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Abstract

In this paper we propose a Multiframe Marked Point Pro-
cess model of line segments and point groups for auto-
matic ship structure extraction and target tracking in Inverse
Synthetic Aperture Radar (ISAR) image sequences. For
purposes of dealing with scatterer scintillations and high
speckle noise in the ISAR frames, we obtain the resulting
target sequence by an iterative optimization process, which
simultaneously considers the observed image data and vari-
ous prior geometric interaction constraints between the tar-
get appearances in the consecutive frames. Evaluation is
performed on real ISAR image sequences of ship targets.

1 Introduction

Identification and motion analysis of ship targets in airborne
Inverse Synthetic Aperture Radar (ISAR) image sequences
are key problems of Automatic Target Recognition (ATR)
systems which utilize ISAR data [3, 5]. Remotely sensed
ISAR images are able to provide valuable information for
target classification and recognition in several difficult sit-
uations, where optical or SAR imaging techniques fail [6].
However, robust feature extraction and feature tracking in
the ISAR frames are usually difficult tasks due to the high
noise factors and low level of available details about the
structure of the imaged targets (see Fig. 1(a)). In addition,
due to the physical properties of the ISAR image forma-
tion process, even the neighboring frames of an ISAR se-
quence may have significantly different quality parameters
in terms of noise or image focus. These artifacts can lead
to significant detection errors in some low quality frames,
which may mislead the classification and activity recogni-
tion modules of the ATR systems. However, assuming that
the targets have fixed size and structure; and small displace-
ment is expected between consecutive time appearances,
inter-frame information can be exploited to refine the de-
tection procedure.
In this paper, we propose a robust Multi-Frame Marked
Point process model [2, 4] for the target detection problem,
which combines various features extracted from the ISAR
images with prior geometric constraints about target shape
persistency and smooth motion. Similarly to [2], we ex-
tract the central axis line segment and a few characteristic
feature points from the imaged ship targets. However, new

data and prior features are involved in the process, and as
an essential novelty, the target axis fitting and feature point
positioning steps are jointly optimized, exploiting a strong
mutual relationship between the structure elements.

2 Problem definition and notations

The input of the proposed algorithm is a sequence of 2D
ISAR images, which contains a single ship target. A sample
frame is visualized as a grayscale image in Fig. 1(a). Our
primary aim is to measure relevant features of the objects,
such as length or orientation. For this reason, we model
the skeletons of the imaged targets by line segments in the
proposed approach (Fig. 1(c)). Although the ISAR images
provide only very limited information about the superstruc-
tures of the ships, we can often identify permanent bright
points in the images, which can be tracked over the frames
of the sequence (see Fig. 2(a)). These characteristic fea-
tures are produced by stronger scatterer responses (such as
containers or cabins) from the illuminated objects, and can
be used for target identification.
Let us denote by S the pixel lattice of the images of the n
frame-long ISAR image sequence and by s ∈ S a single
pixel. D refers to the global image data. We denote by ut

a target candidate in frame t ∈ {1, 2, , n}. Each target’s
axis line segment is described by the x(u) and y(u) centre
coordinates, l(u) length and θ(u) orientation (see Fig 1(c)).
In addition, K(u)(≤ Kmax) scatters can be assigned to the
targets: u → (q1, q2, . . . , qK(u)), where each scatter qi is
described in the target line segment’s coordinate system by
the relative line directional position, τu(qi), and the signed
distance, du(qi) from the center line of the parent object
u (see Fig. 2(c)). Let us denote by H the object space.
The goal is to obtain a ω = {u1, u2, . . . , un} ∈ Hn target
sequence, which we call configuration in the following.

3 Preprocessing

The first step of the proposed approach is background sub-
traction in the input ISAR images, which yields a binary
foreground mask Bt at each frame t = 1, . . . , n. To de-
crease the number of false foreground pixels caused by
speckle noise, we have proposed a Gaussian Markov Ran-
dom Field model for foreground-background segmentation
which can be optimized by efficient Graph-cut based algo-
rithms.
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(a) Input ISAR image (b) Foreground mask (B)

(c) Frame re-centering (green rectangle) and target line segment extrac-
tion in the duplicated mosaic image of mask B

