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Abstract The model of a recently identified mammalian retina circuit, responsible 

for identifying looming or approaching objects, is implemented on mixed-signal 

focal-plane sensor-processor array. The free parameters of the implementation are 

characterized; their effects to the model are analyzed. The implemented model is 

calibrated with real stimuli with known kinetic and geometrical properties. As the 

calibration shows, the identified retina channel is responsible for last minute 

detection of approaching objects. 

1 Introduction 

It is essential for a living creature to identify and avoid approaching objects, 

whether it is an attacking predator or an obstacle in the locomotion path. When an 

object is approaching, the patch caused by the projection of its silhouette on our 

retina is expanding. If the object is on a collision course, the expansion is 

symmetrical. Looming object detector neural circuit was identified in insect visual 

system earlier. Locusta Migratoria is exceptionally good at detecting and reacting 

the visual motion of an object approaching on a collision course. As it turned out, 

some of the largest neurons in the Locust brain are dedicated to this task [1]. After 

successful identification, measurement, modeling, characterization of this neural 

circuit of the locust, a technical team built and verified a visual sensor-processor 

chip for automotive application, which could detect collision threat [2] applying 

the same principles what the brain system of the Locust does. 

The common understanding among neurobiologists was that in more developed 

animals (e.g. mammals) the cells responsible for detecting approaching objects are 

located in the higher stages of the visual pathway, most probably in the visual 

cortex. Therefore, it was a surprise when a looming object sensitive neuron type 

was identified, called the Pvalb-5 ganglion cell, in mouse retina. The identified 
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retina circuitry, the electrophysiological measurement results, and a qualitative 

mathematical model are described in [3]. 

We have simulated the phenomenon in Matlab environment. It turned out that 

the Pvalb-5 ganglion cells calculate/measure a non-linear spatial summation of the 

temporal brightness changes. The measured value (which depends on the 

approaching speed, the size, the distance, the contrast, and the color pattern of the 

moving object) can be interpreted as a collision threat indicator. To make 

quantitative analysis possible, we have generated an experimental framework 

using a 3D plotter, in which moving objects were recorded with known 

geometrical and kinematical parameters. Using these recordings, we have verified 

the qualitative model, calculated its parameters, and identified its operational 

gamut and sensitivity in different geometrical and kinematical situations.  

Besides Matlab, we have made an optimized focal-plane array processor 

implementation of the mathematical model on the Eye-RIS [4] system as well. In 

this way, we made a visual approaching object detector what we can also call 

collision threat sensor. This device makes possible to perform real-time 

experiments, which is very important to characterize the model under different 

circumstances, because the response of the Pvalb-5 ganglion cells depends on 

many parameters of the approaching object. Other advantage of the looming 

sensor device is that it makes possible to predict the architecture of a higher level 

neural circuit, which evaluate the output of the modeled ganglion cells. In the 

future, the continuation of these studies may lead to a micro sensor devices – 

similar to the mentioned Locust collision warning chip [2] – which can call the 

attention to approaching objects.  

In this chapter, the neurobiological architecture, the key physiological 

experiments, and the original qualitative model are shown. Then, the experimental 

setup, and the characterization, verification, and the sensitivity calculation are 

described. Finally, the efficient Eye-RIS implementation is introduced. 

2 The retinal circuit  

Botond Roska’s neurobiologist team has identified a ganglion cell called type, 

Pvalb-5, in the mouse retina, which responses to dark looming objects, while it 

does not respond to lateral or recess motion, or static stimuli [3]. To be able to 

measure these cells, they had isolated a transgenic mouse line, in which only the 

Pvalb-5 ganglion cells were fluorescently labeled. This means that the genetically 

modified (labeled) cells contained fluorescent materials, which were easily 

recognizable and accessible in the transparent retinal tissue under fluorescent 

microscope. This enabled them to morphologically identify the shape and the size 

of its dendritic tree. It turned out that the Pvalb-5 has huge dendritic tree 

(~350micron diameter), which receives visual information from ~10˚ of the visual 

field. Under the fluorescent microscope it was clearly seen that the density of the 

Pvalb-5 ganglion cells is very low (Fig. 1). They were distributed equally on a 
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way that the dendritic tree of a cell was just reached the soma (body) of the 

neighboring cell. 

 

Fig. 1. The dendritic tree of the Pvalb-5 cell. The green body on the top is the soma of the 

next Pvalb-5 cell. The distance between the somas is roughly half of the diameter of 

the dendritic tree.  

