
Combining SLA Prediction and Cross Layer
Adaptation for Preventing SLA Violations

Eric Schmieders1, Andras Micsik2, Marc Oriol3, Khaled Mahbub4 and Raman
Kazhamiakin5

1 Paluno, University of Duisburg-Essen, Essen, Germany
eric.schmieders@paluno.uni-due.de

2 MTA SZTAKI DSD, Budapest, Hungary
micsik@sztaki.hu

3 Universitat Politècnica de Catalunya, Barcelona, Spain
moriol@lsi.upc.edu

4 SOI (CITY University), London, United Kingdom
k.mahbub@soi.city.ac.uk
5 FBK-Irst, Trento, Italy

raman@fbk.eu

Abstract. Service-based Applications (SBA) are deployed in highly dy-
namic and distributed settings, where various parts of the constituent
components - services and their infrastructure - are controlled by dif-
ferent third parties. In such a loosely coupled environment, adaptation
capabilities are needed to manage deviations and unforeseen situations
which might lead to negative consequences (e.g. contractual penalties).
Current approaches either focus on cross-layer-adaptation or the pre-
vention of SLA violations. In contrast to this, the approach presented
in this paper combines both. The paper presents an architecture as a
generic framework for the management of arising problems during ser-
vice execution. Multiple adaptation mechanisms are available to react
on adaptation needs, acting on different layers of the SBA (including
e.g. the composition layer and the infrastructure layer). The final goal of
the cross-layer adaptation capability is to avoid the violation of agreed
Service Level (in SLAs) and thus ensure the benefits of SBAs for both
customers and providers.

1 Introduction

Service-based Applications (SBAs) provide their functionality in a rather dy-
namic way using a number of possibly independent services in a loosely coupled
way based on the paradigm of Service-oriented Architecture (SOA). The main
difference between a traditional modularly built application and an SBA is that
the latter cannot control fully its components, but relies on external services pro-
vided by different parties. An SBA typically operates on different levels in order
to implement its functionality. On the highest level, the performance and quality
of offered services as a whole is the main issue, which breaks down into the issue
of composing services and executing service compositions. On a lower level, each



service of a composition has to be discovered, selected and executed, which are
the basic and classical service provisioning functions. Some services may run at
a third party (the case of outsourcing), while some services are executed in a
local infrastructure or in a Cloud environment. In latter cases, the platform and
proper environment for the execution have to be prepared and maintained for
service executions.

As studies reveal (e.g. [12]), distributed applications are extremely fragile,
due to the execution of uncontrollable external services. Unexpected changes of
third party services or unpredicted network latencies, for example, can cause
failures avoiding the timely execution of the SBA. In consequence, failures can
cause violations of the agreed Service Level Agreements (SLAs), what might
lead to further negative consequences, e.g. contractual penalties. In order to
prevent SLA violations, adaptation capabilities are needed to react to failures
and unforeseen situations during the execution before the SLAs are violated.

Current approaches either focus on performing cross-layer-adaptation in a
strictly reactive way, hence not avoiding SLA violations and the implicit con-
tractual penalties. Or they aim to prevent SLA violations, by focusing on the
Service Composition and Coordination Layer (also known as SCC, cf. defini-
tions in [9]). Those approaches don’t exploit every opportunity to prevent an
SLA violation and thus face situations where a prevention is not possible, e.g.
when internal services are to be invoked which cannot be simply replaced. To
address this gap, the paper describes a framework which prevents SLA violations
of SBAs, by applying cross-layer adaptation via the cooperation of monitoring
and adaptation facilities.

Real-life use-cases demonstrating the need for our approach can be found for
example among emergency services where certain reactions have to be made in
given time limits, or among financial services where transactions going late may
cause money loss (e.g. stock exchange).

The rest of the paper contains an overview of related work on cross-layer
adaptation (Section 2), the detailed description of our approach (Section 3), and
the conclusion of our work (Section 4).

2 Related Work

In [3] Gjørven et al. propose a framework to support cross-layer self-adaption
in SBAs. They present a technologically independent middleware named QUA
to support coordinated cross-layer adaptations by integrating interface and ap-
plication layer adaptation mechanisms. Similarly, Popescu et al. also present
a cross-layer adaptation framework in [10] with internal and external services
which uses adaptation templates to define the behaviour of adaptation pro-
cesses. Focusing on particular layers, Vidackovic et al. [11] present a cross-layer
monitoring and adaptation framework, where they aim at the relationships of
the Business Model with respect to the lower layers, and propose a cross-layer
adaptation strategy based on a top-down approach. Although these approaches



handle cross-layering adaptations, they do not avoid the violation of the SLA
during the execution of the SBA.

