairs forms an upper bound of the original match relation as in
Section 3.4.

Next we give a formal but practical model to express a match relation using
features that suits our distributed algorithm well. We distinguish three aspects
of a feature. These three aspects can be independently formulated, and can be
built around domain knowledge.

First, we isolate properties of entities based on attributes of records (eg. the
birth date and maiden name pair of a client). Let a feature be an E → X
function f , where X is an arbitrary set. Elements of X represent discriminating
and independent properties of an entity, and can be for example numbers, strings
or any data structures (eg. arrays of strings).

Note that the value of a feature can be a set or a single value, e.g. the ’name’
feature may keep both current name and maiden name of a person record if
they differ, resulting a 2-element set of feature values; or we can define it as a
single value by concatenation of the two strings using a separator; or we can keep
only one of the two. The situation is similar for non-singleton entities arising by
merging records. The definition of feature f can be extended simply as the set
union: f(x ∪ y) = f(x) ∪ f(y). Other feature definitions may involve minimum
or maximum, e.g. f(x ∪ y) = min{f(x), f(y)}.

Second, let a feature-based match function be an X ×X → {true, false}
partial function, where X is a set of feature values. It must be reflexive and
symmetric but not necessarily transitive. We denote the match function of a
given f feature as ∼f . The match function is defined only for the values the
feature maps to. If we use multiple features, the unified feature-based match
function is defined as a disjunction. For some feature set f1, ...fk and entities
e, e′ ∈ E:

e ∼f1,...,fk e′ ⇔ e ∼f1 e′ ∨ e ∼f2 e′ ∨ ... ∨ e ∼fk e′.



254 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

Algorithm 1. Feature-based ER by Map-Reduce

input: Entity set E over a distributed file system.
output: E′ = ER(E)

1: for all features fi do
2: sort all r ∈ E records by representative values repi(r)
3: for all representative values repi(r) of r ∈ E do
4: for all pairs of records r, r′ with repi(r) = repi(r

′) do
5: if fi(r) ∼i fi(r

′) then
6: write (ID(r), ID(r′)) to graph G
7: Map-Reduce connected components(G)
8: sort records by component ID and merge groups of identical ID

The third aspect of a feature is indexability. To ensure the efficient compu-
tation of feature-based matches, we expect features and their match functions
to be indexable. Let the feature mapping function of a feature f be a par-
tial function repf : X → 2O with some ordered set O. The mapping produces
representative elements used to index the entities, to produce match candidates.

The goal is to construct feature mappings that produce identical elements for
matching entities by that particular feature. For indexable features a feature
mapping can be constructed so that all entity e′ matching a given e by ∼f can
be found through the equality of representative values:

∀e, e′ ∈ E, e ∼f e′ ⇒ ∃o ∈ O : o ∈ repf (f(e)) ∧ o ∈ repf (f(e
′)).

Constructing indexable feature mappings is not always easy and may involve
similarity indexes. In a similarity index, entities may have many representative
values. For example, string similarity can be indexed by n-grams, or by the words
they contain, based on the given similarity function.

5 Distributed Algorithm

Next we modify our existing distributed algorithm published in [37]. It is based
on Hadoop [42], an open source implementation of the Map-Reduce framework
[16]. The following version solves the entity closure problem based on indexable
features.

The algorithm works in two rounds. The first round, Algorithm 1, iterates
through all features. For each, it sorts attribute values and records all potential
matches in a graph file. Then the connected component Algorithm 2 is called that
assigns a component ID to all records. Finally, the last line of the main algorithm
merges all records with the same ID. In this step, additional split heuristics can
be implemented to undo some of the unnecessary merges if necessary.

In Algorithm 1 we assign IDs to records as follows. If there are entities that
consist of more than one record at start, we split it into two records, both with
the same ID.



Flexible and Efficient Distributed Resolution of Large Entities 255

Algorithm 2. Map-Reduce connected components

input: Graph G of record IDs.
output: Component ID for all record IDs.