The behavior of the Pvalb-5 is depicted in Fig. 2. As it is shown, it selectively 

responses to dark looming objects, while it does not respond neither to lateral or 

recess motions nor to static stimuli. Since the expanding black body in the 

stimulus leads to an overall intensity falling (dimming) in the receptive field, the 

neurobiologists had to exclude that the cell provides simply a dynamic off 

response for the light intensity [3]. To exclude it, a specially generated pattern was 

projected to the retina, in which the shade of the expanding dark object was 

permanently lightened on a way that the overall DC level of the image did not 

change. Since the cell responded to this stimulus, the pure dimming detection 

explanation was excluded. 

After extensive electrophysiology measurement series, the retinal circuitry was 

identified. According to the measurements, the ganglion cells average (sum) 

inputs coming from uniformly distributed inhibitory and excitatory channels from 

their entire visual fields.  

3 The qualitative model 

The qualitative model – proposed by the neurobiologist team – is constructed of a 

number of equally distributed, equal density inhibitory and excitatory channels 

(subunits). Each of the channels receives continuous input from one single sensor 

Fig. 3, hence no spatial interaction is performed at this level. The channels apply 

linear temporal filtering with the curve showed in Fig. 3b. The two temporal linear 
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filters are roughly each-others inverse. These linear filters generate inhibitory and 

excitatory (roughly inverted) signals inside the channels. Each channel has a 

rectification-like output characteristic. As it is shown, an inhibitory channel 

responds with a large positive signal, when its input is changing from dark to light, 

and generates a small negative response to negative intensity changing. As a 

contrast, the excitatory channel responds with a large positive signal to negative 

light changes on the input, and with small negative signal to positive light 

changes. This shows that the characteristics of the two channels are roughly 

opposite. 

 

Fig. 2. Response to different dynamic patterns. The cell fired in those cases only, when the 

black bar against gray background were expanding (looming). It did not fire to lateral 

movements or shrinking (recess motion). 

An engineer would ask why the retina needs two opposite channels. The most 

feasible answer is, that the neurons are not bipolar devices, hence the negative 

signals should be carried in inverted forms in off channels. Others would ask, why 
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the inverting channel is called excitatory, while the non-inverted is the inhibitory. 

The reason is, because the cell, which sums up the output of these channels is an 

off ganglion cell, which reacts positively to the expanding dark objects. Hence its 

positive input is the inverted excitatory channel and its negative input is the 

inhibitory channel. 
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Fig. 3. The qualitative model. (a) shows the receptive field with the excitatory and the 

inhibitory channels, and the stimulus. (b) shows the overall behavior of the model. (c) 

shows the details of the channel responses. 

The outputs of the channels are summed up by the ganglion cell in a circle, 

which covers roughly 10˚ of the visual field (Fig. 3a). In the large sum, the outputs 

of the inhibitory channels are taken with negative sign, while the outputs of the 

excitatory channels are taken with positive sign. The ganglion cell has a 

rectification type output characteristic also (Fig. 3c). Its output is coded in spike 

activity.  

4 The mathematical model 

The cell level signal processing in the retina can be described with mathematical 

equations which are continuous in time and discrete in space. Since our computers 

are discrete time machines we have to discretize equations in time also. In the 

following, we give a discrete time mathematical model which reflects the 

measurement results. The input of the model is the intensity of the sensed optical 

signal, while the output is the firing level of a Pvalb-5 ganglion cells.  

The first steps of the mathematical model are the spatial filtering in both 

channels: 
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where: 

 ui,j  are the intensity values of the light reached the photoreceptors in 

position i,j (input) 

 s  is the number of discrete snapshots involved in the temporal 

convolution; 

  are the weighting factors of the temporal convolutions in the 

excitatory channels 

  are the weighting factors of the temporal convolutions in the 

inhibitory channels 

 ei,j(t) is result of the temporal convolution in the excitatory channel in 

position i,j (output) 

 ii,j(t) is result of the temporal convolution in the inhibitory channel in 

position i,j (output) 

The spatial convolution is followed by a nonlinear transfer functions. From 

neurobiological aspects, the rationale of this non-linearity is twofold. First of all, it 

is a rectification, since the neural communication channels are unipolar. On the 

other hand, from signal processing point of view, it is important that it zeros the 

channels, which carry negative values, and those one also, which carry small 

positive values as well. Values around zero are generated by temporal noise, or by 

irrelevant slow temporal intensity changes, which should be subpressed in the 

spatial averaging to avoid or reduce false alarms. To simplify the mathematical 

model, we use a single breakpoint piece-wise linear functions mimic the measured 

non-linear characteristic, because this reflects rationale of this functionality. The 

piece-wise linear function is as follows: 
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where: 

 oe  is the offset value in the excitatory channel; 

 oi  is the offset value in the inhibitory channel; 

 he  is the transfer function of the excitatory channel; 

 hi  is the transfer function of the inhibitory channel. 