Regarding approaches limited to the service composition layer, V. Cardellini
and S. Iannucci [1] present a framework named MOSES with two concrete adap-
tation strategies, namely service selection and coordination pattern selection.
When a service fails, the adaptation is performed only for future invocations of
the SBA. For that reason, it does not avoid the violation of SLAs during the
SBA’s execution. This problem is addressed by Leitner et al. in [4]. Leitner et
al. present a framework, named PREvent, in order to predict end-to-end per-
formance violations of SBAs during their execution. In contrast to our work the
presented framework needs hundreds of SBA executions to provide precise viola-
tion predictions. This is due to the exploitation of machine learning techniques,
which in general requires a huge amount of training data for adequate results.

In summary, the above mentioned solutions fall into two disjunct categories:
one category facilitates cross layer adaptation, while the other avoids SLA viola-
tions of executed SBA. Our contribution combines both aspects: instrumenting
cross layer adaptation in order to avoid SLA violations.

3 Approach

The key idea behind the integrated solution represented in this approach is based
on the use of assumptions on the SBA’s context. The context is not under con-
trol of the SBA provider, as it includes e.g. third party services. The important
aspect of the assumptions in our approach is, that the assumptions are used to
relate the continuously monitored data to the SBA’s requirements. In particu-
lar, we exploit monitors to check whether the assumptions are still satisfied. In
case an assumption is violated, we check immediately whether the end-to-end
requirement is violated as well. If the check reveals a violation of at least one re-
quirement, the service composition must be adapted in order to compensate the
delay occurred in the preceding execution of the SBA instance. To achieve the
adaptation an appropriate strategy is generated by a multi-agent community.
Finally, the adaptation strategy must be executed.

The architecture of the solution is represented in Fig. 1. The workflow is
executed by a Process Engine that communicates with the services through an
Enterprise Service Bus (ESB). The ESB routes the service invocations and serves
as an aggregation point for different types of events from different sources (e.g.
from service calls). Furthermore, the ESB enables dynamic rerouting of requests
to different services. The information about available services and their current
properties is stored in the service repository. In the following the components
and the relation to the different layers are introduced.

Service Monitoring The key monitoring component is SALMon (cf. [8]).
SALMon is used to monitor assumptions regarding the different properties of
individual services, specially their non-functional properties (e.g. availability,
response time). SALMon is able to (1) monitor the QoS of services in a SBA
(Service Composition and Coordination Layer) and (2) check if the retrieved



Process Engine

Service Monitoring
(SALMon)

Action 1 Action 2 Action 3 Action 4

Assumption-based 

Assumption violation

External Services
p

detection
(SPADE)

Alternative 
Service 

Replacement
Adaptation Trigger

Enterprise 
Service

Service 1 Service 2
oc

at
io

n

Adaptation 
strategy 
engine

(Agent Based)

Service 
Bus Service 3

SLA Re-ap
ab

ili
tie

s 
In

vo

Internal Services

(Agent Based)

Adaptation Strategy

Service

Negotiation

A
da

pt
at

io
n 

C
a

InfrastructureAdaptation 
enactment 

engine

Service 
Discovery & 
RepositorySI

Adaptation
Service 4

Cross-Layer-Adaptation-Framework

Fig. 1. Architecture

QoS matches with expected values. Furthermore, SALMon is able to monitor
process KPIs like the process’ end-to-end response time, hence also addressing
the Business Process Management (BPM) layer. In order to be easily integrable
with other technologies, SALMon has been implemented as an SBA by itself.

Adaptation-based Detection If a violation of the stated conditions occurs,
SALMon notifies the Specification and Assumption Based Detection (SPADE)
of adaptation needs, whose basics are introduced in [6]. The notification contains
the violated assumptions and the violating value.

The SPADE component is used to evaluate the impact of the violated as-
sumption on the corresponding application requirement. SPADE performs a run-
time verification of the process model against the requirements. SPADE checks,
whether the workflow specification S, the monitored data M and the assump-
tions in A′ satisfy the given requirements R, that is: S,M,A′ |= R. The set A′

comprises assumptions related to services which are not invoked at the point in
time when the check is performed.

If R is satisfied, then the workflow execution is continued. If R is not satisfied,
the SBA or the service infrastructure (SI) must be adapted in order to compen-
sate the delay. In the latter case the adaptation strategy engine is invoked.

Adaptation Strategy Engine The adaptation strategy engine is mani-
fested as a multi-agent platform where agents implement intelligent behaviors
and negotiations with each other in order to collect available information and
make decisions on adaptation strategies. Each service composition instance is
represented by a Process Agent responsible for the proper and timely execu-
tion of this instance. Internal and external services are represented by Service



Agents, comprising information of the service properties (like response time) and
supported adaptation capabilities.

A Process Agent is instantiated together with the instantiation of each pro-
cess. SALMon triggers the responsible Process Agent whenever a deviation from
the agreed SLA is predicted. In this case, the Process Agent issues requests for an
adaptation solution to Service Agents, which, in turn, respond with their offered
adaptation solution. The Process Agent chooses one from the offered adaptation
strategies. By running the SPADE check the Process Agent assures the adher-
ence to the SBA requirements for the chosen adaptation strategy. This strategy
can comprise several invocations of one or more Adaptation Capabilities affect-
ing the SCC and SI layer. Once the Process Agent has chosen an adaptation
strategy the Process Agent forwards this strategy to the Adaptation Enactment
Engine for execution. This engine executes the strategy invoking the Adaptation
Capabilities according to the strategy.

