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Abstract—This paper describes the development and
hardware-in-the-loop testing of an Extended Kalman Filter
(EKF) for attitude estimation. After literature review, a multi-
mode solution to the estimation problem is introduced. It uses
the sensor measurements optimally relying on the magnetic and
acceleration data on the ground, and magnetic and GPS data in
the air. An emergency aerial mode dealing with lost GPS data
is also developed. The quaternion dynamic equations are chosen
to represent system dynamics. Their special structure makes
it possible to perform continuous-discrete transformation with
a closed form solution of the Heun scheme. This can improve
the prediction performance of the EKF. The observability of
the system was examined using gridding of the state space in
every modes of the filter. The computing steps of the new filter
are summarized before presenting issues of implementation and
testing. This article presents hardware-in-the-loop test results
with simulated GPS losses. Comparison to another filter is
also presented. The estimator was tested in real flights and
performed as expected.

I. INTRODUCTION

In the recent years, the research on unmanned aerial vehicle

(UAV) guidance and navigation algorithms gets more and more

attention. In 2006, a research cooperation started between

University of Minnesota (UofM), University of Sannio (UofS)

and Computer and Automation Research Institute (CARI). The

goal of this cooperation was to develop and build an aircraft

platform on which different guidance and control algorithms

can be implemented and tested in an easy and cost effective

manner. The project uses the E-flite Ultrastick 25e which is a

small radio controlled (RC) airplane (see [1] for more details).

In this project, the first step was to develop simple PID

controllers for stabilization and path tracking flight. The appli-

cation of stabilization and tracking controllers requires known

aircraft attitude during flight. This can not be measured, only

estimated from other measured data.

In the project, the Extended Kalman Filter (EKF) - proposed

in [2] - was used to estimate attitude Euler angles. The

hardware-in-the-loop (HIL) tests showed that the performance

of this filter is not satisfactory. In the HIL test, the aircraft

and sensor unit were replaced by Matlab Simulink models,

but the same hardware (i.e., microcontroller and RC system)

as installed onboard was used. An advantage of this testing

is that the estimated Euler angles can be compared with the

ones calculated in Matlab.

The poor performance of the filter motivated the authors to

search for better solutions which can perform well. The goal

was to develop an attitude estimator which can be used from

aircraft preparation (before take off) to aircraft shutdown (after

landing).

The outline of the paper is as follows: Section II overviews

the basic decisions (based on literature review) done at the

beginning of development and shows the structure of the

developed algorithm. Section III briefly introduces the the-

oretical steps concerning the equations of the filter. Section

IV outlines testing and tuning of the algorithm and presents

the HIL simulation results. Finally, the conclusion summarizes

the results.

II. DECISIONS ABOUT THE APPLIED METHODS AND

STRUCTURE OF THE ATTITUDE ESTIMATOR

The first task in the development of a state estimator is to

select the sensors to be used or select the (required) measured

quantities if the sensor unit is given. In this project, the

Crossbow µNAV low cost MEMS sensor (see [3]) is used.

This unit measures acceleration (accel.), magnetic (magn.)

and angular rate vector in the aircraft body coordinate system

(coord. sys.) and the barometric and Pitot tube pressures.

Furthermore, it can receive GPS signals. From the received

GPS signals the aircraft velocity and position can be obtained

(in earth coord. sys.). All measured quantities were calibrated

and tested. GPS signal is broadcast with 4Hz every other

data with 50Hz. Based on this unit, loosely or tightly coupled

GPS/INS solutions, or a standalone INS solution can be built.

In the original estimator (see [2]) – and in many estimators

([4], [5], [6]) – the accel. and magn. vectors were used as

measured outputs. However, the accel. vector can only be used

to estimate aircraft attitude if it coincides with the direction

of Earth's gravity vector. This is only true if aircraft stan ds on

the ground, or makes no maneuvers, otherwise the dynamical

accelerations highly distort the measurement. Despite this

distorting effect, the aforementioned assumption is used in [2],

[4], [5], [6], and only [4] and [5] mention that this can be used

only in hovering or quasi hovering situations characterizing

helicopters and quadrotors. The violation of this assumption

could lead to the original observer's poor performance.

[6] proposes the correction of measured accel. with the

dynamical part to get measurements closer to gravity vector.
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But this correction can not be completely achieved because

body velocity components and their accelerations are usually

unknown and so, only the indicated airspeed (IAS) measure-

ment (from Pitot pressure) can be used. This correction was

implemented and tested in conjunction with the original esti-

mator, but did not cause significant performance improvement.