The outputs of the channels ( he(ei,j(t)) and hi(ii,j(t)) ) are spatially summed up 

by the Pvalb-5 ganglion cell, and rectification is applied on its output: 

 

                                                 (5) 
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where: 

 Nr(k,l)  is the receptive field of the ganglion cell in position (k,l); 

 oi  is the offset value in the inhibitory channel; 

 r(x) is the rectification function: r(x)=x (sign(x)+1)/2. 

The implementation and analysis of the mathematical model and its 

characteristic parameters will be shown in the next section. 

5 Implementation on a focal-plane sensor-processor device 

The model was implemented on a standalone vision system, Eye-RIS [4]. It is a 

small embedded industrial vision system, based on a general purpose focal-plan 

sensor-processor (FPSP) chip, called Q-Eye. The section starts with a brief 

description of this system, before the implementation details are introduced. 

5.1 The Eye-RIS system 

The Eye-RIS system (Fig. 4), developed by AnaFocus Ltd, Seville, Spain [5] is 

constructed of an FPSP chip (Q-Eye) [4], a general purpose processor, which is 

used for driving the chip and for external communication.  

 

Fig. 4. The Eye-RIS system 

The Q-EYE chip is constructed of a 176x144 sized locally interconnected 

mixed-signal processor array (Fig. 5). Each processor cell is corresponding to one 

pixel (fine-grain), hence the system can process 176x144 sized images. Each of 

the cells is equipped with photosensor, analog arithmetic and memory unit, and 

logic unit with logic memories. It can capture images, store them in its analog 

memories, and perform analog operation on them without AD conversion. The 

execution of the operators takes a few microseconds only, thanks to their fully 

parallel execution. Therefore the chip can perform above 1000Fps image 

capturing and processing (real-time visual decision making). The power 
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consumption of the chip is a few hundred mWs only, depending on its activity 

pattern. It was fabricated by 0.18micron technology. The pixel pitch is roughly 25 

micron. 

 

Fig. 5. Architecture of the Q-Eye chip 

The functionality of the chip is summarized by the following list: 

• Grayscale 

– Diffusion (Gaussian, directional, masked); 

– Multiple-add (MAC); 

– Shift; 

– Threshold; 

– Mean ;  

– Difference (positive, negative, absolute, signed);  

• Image capture 

– 4 photosensors/cell for color image sensing; 

– Non-destructive repetitive readout; 

– Masking  different integration time per pixel; 

• Morphologic 

– Arbitrary 3x3 morphologic operations;  

• Local logic 

– AND, OR, EQU, XOR, NOT, etc. 

• Image I/O 

– Separate grayscale and binary readout 

– Readout of a few rows 
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– Address event readout (coordinate of active pixels) 

5.2 Implementation details 

As we have seen, the first step of the mathematical model is the channel 

calculation. It starts with temporal convolution. We have tested various kernels 

and learned that the simplest convolution, which already leads to good results, is 

built up from the weighted summation of 3 snapshots only. We used [-½,-½, 1] 

weights in the inhibitory channel and its opposite in the excitatory channel (Fig. 

6c). It is important to use zero sum kernels, to cancel out the DC level of the 

intensity of the image. Physically, this means 3 weighted pixel-by-pixel additions 

of the three consecutive snapshots. The temporal convolution takes 16μs on the 

Eye-RIS system.  

Larger temporal kernels naturally lead to more accurate approximation of the 

measurement results. However they increase the computational complexity, 

require more memory and data transfer, and modify the dynamic performance of 

the system, because the length of the temporal convolution is increases. The length 

of the temporal convolution window is the first free characteristic parameters of 

the algorithm. The effects of the tuning of the characteristic parameters of the 

system will be examined later. 