Figure 1: Target axis extraction and parameterization

3.1 Initial alignment and line segment estimation

To get an initial estimation of the target axis segment, we
detect first the axis line using the Hough transform of the
foreground mask. At this point, we also have to deal with
a problem which originates from the ISAR image synthesis
module. The image formation process considers the images
to be spatially periodic both in the horizontal and vertical
directions, then, the imaging step estimates the target cen-
ter, and attempts to crop the appropriate Rectangle of In-
terest (ROI) from this periodic image (a correctly cropped
frame is in Fig. 2(a)). However, if the center of the ROI is
erroneously identified, the target line segment may “break”
into two (or four) pieces, which case appears in Fig. 1(a).
Therefore, in the proposed image processing approach, we
search for the longest foreground segment of the axis line
in a duplicated mosaic image, which step also re-estimates
the center of the input frame (see Fig. 1(c)).

3.2 Scatter candidate set extraction and filtering

Permanent scatterers cause dominantly high amplitudes in
the ISAR images; however, due to the presence of speckle,
defocus and scatterer scintillation, the amplitudes may sig-
nificantly vary over the consecutive frames, moreover we
must expect notable differences between different scatters
of the same frame. For this reason, we cannot determine
efficient global thresholds to extract all scatters by simple
magnitude comparison. Therefore, we extract first several
scatter candidates, and utilize later the temporal persistency
and the line-structure of the imaged targets to discriminate
the real scatters from the false candidates. A Local Maxima
(LocMax) filter is used to extract the preliminary scatter
candidates Fig. 2(b). As the results show, the real scatters
are efficiently detected, but the false alarm rate is high.
Our initial scatter filtering step processes exploits two facts.

(i) For a given target candidate, we expect that the scat-
ter candidates are “close” to the axis line (ii) The projec-
tion of two different scatters to the axis line should not be
“too close” to each other, as the later artifacts are mainly
caused by multiple echoes from the same scatterer. Based
on the above assumptions, we can select a preliminary fil-
tered scatter set, which can be observed in Fig 3(a). At this
point the quality of the result is still notably poor compared
to the expected output, which is similar to Fig 2(a): the fil-
tering step does not select the right subset from the initial
candidates of Fig. 2(b). The main reason for the failure is
the inaccurate preliminary detection of the center line seg-
ment, which yields that false scatter candidates may align
to the estimated axis. Therefore, we have proposed a solu-
tion, which combines information in parallel from the sil-
houette mask and the positions of the LocMax-scatter can-
didates. We exploit the fact that if we find a subset of the
scatters which fit a given line l, we can have a strong ev-
idence the l is the axis line of the target For re-estimating
the optimal line to the preliminary scatter candidates, we
have used the RANSAC algorithm. After obtaining a re-
estimated axis, we apply again the scatter filtering process,
whose results are in Fig 3(b). We can observe a significant
improvement in the 1st and 3rd frames; however, we can
still find a false scatter (1st frame) and an erroneous result
(2nd frame) which should be removed by further constraints
and by considering temporal information.

4 Multiframe Marked Point Process Model

Following a Bayesian approach, we introduce a data-
dependent Gibbs distribution on the configuration space as:
PD(ω) = 1/ζ · exp (−ΦD(ω)) where ζ is a normalizing
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(a) Real dominant scatters (GT) (b) LocMax filter results

(c) Parameterization of the scatter position

Figure 2: Dominant scatter detection problem (a) highlighted true scatters, i.e. Ground Truth (GT), (b) LocMax filter
result, (c) parameterization

constant and ΦD(ω) is the configuration energy:

ΦD(ω) =
n∑

t=1

AD(ut) + γ ·
n∑

t=1

I(ut, ωt)

In the above formula, AD (ut) ∈ [−1, 1] is the data depen-
dent unary potential and I(ut, ωt) ∈ [0, 1] is called the in-
teraction potential, where ωt = {ut−Z , . . . , ut, . . . , ut+Z}
is a sub-sequence of ut’s Z-nearest neighbors. Parameter
γ is a positive weighting factor between the two potential
terms. We aim to find the Maximum Likelihood (ML) con-
figuration estimate, obtained by minimizing ΦD(ω).

