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Attila Börcs and Csaba Benedek
Distributed Events Analysis Research Laboratory, Computer and Automation Research Institute

H-1111, Budapest, Kende utca 13-17, Hungary, {borcs,bcsaba}@sztaki.hu

Abstract

In this paper we present a new model for joint extrac-
tion of vehicles and coherent vehicle groups in airborne
LIDAR point clouds collected from crowded urban ar-
eas. Firstly, the 3D point set is segmented into terrain,
vehicle, roof, vegetation and clutter classes. Then the
points with the corresponding class labels and inten-
sity values are projected to the ground plane, where the
optimal vehicle and traffic segment configuration is de-
scribed by a Two-Level Marked Point Process (L2MPP)
model of 2D rectangles. Finally, a stochastic algorithm
is utilized to find the optimal configuration.

1. Introduction

Automatic traffic monitoring is a central goal of ur-
ban traffic control, environmental protection and aerial
surveillance applications. Complex traffic analysis
needs a hierarchical modeling approach: at low level
individual vehicles should be detected and separated,
meanwhile at a higher level we need to extract coherent
traffic segments, by identifying groups of corresponding
vehicles, such as cars in a parking lot, or a vehicle queue
waiting in front of a traffic light. In this paper, we in-
troduce a joint probabilistic model for vehicle detection
and traffic segmentation in airborne LIDAR data, which
contains point position, intensity and echo information.

LIDAR based vehicle detection methods in the liter-
ature follow generally either a grid-cell- or a 3D point-
cloud-analysis-based approach [6]. We propose a hy-
brid model here, where the initial point cloud is clas-
sified via 3D features, but the optimal object configu-
ration is extracted in a 2D lattice, after ground plane
projection. We model a traffic scene by a Marked Point
Process (MPP) [3], which is an efficient Bayesian tool
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to characterize object populations, through jointly de-
scribing individual objects by various data terms, and
using information from entity interactions by prior geo-
metric constraints. However, conventional MPP models
offer limited options for hierarchical scene modeling,
since they usually exploit pairwise object interactions,
which are defined on fixed symmetric object neighbor-
hoods. In a traffic situation we often find several groups
of regularly aligned vehicles, but we must also deal with
junctions or skewed parking places next to the roads
(Fig. 3), where many differently oriented cars appear
close to each other. In addition, the coherent car groups
may have thin, elongated shapes, therefore concentric
neighborhoods are less efficient. For this reason, we
propose here a Two-Level MPP (L2MPP) model, which
partitionates the complete vehicle population into ve-
hicle groups, called traffic segments, and extracts the
vehicles and the optimal segments simultaneously by a
joint energy minimization process. Object interactions
are differently defined within the same segment and be-
tween two different segments, implementing adaptive
object neighborhoods. This model extends our single
level MPP method [2] proposed for vehicle detection.
In addition, we present here an improved point cloud
segmentation algorithm, and provide a detailed quanti-
tative evaluation on four datasets of 471 vehicles, con-
sidering two reference methods [4, 5].

2. Point Cloud Preprocessing

We have developed a Markov Random Field (MRF)
model for point cloud segmentation, which utilizes var-
ious 3D descriptors. For featuring the terrain class, we
estimate the dominant plane of the input cloud using the
RANSAC algorithm, and calculate the distance of each
point from this plain. Regarding the roof class, we as-
sume that roof points form large connected regions of
the cloud, which are composed of segments with uni-
form surface normals. Local point cloud density is also
calculated to recognize sparse clutter regions (like most
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Figure 1. Data model elements

reflections from walls), and echo number is exploited
for identifying vegetation. Points of vehicles appear as
outliers from the previous classes, and in addition, they
fit prior height distributions of the possible cars. Fi-
nally, we construct an MRF energy model based on the
previous features. For optimization, the fast ICM algo-
rithm proved to be efficient in the used test sets. Af-
ter the 3D segmentation process, we stretch a 2D pixel
lattice S, i.e. an image, onto the ground plane, where
s ∈ S denotes a single pixel. Then, we project each
LIDAR point to this lattice, which has a label terrain
(blue in Fig. 1(a)), building roof (purple) or vehicle
(black). This projection results in a 2D class label map
(Fig. 1(a)) and an intensity map (Fig. 1(b)), where mul-
tiple point projections to the same pixel are handled by
a point selection algorithm, which gives higher prece-
dence to vehicle point candidates. Since the projection
of the sparse point cloud to a regular image lattice may
result in pixels without definite class labels and intensi-
ties, we also use undefined labels at certain pixels (white
pixels of Fig. 1(a) and (e)). Terrain and roof regions are
jointly referred as background in the following.