In the mathematical model, the second step is the application of the piece-wise 

linear approximation of the non-linear output characteristics. On the Eye-RIS, this 

is done by the addition of the offset and a thresholding, followed by a conditional 

overwriting of the pixels, which were below the threshold level. The operation 

takes 4μs. The offset values (oe and oi) are the second characteristic parameter of 

the system. 
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Fig. 6. Snapshots of the calculation. (a) and (b) are two snapshots of the input with an 

approaching black object. (c) and (d) show the response of the excitatory channels 

before and after the rectification. The noise canceling role of the rectification is clearly 

seen. (e) shows the three responding Pvalb-5 ganglion cells (r=25). (f) shows the 

boundaries of the receptive fields of the responding ganglion cells.  

The third operation is the subtraction and the spatial summation of the output of 

the two channels. The spatial summation can be done in three ways.  

 If the entire 176x144 image is considered as the input of a single Pvalb-5 
ganglion cell we have to apply a mean instruction, which calculates the 
normalized sum of the whole array. This takes 12μs. 

 If the receptive field of the Pvalb-5 ganglion cell is smaller than the 
176x144 image, we have to calculate the summation separately in each 
receptive field. This can be achieved by using constrained Gaussian 
diffusion within each receptive field. Technically it requires the usage of 
the fixed state mask during the diffusion. The fixed state mask contains the 
boundaries of the receptive fields. Inside the receptive fields, the diffusion 
fully smoothens the image part, hence its DC level is calculated. In this 
case, the result contains the output of the multiple Pvalb-5 ganglion cells 
before the rectifications (Fig. 6e).   
In one step, only non-overlapping receptive fields can be calculated with 
this method. If we assume Pvalb-5 ganglion cells distribution as it is shown 
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in Fig. 7, we need to use 4 set of masks with non-overlapping boundaries 
of the receptive fields, to calculate the summation in each cell position. 
This takes 50μs. 

 In the third case, Gaussian diffusion is applied to approximate the 
summation. The radius is controlled by the running length of the diffusion 
only. In this case the summation is not exact, but as an exchange, it is 
calculated in all the pixel positions. The calculation this way takes 10-15μs. 
We have measured the error of this method. (Since the exact characteristics 
of the diffusion function of the Q-Eye chip is not known, we could not 
calculate the difference analytically.) The measurement was done on a way 
that we calculated the spatial summation using the second and third 
methods, and compared the results for different running lengths. We made 
the comparison for different radiuses. It turned out, the accuracy is within 
the LSB of the system (Fig. 8), hence this fast method can be also used. 

    

Fig. 7. The Pvalb-5 ganglion cells distribution in our model. Small solid circles are the cells, 

large circles are the receptive fields. Cells with non-overlapping receptive field can be 

calculated parallel. 

The third characteristic parameter is the radius of the receptive field of the 

ganglion cell. 

The last step of the model is the rectification. It is done on the same way as it 

was discussed previously. The threshold of this ganglion level rectification is the 

fourth characteristic parameter of the system. 

The flow-chart of the calculation is shown in Fig. 9. It starts with the parallel 

implementation of the inhibitory and the excitatory channels. Naturally, those are 

calculated one after the other on the Eye-RIS, hence their time is added up. The 

total processing time is 58-98μs according to the selected calculation method. If 

the two channels use the same time convolution window, their calculation can be 

done in one step.  
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Fig. 8. Evaluation of the measurement results. The average of the absolute errors for different 

radiuses (A20, A25, A35) and the deviance (D20, D25, and D35) are shown. The 

average absolute error and the deviance is measured in the LSB of the Q-Eye chip. 
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6 Calibration  

We have built a setup, which contained the Eye-RIS system and a 3D plotter, 

holding a black circle. By using the 3D plotter, we could generate real spatial-

temporal stimuli patterns with known registered geometrical and kinematical 

information. Image sequences were recorded with the Eye-RIS system. We made 

the recordings to be able to recalculate the different stimuli patterns with different 

parameter sets over and over again. We did the recalculations both on the Eye-RIS 

system and in Matlab. Fig. 10 shows a snapshot of our calculation results. As it 

can be seen, there are seven ganglion cells are firing for the incoming black object. 

The radius of the receptive field is the distance of two neighboring ganglion cells. 

The ganglion cell in the middle generated the strongest respond, because all the 

increasing periphery of the approaching object is in its receptive field. The 

strength of the response is indicated with the sizes of the white ‘+’ signs. 

 
(a)      (b) 

Fig. 10. Firing ganglion cells (a) for approaching object stimulus. Combined outputs of the 

excitatory and inhibitory channels (b). 