The best solution would be not to use the accel. measure-

ments during flight of the aircraft. However, the estimation of

the rotation matrix requires two independent vector measure-

ments. It was pointed out in [7] that the system becomes again

observable if one considers the magn. and GPS measurements

together. So, by relying on these measurements an acceptable

solution can be achieved.

However, the GPS velocity and position measurements are

useless in low speed regions of the flight (before take off

and after landing), while the magn. measurements are equally

useful on ground and in air. In summary, one can well use

magn. and accel. measurements on ground and magn. and GPS

measurements in air. This leads to the idea of developing a

multi-mode filter, that can switch between these signal pairs.

This concept was used in [8] to satisfy fault tolerant needs.

Here, it is used to improve estimation performance.

Having decided about the required sensor measurements,

one has to think about the measurement errors. Acceleration,

magnetic and angular rate measurements are usually corrupted

by bias drift and measurement noise, while GPS measurement

is only corrupted by noise. The noises are usually assumed to

be zero-mean Gaussian. Such noises can be filtered out by a

well-tuned estimator. The biases are usually slowly varying,

almost constant quantities. They can be estimated as states of

the system if the augmented system is observable. It is proved

in [5] that from accel. and magn. measurements only the rate

gyro bias is observable. Thus, the multi-mode filter will only

be able to estimate this bias.

As the next design step the suitable representation of the

rotation matrix should be determined. For example, [4] and

[6] estimates elements of the rotation matrix, [8] uses Euler

angles while [2], [5], [7] use quaternion representation. In the

considered case, the quaternion representation was selected,

because it never becomes singular and its dynamical equation

is very simple which leads to a more accurate formulation of

the filter (see Section III). However, the final outputs of the

estimator are the three Euler angles.

The next decision to make is the selection of the nonlinear

filtering method (estimator algorithm). [4] and [5] use non-

linear observers based on Lyapunov technique or Lie group

theory, while [2], [6], [7] and [8] use EKF or its modifications.

The EKF algorithm is selected, because the original estimator

was an EKF (parts of the original code can be reused) and

this algorithm is widely used and computationally viable.

In the original code, the EKF measurement update was

done only at every second estimation step. This strategy has

decreased the computational power needs so, it has been

applied on the new EKF as well.

The next design step concerns the different modes of the

filter and the switching strategy between them. The following

modes of operation were selected:

1) MODE 1: Initialization of Euler angles based on magn.

and accel. measurements (when aircraft stands undis-

turbed on the ground). This is required because the EKF

is very sensitive to the initial conditions. The calculation

of Earth's magnetic vector components (in earth coord.

sys.) is also done. These are constant and required

also in the subsequent modes (see (10)). The rate gyro

bias values are also initialized. The initial quaternion is

calculated from the Euler angles.

2) MODE 2: Ground mode before take off. Continuous

update of estimates based on magn. and accel. measure-

ments.

3) MODE 3: Aerial mode with GPS. Continuous update of

estimates based on magn. and GPS measurements during

flight.

4) MODE 4: Aerial mode without GPS. Continuous update

of estimates based on magn. and IAS corrected accel.

measurements during flight.

5) MODE 5: Ground mode after landing. Continuous up-

date of estimates based on magn. and accel. measure-

ments.

The described estimator modes of operation represent a

loosely coupled INS/GPS solution. The switching conditions

between the different modes are as follows:

1) MODE 1 to MODE 2: MODE 2 starts automatically

after initialization which lasts for 10 seconds.

2) MODE 2 to MODE 3: The switching happens when

ax < −0.32g, δth > 80% and the estimator is in

MODE 2. Here the goal is to establish the time of

take off. This is characterized by large longitudinal

acceleration (in absolute value) and full throttle position.

The accel. and throttle limits were determined from

concrete flight data. The limits were selected to avoid

false switching. The third condition is required to avoid

in-flight switching when aircraft does maneuvers with

large ax accelerations.

3) MODE 3 to MODE 4: This is required if there is no GPS

signal or erroneous signal arrives for at least 3 seconds.

This time limit is required to avoid frequent switching.

The time value was selected examining the divergence

properties of the filter with purely magn. measurements

to make it possible to quickly converge to the real angles

in MODE 4.

4) MODE 4 to MODE 3: If valid GPS data arrives again.