1: sort G to form sequences Si = {i, IDi, list of edges (i, j)}
2: change = true
3: while change = true do
4: change = false
5: Map:
6: for all IDs i do
7: for all IDs j with (i, j) ∈ Si do
8: emit IDi to reducer j
9: emit entire Si to reducer i
10: Reduce:
11: for all reducers j do
12: ID′ = min of all ID values received
13: if ID′ < IDj then
14: change = true
15: replace IDj by ID in Sj

16: write Sj

We describe the connected component Algorithm 2 in detail. The algorithm
implements the matrix multiplication based all-pairs reachability algorithm of
[15, Section 25] in a way similar to [25]. Two ingredients are the reduction of the
problem to iterated matrix multiplication with a modified associative operation
and the implementation of the matrix operation over Hadoop. For the first, let
us replace addition by the minimum function and let

IDj = min(IDj,mini:(ij)is an edge (IDi)). (5)

In iteration s, this method selects the minimum value in the s step neighborhood
of every record. If we record the fact that some IDj decrease in an iteration then
we can terminate if there is no change.

Finally we show how to compute the matrix-vector multiplication type step
of 5 by Map-Reduce. Starting at line 5, mapper i sends its current ID to reducer
j for all edges ij in the graph to prepare the data needed to compute 5. In
addition, reducer j starting in line 10 must write data Sj suitable for the next
matrix-vector multiplication iteration. In addition to IDj, this Sj must contain
the edges out of record j. For this purpose, mapper i sends its entire data Si to
reducer i, completing the description of the algorithm.

The running time of the algorithm is O(�(n log n)/t) for � features over t
servers and O(sn/t) for connected components over t servers where s is the size
of the largest component.



256 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

6 Examples of Indexable Features

Within the framework of features, a variety of match relations can be formulated,
starting with the simplest equality based match towards more complex match
relations of more than one attributes, similarity-based heuristics or probabilistic
decisions. In the following we show how match relations can be developed for the
given entities and business problem that enable efficient indexing and algorithm
scalability.

Equality-based Match Functions. The simplest way to define features is to rely
on attributes with equality. In this case attribute values can be used as repre-
sentative values too, enabling efficient candidate generation: all candidate pairs
match, and all matching pairs will be candidates.

Match Functions with Multiple Attributes. Combining multiple attributes to
form a feature is an obvious next step. The simplest case is to concatenate the
two attribute values, and then treat the concatenation as a simple attribute, used
both for match functions and for feature mappings. Arbitrary features and match
relations can be however defined freely on the attributes. The only restriction is
that feature mappings have to be designed carefully not to miss potential record
matches.

Note that sets of attributes may represent the same concept and hence form a
single feature. For example, it is a common case to store multiple phone numbers
for clients – a general phone number, a cell and a home phone. A common phone
feature does not distinguish between these attributes, equality of any phone
numbers may mean an entity match. Such attributes can be represented by and
mapped to themselves, resulting in more than one representative element for one
record.

Probabilistic Match Functions. ER tasks are always interpreted in an uncertain
environment, even if we define exact rules. The main ER problem arises from
the fact that observations of real world entities are erroneous and vague in some
sense. Therefore, entity resolution based on exact rules is not flexible enough;
probabilistic models for these uncertain statements are preferred.

Besides the plain database of entity records, a-priori knowledge may be avail-
able to improve ER quality. For example, we may have information on distri-
butions of attribute values or cardinalities of entity groups. Similarity measures
shall consider statistical properties of the given entity set: two records having
the name “John Smith” match with lower probability than two having “Dunstan
Everitt”. For an other example, the phone number “+36 20 222 2222” is valid,
and two records having these numbers can be matched. However, if we look at
the frequency of this particular number in our database, it turns out that this
number is outstandingly common. It is used when a phone number has to be
given, but the client does not provide it. Using the frequency information these
matches can be avoided. The external information should be incorporated into
the ER model or represented as extra attributes.



Flexible and Efficient Distributed Resolution of Large Entities 257

In the following we inspect events where we take two records, r1 and r2 of some
hidden real-world entities e1 and e2. We think of record matching as assigning a
probability to the hypothesis “r1 and r2 describe the same entity (e1 = e2)”. We
incorporate in our model external knowledge as prior probabilities, and expert
knowledge as probability estimations.

For a given attribute a, let records r1, r2 take the values a1 and a2 – we
denote these events as a1 and a2 for short. Our main goal is to provide a sound
estimation for P (e1 = e2 | a1∩a2). We expect events a1 and a2 to be independent.
Using Bayes’ formula,

P (e1 = e2 | a1 ∩ a2) =
P (a1 ∩ a2 | e1 = e2)P (e1 = e2)

P (a1 ∩ a2)
=

=
P (a1 ∩ a2 | e1 = e2)P (e1 = e2)

P (a1)P (a2)
.