4.1 Definition of the Unary Potentials

The AD (ut) unary potential characterizes a proposed ob-
ject candidate in the tth frame depending on the local ISAR
image data, but independently of other frames of the se-
quence. The unary potential is composed of two parts:

AD (ut) =
1

2

(
AB

D (ut) +ASc
D (ut)

)
where AB

D (ut) is the body-term and is the ASc
D (ut) scatter-

term.
For composing the body-term term, let us first denote by
Lu ⊂ S the set of pixels lying under the line of u in
the duplicated image. Let us denote by Ru ⊂ Lu the
pixels covered by the line segment u (see Fig. 1(c)):
Ru = {s =∈ Lu | d(s, [x(u), y(u)]) < l(u)/2} and by
Tu⊂ Lu\Ru the pixels of the Lu which lie outside the u
segment but close enough to its endpoints. The body fitting
feature, fD(u) favors object candidates, where the under
the line segments (Ru) we find in majority foreground clas-
sified pixels in the B-mask of the actual frame, while the
outside area Tu covers background regions.

fD(u) =
1

Ar{Ru ∪ Tu}
·

(∑
s∈Ru

B (s)+
∑
s∈Tu

1−B (s)

)

where Ar{.} denotes area in pixels. Thereafter, the body-
term of the unary potential of u is obtained as:

AB
D (u) = Q (fD(u,B), d0) ,

where the following monotonously decreasing Q(f, d0)
function is used:

Q(f, d0) =

{ (
1− f

d0

)
if f < d0

exp (−0.1 · f − d0)− 1 if f ≥ d0

d0 is a parameter of the model, used as acceptance threshold
for valid objects.
On the other hand, the scatter-term penalizes scatters,
which are not located at local Maxima of the ISAR image:

ASc
D (u) = Q

 1

K(u)
·
K(u)∑
i=1

Ψ(i, u), dΨ

 , where

Ψ(i, u) =

{
0 if qi is a local max of the image
1 otherwise

Parameters d0 and dΨ are set by training samples [1].

4.2 Definition of the Interaction Potentials

Interaction potentials are responsible for involving tem-
poral information and prior geometric knowledge in the
model. Since the observed object’s structure can be con-
sidered static, we can usually observe strong correlation
between the target parameters in the consecutive frames.
Since due to the imaging technique, the c(u) center is not
relevant regarding the real target position, we only penal-
ize high differences between the θ(u) angle and l(u) length
parameters, and significant differences in the relative scat-
ter positions and scatter numbers between close-in-time im-
ages of the sequence.
The prior interaction term is constructed as the weighted
sum of four sub-terms: the median length difference
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Il(ut, ωt), the median angle difference Iθ(ut, ωt), the me-
dian scatter number difference I#s(ut, ωt) and the median
scatter alignment difference Isd(ut, ωt) .

I(ut, ωt) =δl · Il(ut, ωt) + δθ · Iθ(ut, ωt)+

+ δ#s · I#s(ut, ωt) + δsd · Isd(ut, ωt)

δl , δθ, δ#s , δsd are positive and δl + δθ + δ#s + δsd = 1.
The first three sub-terms are calculated as the median val-
ues of the parameter differences between the actual and the
nearby frames:

Il(ut, ωt) = min (medl(t)/lmax, 1)

Iθ(ut, ωt) = min (medθ(t)/θmax, 1)

I#u(ut, ωt) = min (medK(t)/Kmax, 1)

where for target parameters f ∈ {l, θ,K}:

medf (t) = median
t−Z≥i≥t+Z

|f(ut)− f(ui)| (1)

while lmax, θmax and Kmax are normalizing constants.
Note that median filtering proved to be more robust than
averaging the difference values due to the presence of out-
lier frames with erroneously estimated objects.
The scatter alignment difference feature Isd(ut, ωt) eval-
uates the similarity of the relative scatter positions on the
objects of close frames. First we define the target’s scatter
alignment vector in the following way:

τ(u) =
(
τu(q1), τu(q2), . . . , τu(qK(u))

)
where - as defined in Sec. 2 - τu(q) is the line directional
component of the q scatter’s position to the axis of u.
Let u and v be objects of two different frames, which may
have different numbers of scatters. The difference between
τ(u) and τ(v) is defined as:

Θ(τ(u), τ(v)) =
1

2

(
1

K(u)

K(u)∑
i=1

min
j≤K(v)

|τu(qi)− τv(qj)|+

1

K(v)

K(v)∑
j=1

min
i≤K(u)

|τu(qi)− τv(qj)|

)

Then, with using Equation (1), the scatter alignment differ-
ence term is obtained as:

Isd(ut, ωt) =min
(
medsd(t)/d

sd
max, 1

)
where

medsd(t) = median
t−Z≥i≥t+Z

Θ(τ(ut), τ(ui))

For enabling efficient computation, we approximate the
Θ(τ(ut), τ(ui)) feature with the calculation of the 1D dis-
tance transform map in a discretized domain of the [0, 1]
interval.