We have tested the model with different parameter sets, and identified the 

effect of the tuning of the characteristic parameters. The conclusions are as 

follows. The first characteristic parameter of the system (the length of the 

temporal convolution window) is responsible for the sensitivity and the latency. 

The longer the window is the more sensitive the model. However, at the same time 

the latency is increased with the opening of the time window. 

The second characteristic parameter of the system (the inhibitory and excitatory 

threshold levels) is responsible for the elimination of the small changes. This 

parameter also tunes the sensitivity, and on the other hand, it is an excellent way 

to reduce the sensor noise. The effect of this threshold parameters are shown in 
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Fig. 11. The horizontal axis shows the intensity changes (darkening) in time, while 

the vertical axis shows the induced channel responses in the excitatory (upper) and 

in the inhibitory (lower) channels before and after the rectification. The rightmost 

diagram shows the combined (after subtraction) channel response. As it can be 

seen (Fig. 6c,d), the effects of the small changes are eliminated with the thresholds 

(Te, Ti). When there is a lateral movement, the same number of pixels become 

black at the head, as becomes white at the tail, hence they cancel out each other in 

the spatial summation. However, in case of approaching object, the increasing 

number of black pixels generates positive response only.  

The third characteristic parameter of the system (the receptive field of the 

Pvalb-5 ganglion cells) is responsible for the size of the looming object to be 

detected. If it is a narrow angle, it will notice a larger distant or a small close 

object earlier. However it will not be able to cancel out the lateral movement of a 

larger object, because front and tale part of the object do not fit to the same 

receptive field at the same time. 
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Fig. 11. The excitatory (upper) and the inhibitory (lower) channel responses to the intensity 

changes. The rightmost chart shows the combined response. Ti and Te are the channel 

thresholds. 

The fourth characteristic parameter of the system (threshold of the ganglion 

cells) is responsible for general sensitivity. It sets the minimal ganglion cell signal 

level, which is needed for the cell to fire.  

From the analysis of the responses, it turned out, that the ganglion cells are not 

responding to lateral movement, as long as the moving object is entirely within the 

receptive fields. For approaching objects, we learned that the response is getting 

stronger as the object is approaching. Fig. 12 shows the respond characteristics to 

a constant speed approaching object in the function of the distance. As we can see, 

the response is proportional with 21 x (x is the distance from the sensor). It is not 

surprising, hence the response is proportional with the area increase of the 

projected image of the approaching object on the sensor surface, which is 

naturally proportional with 21 x .  

The strong decay of the response in the function of the distance indicates that 

this retina channel provides a last minute warning signal of an approaching object. 
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By plugging in the parameters coming from the physiological measurements made 

in the mice retina, and the dynamics of an attacking hawk it turns out that the 

ganglion cells starts responding less than 2 seconds before the predator arrives.  
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Fig. 12. Response characteristic to an approaching stimulus 

It is important to note that this model and the implemented approaching object 

detector device responds to an approaching dark object against lighter background 

by nature. It is very simple to make it sensitive to approaching light objects, just 

by skipping the last rectification step in the ganglion cell. In that case, the large 

positive response is a reaction to approaching dark objects, while the large 

negative response indicates the approaching light object.   

To understand the operation of the model, we have to discuss those situations, 

when the pattern on the surface of the object or the background is structured with 

different colors on it. In this case, the model is not behaving correctly. For 

example, if an object with checkerboard pattern is approaching, and the 

background is mid-gray, the changes in the receptive fields from gray to black and 

from gray to white will be in balance, hence the output will be silent as long as the 

individual dark areas of the checkerboard pattern dominate receptive fields. In 

these situations it helps, if we can somehow segment the dark or the light parts of 

the approaching object. In this case, we have to compute the ganglion cell 

response in each position (as we have seen using the third method in Section 5), 

and sum it app to the bright or the dark areas. However, we have to make sure that 

we do not include the background areas to the summation.  

7 Conclusions 

Recently identified mammalian retina circuit model, responding to looming 

object, was implemented on a mixed-signal focal-plane sensor-processor array, 

called Q-EYE. The steps of the implementation were detailed. The characteristic 

parameters of the implementation are analyzed. The implemented circuit model 
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was quantitatively characterized via stimulus with precisely known geometry and 

kinetics. It turned out that the retinal circuit is responsible for generating last 

minute warning signal attention call to approaching objects. 
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