In Algorithm 1 the estimated probability above is used to decide matches: All
pairs above a given threshold are matching pairs.

P (e1 = e2) is a constant value, and can be estimated by the help of domain
knowledge. For example, if we are looking for clients in a database of client
records, and the domain expert states that the company have n clients all having
approximately the same number of records, then this probability is 1/n2.

We have prior knowledge for P (a1) and P (a2) too: a good estimation can be
given using the distribution of attribute values. For example, the given name
“John” is be more probable than “Everitt”.

The most interesting part is P (a1 ∩ a2 | e1 = e2). That is, if we assume that
the two records belong to the same real world entity, then what is the probability
of having the given attribute values. For strict equality-based matching, we can
say that this probability is zero if the attributes are not equal. More advanced
heuristics can also be built, for example, it is a common case for postal addresses
to build decision trees based on the parts of the address. Or, we can incorporate
the probability of typos. If we have training data, then classifiers can also be
trained to learn the probabilities.

Probabilistic Match Functions with Multiple Attributes. Probabilistic match can
be extended to handle more than one attribute. Again, we take two records, r1
and r2 of some hidden e1 and e2 real-world entities. Now we use not only an a, but
a b attribute with values b1 and b2 (with the same notion for the corresponding
events). Using the Bayes’ formula and supposing the independence of a and b
events,

P (e1 = e2 | a1 ∩ a2 ∩ b1 ∩ b2) =
P (a1 ∩ a2 ∩ b1 ∩ b2 | e1 = e2)P (e1 = e2)

P (a1 ∩ a2 ∩ b1 ∩ b2)
=

P (a1 ∩ a2 | e1 = e2)P (b1 ∩ b2 | e1 = e2)P (e1 = e2)

P (a1)P (a2)P (b1)P (b2)
.



258 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

Probabilistic Match Functions and Missing Values. We must consider the se-
mantics of null (∅) values to decide how they should be treated. In the prob-
abilistic model we can incorporate semantic and domain knowledge about null
values.

As an example, we consider two attributes as in probabilistic match with
multiple attributes. It can be generalized to more attributes as well. Since the
case is symmetric regarding a and b as well as r1 and r2, the following relevant
cases can occur:

1. One attribute is null in both records: a1 �= ∅, a2 �= ∅, b1 = b2 = ∅
2. One attribute is null in only one of the records: a1 �= ∅, a2 �= ∅, b1 �= ∅, b2 = ∅
3. Each attribute has a null in one of the records: a1 = ∅, a2 �= ∅, b1 �= ∅, b2 = ∅
Adapting the Bayes formula for the above cases can be based on the principle
that the null value can mean any value and we have no observation (event) on
that value. The most interesting Case 2 can for example be written as follows,
assuming independence:

P (e1 = e2 | a1 ∩ a2 ∩ b1) =
P (a1 ∩ a2 ∩ b1 | e1 = e2)P (e1 = e2)

P (a1 ∩ a2 ∩ b1)
=

P (a1 ∩ a2 | e1 = e2)P (b1 | e1 = e2)P (e1 = e2)

P (a1)P (a2)P (b1)
.

If we take the strict equality case, i.e. the value b of the real-world entities e1 and
e2 the data records refer to must agree if they are equal, then the probability of
data record r2 (with a null value on b2) referring to the same entity as record r1
is the probability of the real value b of entity e2 behind the missing observation
b2 is the same as the observed b1 value. Therefore, P (b1 | e1 = e2) = P (b1) and
the above formula becomes similar to the one-attribute case. This matches our
common-sense assumption that having a value for an attribute b in record r1 is
irrelevant if the same attribute in r2 is unknown.

Probabilistic Match Functions using Similarities. Estimation of P (a1∩a2 | e1 =
e2) in the probabilistic match model can be facilitated by similarity metrics
between a1 and a2, for example, edit distance, Soundex or stemming and token
similarities of a client name.

Without going into details, we note that it is not straightforward to construct
a feature mapping for similarity-based probabilistic match functions. For edit
distance, as the most popular choice in a wide spectrum of applications, n-gram
indexing enables finding all matching pairs above a given similarity threshold.
N-grams may result however in too many representative elements and inefficient
indexing. As an other example, [45] defines mappings from string space to integer
space to support similarity-based string search; these methods can be applied
when building feature mappings.