5 Optimization

We have developed an iterative optimization algorithm to
obtain an efficient target sequence considering the previ-
ously defined configuration energy function ΦD(ω).

(a) I - Initial detection results (Preprocessing, first step)

(b) R - RANSAC-based refinement (Preproc., second step)

(c) O - Final output after the iterative optimization

Figure 3: Detection results on three frames of SEQ1 after
the steps of the workflow. The 8 scatters are correctly de-
tected.

1. Execute the Initial Detection and the RANSAC-
refinement steps (Sec. 3), and initialize the configu-
ration with the obtained sequence (see also Fig. 3(b)):
ω[0] = {u[0]

1 , u
[0]
2 , . . . , u

[0]
n }, and set iteration counter

k = 0, inverse temperature β = β0, refinement pa-
rameter ϵ = ϵ0 and boolean STOP:=false

2. Iterate the following steps while STOP=false
for each t = 1, . . . , n:

• u:=Propose_RANDOM_OBJECT(t)
• Consider the ω∗ configuration which could be

would obtain if in ω[k] we exchanged u
[k]
t by u.

• Calculate the energy difference between and ω[k]

and ω∗:

∆Φω(u, t) = ΦD (ω∗)− ΦD

(
ω[k]

)
• Calculate the dω (u) exchange rate as follows:

dω (u) =
δaω (u)

1 + δaω (u)
with aω (u) = e−β·∆Φω(u)

and set

u
[k+1]
t =

{
u with probability dω (u)

u
[k]
t otherwise

3. k := k+1, increase β and decrease δ with a geometric
scheme.

4. If the process converged: STOP:=true. GOTO step
2.
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Normalized Axis Scatter Det. Average Scater
Parameter Error (F-rate in %) Pos. Error in pixels

Step → I R O I R O I R O
SEQ1 0.32 0.28 0.05 44 83 98 13.1 3.4 0.2
SEQ2 0.11 0.08 0.02 88 94 99 1.3 0.9 0.5
SEQ3 0.09 0.11 0.06 88 84 94 3.1 4.2 1.5
SEQ4 0.08 0.06 0.04 93 93 96 2.8 2.5 2.1
SEQ5 0.21 0.16 0.09 93 94 96 0.7 0.6 0.4

Table 1: Quantitative evaluation results for the five test sequences. I/R/O refer to the different steps of the workflow
(Initial, RANSAC and Optimized), similarly to Fig. 3

6 Experiments

We have tested our method on five airborne ISAR image se-
quences about different ship targets. In aggregate, the test
data contains 123 evaluated ISAR frames (18 to 30 frames
in each sequence) and 1014 true scatter appearances (8 or
9 scatters in each frame). For quantitative validation, we
have manually generated Ground Truth (GT) data for both
the axis segments and the scatter positions in all frames of
all sequences. We have defined three types of error mea-
sures. The Normalized Axis Parameter Error is calculated
as the sum of the center position and axis length errors nor-
malized with the length of the GT target, and the angle error
normalized by 90◦. The Scatter Detection Rate is derived
so that we count the number of true positive, false negative
and false positive scatters (for a good match, the distance of
a detected and a GT scatter should be below a threshold).
Thereafter, we give the F-rate (harmonic mean of precision
and recall) of the detection in percent. The third feature is
the Average Scatter Position Error, which is measured in
pixels. Table I shows the evaluation rates for the three steps
of the workflow I/R/O (see also Fig. 3). We can observe
that the proposed method can accurately deal with all the
five test cases (SEQ1-SEQ5). The improvement from the
Initial to the Optimized phase of the process is particularly
significant in SEQ1 (the same sequence is shown in Fig. 3),
which contains a difficult test case. The improvements are
also remarkable in SEQ2-3, while SEQ4-5 contains eas-
ier scenarios where the initial detection is already notably
efficient, thus the improvement is smaller.
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