3. L2-Marked Point Process Model

The inputs of this step are the label and intensity
maps over the pixel lattice S, which were extracted in
the previous section. The detection is mainly based on
the label map, but additional evidences are extracted
from the intensity image, where several cars appear as
salient bright blobs due to their shiny surfaces. We as-
sume that each vehicle u can be approximated from top
view by a rectangle, which is described by five param-
eters: cx and cy center coordinates in the lattice S, eL,
el side lengths and θ orientation (Fig. 1(c)). Let be
Ru ⊂ S the set of pixels corresponding to u. Note
that with replacing the rectangle shapes for parallelo-

grams, the “shearing effect” of moving vehicles may
also be modeled [6], but in the considered test data this
phenomenon could not be reliably observed. Let H be
the space of u objects. We define a neighborhood re-
lation ∼ in H: u ∼ v iff the distance of the object
centers is smaller than a threshold. We describe the
scene by a Two-level Marked Point Process (L2MPP)
model: a global configuration ω is a the set of k traffic
segments, ω = {ψ1, . . . , ψk}, where each traffic seg-
ment ψi (i = 1 . . . k) is a configuration of ni vehicles,
ψi = {ui1, . . . , uini

} ∈ Hni . Here we prescribe that
ψi ∩ ψj = ∅ for i ̸= j, while the k set number and
n1, . . . , nk set cardinality values may be arbitrary (and
initially unknown) integers. We mark with u ≺ ω if
u belongs to any ψ in ω, i.e. ∃ψi ∈ ω : u ∈ ψi. Ω
denotes the space of all the possible ω global configu-
rations. Taking an inverse approach, an energy function
Φ(ω) is defined, which can evaluate each ω ∈ Ω con-
figuration based on the observed data and prior knowl-
edge. Therefore, the energy can be decomposed into a
data term and a prior term: Φ(ω) = Φd(ω) + Φp(ω),
and the optimal ω is obtained by minimizing Φ(ω).

3.1 Data-dependent energy terms

Data terms evaluate the proposed u vehicle candi-
dates based on the input label- or intensity maps, but
independently of other objects of the population. The
data modeling process consists of two steps. First, we
define different f(u) : H → R features which evaluate
a vehicle hypothesis for u in the image, so that ‘high’
f(u) values correspond to efficient vehicle candidates.
The following features are utilized by our model:

• fve(u) vehicle evidence feature: the ratio of the
number of vehicle classified pixels within the proposed
rectangle Ru of object u (see Fig. 1(d)-(e))

• f eb(u) external background feature: the ratio of
background classified pixels around the proposed rect-
angle, within the T (i) external regions of Fig. 1(d)

• f it(u) intensity feature: ratio of the vehicle colored
pixels within Ru (Fig. 1(f))

In the second step, we construct φfd(u) data driven
energy subterms for each feature f , by attempting to
satisfy φfd(u) < 0 for real objects and φfd(u) > 0 for
false candidates. For this purpose, we project the fea-
ture domain to [−1, 1] with a monotonously decreasing
nonlinear Q(f, df0 ) function [3, 2], whose zero value is
equal to parameter df0 . With other words, df0 is the ob-
ject acceptance threshold for feature f , which can be set
based on manually annotated training data in a straight-
forward way. Once we obtained the φve

d (u), φeb
d (u),

φit
d (u) subterms, the joint data energy of object u is de-

rived as φd(u) = max(min(φit
d (u), φ

ve
d (u)), φeb

d (u)).
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Figure 2. Favored (
√

) and penalized (×)
sub-configurations within a traffic segm.

Here the min and max operators are equivalent to the
logical OR resp. AND operations for the different fea-
ture constraints in the negative fitness domain. We do
not prescribe simultaneously the vehicle evidence and
intensity constraints, since usually not all vehicles ap-
pear as bright blobs in the intensity map. The data term
of the ω configuration is obtained as the sum of the in-
dividual object energies: Φd(ω) =

∑
u≺ω φd(u).

3.2 Prior terms

The prior terms implement geometric constraints be-
tween different objects and traffic segments of ω.

Φp(ω) =
∑
u,v≺ω
u∼v

I(u, v) +
∑

u≺ω,ψ∈ω

A(u, ψ) (1)

where I(u, v) penalizes any overlapping rectangles
within the ω configuration I(u, v) = Area{Ru∩Rv}

Area{Ru∪Rv} .
To measure if a vehicle u is appropriately arranged

with respect to a traffic segment ψ, we define an align-
ment distance measure dψ(u) ∈ [0, 1] which is the av-
erage of two terms: firstly, the normalized angle differ-
ence between u and the mean angle within ψ (see Fig.
2(a)-(b)), secondly, with using RANSAC, we fit one or
a couple of parallel lines to the object centers within ψ,
and calculate the normalized distance of the center of
u from the closest line (Fig. 2(c)-(d)). For prescribing
spatially connected traffic segments, we use a constant
high difference factor, if u has no neighbors within ψ
w.r.t. relation ∼. Thus we derive a modified distance:

d̂ψ(u) =

{
1 if @v ∈ ψ\{u} : u ∼ v
dψ(u) otherwise

We define the A(u, ψ) arrangement term of (1) in the
following way. We slightly penalize vehicle groups
which only contain a single vehicle: with a small 0 <
c ≪ 1 constant A(u, ψ) = c iff ψ = {u}. Otherwise,
large d̂ψ(u) is penalized if u ∈ ψ; and favored if u /∈ ψ:

A(u, ψ) = 1u∈ψ · d̂ψ(u) + 1u/∈ψ · (1− d̂ψ(u))

where 1E ∈ {0, 1} is an indicator function of event E.