7 Experiments

Experiments were performed on 15-server Linux farms containing identical dual
core 3 GHz Pentium CPUs, 4 GB of main memory. Software versions were Sun



Flexible and Efficient Distributed Resolution of Large Entities 259

Java 1.6 and Hadoop 0.20.3. We configured Hadoop to use all available internal
memory. The largest data sets do not fit in the memory of one node but still fit
in the entire 15× 4 GB of the cluster.

The data set is provided by AEGON Hungary Insurance Ltd. containing ap-
proximately 13 million client records. Records consist of both personal attributes
(names, birth data, tax number, etc.), internal identifiers, postal addresses and
phone numbers. The data set can be considered as a snapshot of clients; the
newest available attributes are contained for all records if the source system
supports historical data. The size of the input with a rich set of attributes is
around 3 GB in a flat CSV file.

We used random sampling to obtain smaller subsets. We also used selection
heuristics to influence the count of records per client and per household. For
example, selecting all records for the family name ‘Smith’ instead of a random
sample will increase the match count. We created larger data sets by replication
and random permutation. In each replica, we added a version tag to all attributes
so that the original structure of matches was preserved by replica but no new
matches were introduced between replicas. For edit-distance-based match we
shifted the codes of characters in the strings by constant values.

7.1 Features and Candidate Generation

Personal features that enable finding records of the same people were used in all
settings. Postal address and phone numbers were used only for household identi-
fication. We applied equality-based match on personal attributes or on attribute
combinations, with the attributes themselves used for indexing in most cases.

The following features were used:

fp name & maiden name, birth date, mother name
fs social security number
fx tax number

fc1, fc2 source system-specific codes
ft phone number & mobile phone number

f b1
t , f b2

t phone number(s) in two different probabilistic models
fa full postal address
ff
a postal address (index) with family name

fa1 postal address up to house number

ff
a1 postal address up to house number (index) with family name
fa2 postal address up to street and postal code

Multi-attribute features are indexed by string concatenation of attributes.
Probabilistic phone number features are for avoiding false merges by frequent
dummy phone numbers. Combined features with postal address and family name
are indexed by postal address. Since each record contains two postal address
attributes, these are merged into one address-related feature, just as phone and
mobile phone numbers into another.



260 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

For experiments 1–9, we used the following feature combinations:

Features → personal data phone address-related

Case ↓ fp fs fx fc1 fc2 ft f
b1
t f b2

t fa ff
a fa1 ff

a1 fa2

1 • • • • •
2 • • • • • •
3 • • • • • •
4 • • • • • •
5 • • • • • • •
6 • • • • • • •
7 • • • • • • •
8 • • • • • • •
9 • • • • • • •

The resolved entities correspond to persons (clients) in cases 1–4, and house-
holds in cases 5–9.

7.2 Scalability

Previous work that we are aware of assume only 10 to 100 thousand records
as input. To give an example, in [27] a distributed algorithm is described with
similarity-based match, tested on 114 thousand records. Algorithms of [39] were
tested closest to our database size with 10 million records.

As also shown in [37], our MapReduce ER algorithm is scalable to hundred
millions of records. Figure 2 demonstrates the running times on the client data
set, solving the ER problem of clients. We applied the 1st feature combination
of Section 7.1, not using the address and phone number attributes, and using
strict attribute equality-based feature match.

Figure 2 also provides an inaccurate, but useful overview of several ER algo-
rithms on client data, namely the following:

– Java-F-Swoosh: a Java implementation of the best previously known generic
entity resolution algorithm (F-Swoosh [2]),

– DB-GER: our best relational entity resolution algorithm, based on a com-
mercial relational database (see [35]),

– index-ER-BDB: our best efficient indexing algorithm built on Java and
Berkeley DB (see [36]),

– MapReduce: our best distributed ER algorithm using 15 computer nodes
and Hadoop implementation.

We implemented these conceptually different ER algorithms in more or less
different environments, therefore the comparison is not entirely correct. Never-
theless, the superiority of the MapReduce algorithm is clearly visible.



Flexible and Efficient Distributed Resolution of Large Entities 261

Fig. 2. Scalability of different entity resolution algorithms

7.3 Features and Entity Sizes

To find all households contained in the data set we used the different feature
combinations of Section 7.1. Figure 3 shows how execution time increases with
average entity size. The algorithm still seems to be useful when relatively large
entities are generated, containing 5-6 records in average, which is much more
than our motivating problem of households require.