Adaptation Enactment Engine and Adaptation Capabilities The
adaptation strategy is executed by the Adaptation Enactment Engine. The adap-
tation capabilities invoked during the execution are described in the following.

Service replacement When performing the service replacement, the service
repository is involved (cf. [5]). In particular, the request for a service replacement
is transformed into the query of the runtime service discovery tool. The identifi-
cation of alternative services is based on various characteristics of the published
services such as structural, behavioral and quality characteristics that services
should have in order to be acceptable replacements for a constituent service. The
actual service replacement is performed via the ESB, which reroutes the service
invocations to the replacing service. The service replacement is located at the
SCC layer.

SLA re-negotiation The SLA negotiation broker performs the SLA negotia-
tion for each candidate service identified by the service discovery tool, located
at the SI-layer (cf. [5]). The desired quality level is negotiated with the selected
candidate service. The QoS characteristics of each candidate service are negoti-
ated in order to achieve the best possible SLA for the service that is within the
boundary constraints (e.g. costs and response time) of the service provider and
the consumer.

SI Adaptation In case of internal services we propose to influence the infras-
tructure of the internal services. For example, in order to catch up lost time
caused by preceding service failures, the execution speed of an internal service
could be increased. This is possible, as the process owner has access to the in-
frastructure of internal services, and can make executions run faster. For this
purpose several approaches are available (eg. [7]). The SI adaptation is located
at the SI-layer.

4 Conclusions and Future work

In the paper, a solution was presented to avoid SLA violations in the complex
settings of Service-based applications, thus addressing a gap in the current lit-



erature which either prevents SLA violations or applies cross-layer-adaptation.
The novelty of the approach is the exploitation of all SBA layers (BPM, SCC
and SI) for the prevention of SLA violations. The identification of adaptation
needs is based on SLA prediction, which uses assumptions on the characteristics
of the running execution context. Multiple adaptation mechanisms are available
to react on the adaptation need, acting on different layers of the SBA. The
adaptation strategy chooses the right adaptation mechanism, coordinated by a
multi-agent community. In the future, we plan to further generalize the mecha-
nism for handling the adaptation management cycle of detection, selection and
enactment, and to incorporate more components, event types and adaptation
capabilities.

Acknowledgments: We cordially thank Andreas Metzger for helpful comments
on the paper draft. The research leading to these results has received funding from
the European Community’s 7th Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

References

1. Cardellini, V., Iannucci, S.: Designing a broker for qos-driven runtime adaptation
of soa applications. In: ICWS. pp. 504–511 (2010)

2. Gehlert, A., Bucchiarone, A., Kazhamiakin, R., Metzger, A., Pistore, M., Pohl,
K.: Exploiting assumption-based verification for the adaptation of service-based
applications. In: SAC. pp. 2430–2437 (2010)

3. Gjørven, E., Rouvoy, R., Eliassen, F.: Cross-layer self-adaptation of service-oriented
architectures. In: MW4SOC. pp. 37–42 (2008)

4. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and
prevention of sla violations in composite services. In: ICWS. pp. 369–376 (2010)

5. Mahbub, K., Spanoudakis, G.: Proactive sla negotiation for service based systems.
In: Proceedings of the 2010 6th World Congress on Services. pp. 519–526. SER-
VICES ’10, IEEE Computer Society, Washington, DC, USA (2010)

6. Metzger, A., Schmieders, E., Cappiello, C., Nitto, E.D., Kazhamiakin, R., Pernici,
B., Pistore, M.: Towards proactive adaptation: A journey along the s-cube service
life-cycle. In: Maintenance and Evolution of Service-Oriented Systems (2010)

7. Nallur, V., Bahsoon, R.: Self-adapting applications based on qa requirements in
the cloud using market-based heuristics. In: ServiceWave. pp. 51–62 (2010)

8. Oriol, M., Franch, X., Marco, J., Ameller, D.: Monitoring adaptable soa-systems
using salmon. In: Workshop on Service Monitoring, Adaptation and Beyond
(Mona+). pp. 19–28 (2008)

9. Pistore, M., Kazhamiakin, R., Bucchiarone, A.: Integration framework baseline.
Tech. rep. (2009)

10. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven
adaptation of multi-layer applications using templates. In: SASO. pp. 213–222
(2010)

11. Vidackovic, K., Weiner, N., Kett, H., Renner, T.: Towards business-oriented mon-
itoring and adaptation of distributed service-based applications from a process
owner’s viewpoint. In: ICSOC/ServiceWave Workshops. pp. 385–394 (2009)

12. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed qos evaluation for real-world web ser-
vices. In: Proceedings of the 2010 IEEE International Conference on Web Services.
pp. 83–90. ICWS ’10, IEEE Computer Society, Washington, DC, USA (2010)