4 Optimization

To estimate the optimal object configuration, we
have proposed a two-level modification of the Multiple
Birth and Death Algorithm [1], as follows:

Initialization: start with empty population ω = ∅,
set the birth rate b0, initialize the inverse temperature
parameter β = β0 and the discretization step δ = δ0.

Main program: alternate the following three steps:
• Birth step: Visit all pixels on the image lattice S

one after another. At each pixel s, with probability δb0,
generate a new object uwith center s and random eL, el
and θ parameters. For each new object u, with a prob-
ability p0u = 1ω=∅ + 1ω ̸=∅ ·minψj∈ω d̂ψj (u), generate
a new ψ empty traffic segment, add u to ψ and ψ to ω.
Otherwise, add u to an existing traffic segment ψi ∈ ω
with a prob. piu = (1− d̂ψi(u))/

∑
ψj∈ω(1− d̂ψj (u)).

• Death step: Consider the actual configuration of
all objects within ω and sort it by decreasing values de-
pending on φd(u) + A(u, ψ)

∣∣
u∈ψ . For each object u

taken in this order, compute ∆Φω(u) = ΦD(ω/{u})−
ΦD(ω), derive the death rate dω(u) as

dω(u) = Γ(∆Φω(u)) =
δ exp(−β ·∆Φω(u))

1 + δ exp(−β ·∆Φω(u))
,

and delete object u with probability dω(u). Remove
empty traffic segments from ω, if they appear.

• Group re-arrangement: Propose randomly group
merge, group split and vehicle re-clustering moves. For
each proposed move M, calculate the corresponding
energy cost ∆ΦM

ω , and apply the move with a proba-
bility Γ(∆ΦM

ω ), similarly to the case in the death step.
Convergence test: if the process has not converged

yet, increase β and decrease δ with a geometric scheme,
and go back to the birth step.

5 Evaluation

We evaluated our method in four aerial LIDAR data
sets (provided by Astrium GEO-Inf. Services - Hun-
gary), which are captured above crowded urban areas
and contain in aggregate 471 vehicles. The parameters
of the method were set based on a limited number of
training samples, similarly to [1]. For accurate Ground
Truth (GT) generation, we have developed an accessory
program with graphical user interface, which enables us
to manually create and edit a GT configuration of rect-
angles. We have performed quantitative evaluation both
at object and at pixel levels. At object level, we have
counted the number of true positive, true negative and
false positive objects. Then with considering the Num-
ber of real Vehicles (NV), we calculated the F-rate of
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Table 1. Obj. and pix. level F-rates (in
%) by the DP [4], hX [5] and the proposed
L2MPP (2M) methods, and the Group Clas-
sification Rate (GR) of the L2MPP model.

Set NV* Object level % Pixel level % GR
DP hX 2M DP hX 2M 2M

#1 78 78 68 96 64 46 89 94
#2 91 90 93 98 77 77 88 93
#3 132 70 74 83 61 46 66 86
#4 170 85 87 89 77 76 64 92
All 471 83 82 91 70 61 80 91

*NV = Number of real Vehicles in the test set

Figure 3. Detection result with four clus-
ters. Vehicles of different segments
are displayed with different colors, back-
ground is interpolated for visualization.

the detection (harmonic mean of precision and recall).
At pixel level, we compared the vehicle silhouette mask
to the GT mask, and calculated the F-rate of the match
[1]. We have also measured the correct Group Classi-
fication Rate (GR, %) among the true positive samples,
considering GT classification of human observers.

For comparison, we have selected a grid-cell-based
algorithm from [4], called DEM-PCA (DP); and a re-
cent state of the art method [5], which uses h-maXima
(hX) transform followed by watershed segmentation.
Some qualitative results are shown in Fig. 3 and 4 (best
viewed in color), and the quantitative evaluation is pro-
vided in Table 1. Since the reference methods do not
deal with vehicle grouping, only the car detection rates
are compared: the proposed L2MPP model surpasses
the references both at object and at pixel levels.

6. Conclusions and future work

This paper has proposed a novel Two-Level MPP
model for joint extraction of vehicles and traffic seg-

Figure 4. Method comparison on a sample

ments in aerial point cloud data. The efficiency of
the approach has been tested with real-world LIDAR
measurements, and its advantages versus two reference
methods have been demonstrated. Note that in the pro-
posed model, the vehicles are grouped based on similar
orientation, but we have experienced that the method
can deal with car groups on slightly curved roads as
well. As future work, we plan to extend the prior terms
of our method to handle more complex vehicle arrange-
ment patterns such as strongly curved exit ramps or
roundabouts.
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