Fig. 3. Running time of the distributed algorithm with different entity sizes

Figure 4 shows the entity size distribution for one of the cases, when house-
holds are generated so that the last part of the address (the unit number inside a
house) is omitted. This case corresponds the longest execution process shown in
Fig. 3. The input contains 13.3M records and the total number of output entities
is about 2.9M.



262 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

Fig. 4. Distribution of the number of entities and their sizes (households based on
partial address)

8 Conclusions and Future Work

In this paper we introduced a generalized theoretical approach and the the ac-
cessible record subset model to formulate entity resolution problems in a flexible
way. We gave a framework to define probabilistic and similarity-based match
relations. We showed that resolution of large entities can be efficiently solved by
a scalable distributed algorithm. We demonstrated the usability of our methods
by identifying households of insurance client records.

There are several important areas of research to pursue. One issue is how to
switch from similarities to probabilities. Several similarity metrics and indexing
methods for similarity searches can be found in literature. The methods working
efficiently with our distributed algorithm and also feasible for domain experts
have yet to be found.

Another issue is the potential use of probability values. Overlapping or
density-based clustering of records may describe the entities of the given business
problem better. Therefore, it would be profitable to use the probability values
generated when matching record pairs, as weights for the edges of the record
graph.

Acknowledgments. To András Vereczki and Zoltán Hans as domain experts
on the AEGON Hungary side for discussion on the problem formulation and
clarification of the user requirements.

References

1. Benjelloun, O., Garcia-Molina, H., Gong, H., Kawai, H., Larson, T.E., Menestrina,
D., Thavisomboon, S.: D-Swoosh: A family of algorithms for generic, distributed
entity resolution. In: Proc. 27th Int. Conf. on Distributed Computing Systems
(2007)



Flexible and Efficient Distributed Resolution of Large Entities 263

2. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom,
J.: Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255–276 (2009)

3. Bhattacharya, I., Getoor, L.: A Latent dirichlet model for unsupervised entity
resolution. In: SIAM International Conference on Data Mining, pp. 47–58 (2006)

4. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
Trans. Knowl. Discov. Data 1(1), 5 (2007)

5. Bhattacharya, I., Getoor, L., Licamele, L.: Query-time entity resolution. In: Proc.
12th ACM SIGKDD, pp. 529–534 (2006)

6. Bhattacharya, I., Godbole, S., Joshi, S.: Structured entity identification and doc-
ument categorization: two tasks with one joint model. In: KDD 2008: Proceeding
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 25–33. ACM, New York (2008)

7. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string sim-
ilarity measures. In: Proc. 9th ACM SIGKDD, pp. 39–48 (2003)

8. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Efficient Closed Pattern Mining in
Strongly Accessible Set Systems (Extended Abstract). In: Kok, J.N., Koronacki,
J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD
2007. LNCS (LNAI), vol. 4702, pp. 382–389. Springer, Heidelberg (2007)

9. Chaudhuri, S., Sarma, A.D., Ganti, V., Kaushik, R.: Leveraging aggregate con-
straints for deduplication. In: SIGMOD 2007, pp. 437–448. ACM (2007)

10. Chen, S., Borthwick, A., Carvalho, V.R.: The case for cost-sensitive and easy-to-
interpret models in industrial record linkage. In: 9th International Workshop on
Quality in Databases (2011)

11. Christen, P.: Automatic record linkage using seeded nearest neighbour and support
vector machine classification. In: KDD 2008, pp. 151–159. ACM (2008)

12. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. In: IEEE TKDE preprint (2011)

13. Christen, P., Churches, T., Hegland, M.: Febrl – A Parallel Open Source Data
Linkage System. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS
(LNAI), vol. 3056, pp. 638–647. Springer, Heidelberg (2004)

14. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time entity
resolution. In: CIKM 2009, pp. 1565–1568. ACM (2009)

15. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press (2001)

16. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

17. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey.
IEEE TKDE, 1–16 (2007)

18. Fellegi, I., Sunter, A.: A theory for record linkage. Journal of the American Statis-
tical Association 64(328), 1183–1210 (1969)

19. Getoor, L., Diehl, C.: Link mining: a survey. ACM SIGKDD Explorations Newslet-
ter 7(2), 3–12 (2005)

20. Gravano, L., Ipeirotis, P., Jagadish, H., Koudas, N., Muthukrishnan, S., Srivastava,
D.: Approximate string joins in a database (almost) for free. In: VLDB, pp. 491–500
(2001)

21. Guo, S., Dong, X.L., Srivastava, D., Zajac, R.: Record linkage with uniqueness
constraints and erroneous values. Proc. VLDB Endow. 3, 417–428 (2010)

22. Hall, R., Sutton, C., McCallum, A.: Unsupervised deduplication using cross-field
dependencies. In: KDD 2008, pp. 310–317. ACM (2008)



264 A.J. Molnár, A.A. Benczúr, and C.I. Sidló

23. Han, H., Xu, W., Zha, H., Giles, C.: A hierarchical naive Bayes mixture model
for name disambiguation in author citations. In: Proc. 2005 ACM Symposium on
Applied Computing, pp. 1065–1069 (2005)

24. Hernández, M., Stolfo, S.: Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

25. Kang, U., Tsourakakis, C., Faloutsos, C.: Pegasus: A peta-scale graph mining sys-
tem implementation and observations. In: ICDM, pp. 229–238. IEEE (2009)

26. Kim, H.-S., Lee, D.: Parallel linkage. In: CIKM 2007. ACM (2007)
27. Kirsten, T., Kolb, L., Hartung, M., Gross, A., Köpcke, H., Rahm, E.: Data parti-

tioning for parallel entity matching. Computing Research Repository (2010)
28. Köpcke, H., Rahm, E.: Training selection for tuning entity matching. In:

QDB/MUD, pp. 3–12 (2008)
29. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data

Knowl. Eng. 69, 197–210 (2010)
30. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on

real-world match problems. Proc. VLDB Endow. 3, 484–493 (2010)
31. McCarthy, J., Lehnert, W.: Using decision trees for coreference resolution. In: Proc.

14th Int. Conf. on Artificial Intelligence, pp. 1050–1055 (1995)
32. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with

data confidences. In: CleanDB Workshop, pp. 25–32 (2006)
33. Menestrina, D., Whang, S.E., Garcia-Molina, H.: Evaluating entity resolution re-

sults. Proc. VLDB Endow. 3, 208–219 (2010)
34. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:

SIGKDD, pp. 269–278 (2002)
35. Sidló, C.I.: Generic Entity Resolution in Relational Databases. In: Grundspenkis,

J., Morzy, T., Vossen, G. (eds.) ADBIS 2009. LNCS, vol. 5739, pp. 59–73. Springer,
Heidelberg (2009)

36. Sidló, C.I.: Entity resolution with heavy indexing. In: Proc. ADBIS, CEUR Work-
shop Proceedings (2011)

37. Sidló, C.I., Garzó, A., Molnár, A., Benczúr, A.A.: Infrastructures and bounds
for distributed entity resolution. In: 9th International Workshop on Quality in
Databases (2011)

38. Talburt, J.R.: Entity Resolution and Information Quality, 1st edn. Morgan Kauf-
mann (2010)

39. Weis, M., Naumann, F., Jehle, U., Lufter, J., Schuster, H.: Industry-scale duplicate
detection. Proc. of the VLDB Endow. 1(2), 1253–1264 (2008)

40. Whang, S.E., Garcia-Molina, H.: Entity resolution with evolving rules. Proc. VLDB
Endow. 3, 1326–1337 (2010)

41. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.: En-
tity resolution with iterative blocking. In: Proc. 35th Int. Conf. on Management of
Data, pp. 219–232. ACM (2009)

42. White, T.: Hadoop: The Definitive Guide. Yahoo Press (2010)
43. Wick, M.L., Rohanimanesh, K., Schultz, K., McCallum, A.: A unified approach for

schema matching, coreference and canonicalization. In: KDD 2008, pp. 722–730.
ACM (2008)

44. Yakout, M., Elmagarmid, A.K., Elmeleegy, H., Ouzzani, M., Qi, A.: Behavior based
record linkage. Proc. VLDB Endow. 3, 439–448 (2010)

45. Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-tree: an all-purpose
index structure for string similarity search based on edit distance. In: SIGMOD,
pp. 915–926. ACM (2010)


	Flexible and Efficient Distributed Resolution of Large Entities
	Introduction
	Related Work

	Motivating Example
	Problem Formulation
	The General Model
	The ICAR Conditions and Their Limitation
	The Accessible Subset Model
	Entity Closure: Towards an Efficient Algorithm

	Features
	Distributed Algorithm
	Examples of Indexable Features
	Experiments
	Features and Candidate Generation
	Scalability
	Features and Entity Sizes

	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