5) MODE 3 to MODE 5: For this change, the absolute

GPS velocity and flight time are considered. If the

velocity is below 0.2 m/s and flight time is above 120 s
the system switches. The flight time limit is required

because otherwise the system switches into MODE 5

during take off. The velocity limit was selected from

several manual flight tests.

Unfortunately, it is not possible to switch from MODE

4 to MODE 5 because GPS is not available in MODE 4.

Experiences show that it would be better to use the static

pressure for switching as it can be applied also in MODE

4.

The flowchart of the EKF program with the different modes

of operation can be seen in Figure 1. odd is a logical variable
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Fig. 1. EKF program flowchart

that can be 1 or 0 and it shows whether the actual calculation

step is odd or even. If valid GPS data arrives in MODE 3 the

correction step is done irrespective of the value of odd.

III. THEORETICAL DEVELOPMENT OF THE FILTER

EQUATIONS

Firstly, the initialization formulae are presented. The mean

measured values of acceleration, magnetic and angular rate

data are used. These means should be calculated using a

recursive formula to avoid the unnecessary storage of input

values:

v̄1 = v1, v̄k+1 = v̄k
k

k + 1
+ vk+1

1

k + 1
(1)

Here, v represents the vector of measured data and v̄ is the

computed mean.

The initial roll and pitch angles can be calculated from the

mean acceleration values as follows:

φ = arctan

(
āy
āz

)

, θ = arcsin (−āx) (2)

Using these angles the body magnetic vector (V B) can be

transformed into earth coord. sys. (V E
′

) assuming zero yaw

angle. This way, the magnetic yaw angle (ψ′) can be calculated

from the horizontal magnetic components in earth coord. sys.

Finally, the yaw angle corrected with magnetic declination will

be the real yaw angle (ψ) of the aircraft:

V E
′

= TTψ T
T
θ T

T
φ |ψ=0V

B

ψ′ = arctan 2

(

−V E
′

(2)

V E′(1)

)

, ψ = ψ′ +D

V E = TTψ T
T
θ T

T
φ V

B

(3)

In (3), the Earth's magnetic vector (V E) is calculated in

earth coord. sys. D is the magnetic declination.

After deriving these formulae tests were carried out consid-

ering collected data before take off and after landing. These

tests showed that the yaw rate bias can be considered constant

during the whole flight, while the other biases vary. This is

a really advantageous situation, as the original EKF had a

tendency to estimate the whole yaw rate as bias, particularly,

if the aircraft flew circles. This problem can be avoided

considering only the roll and pitch rate biases in the filter.

The initial quaternion can be calculated from the initial

Euler angles as given in [9].

Second, the dynamic and measurement equations of the

EKF are derived. The continuous time (CT) differential equa-

tion of the quaternion vector in a rotating coordinate frame is

as follows:

q̇ = −
1

2







0 P̄ Q̄ R̄
−P̄ 0 −R̄ Q̄
−Q̄ R̄ 0 −P̄
−R̄ −Q̄ P̄ 0






q (4)

In (4), P̄ represents the real roll rate which means the

measured roll rate corrected with the bias and zero mean

Gaussian white noise, that is, P̄ = P − bP − vP . The same

convention is used for the pitch and yaw rate variables.

Assuming that the yaw rate bias is constant, and reorga-

nizing (4) results in the following CT dynamic equations with

parameter and state dependent coefficient matrices. The system

states are the quaternion and the time varying bias values:

q̇ =A1 (ρ) q +A2 (q) b+ V1 (q) v
q =

=A (ρ, b) q + V1 (q) v
q

where ρ =
[
P Q R− bR

]T
b =

[
bP bQ

]T

vq =
[
vP vQ vR

]T

(5)

The dynamics of the slowly varying biases can be modelled

as a system driven by zero-mean Gaussian white noise:

ḃ = vb where vb =
[
vbP vbQ

]T
(6)

Equations (5) and (6) are the CT equations of the system

dynamics. They are state and parameter dependent and conse-

quently nonlinear. From these system of equations a discrete

time (DT) linearized system should be derived to make the

Kalman filter algorithm applicable. The discretization can be

done using some integration formula. The simplest one is the

Euler (rectangular) the more accurate is the Heun (trapezoidal)

scheme. Originally, the Heun formula needs the prediction of

future state values (see [10]), but for the quaternion dynamics a

closed form and therefore more accurate solution exists thanks

to the special structure of equations.

qk+1 ≈ qk +
q̇k + q̇k+1

2
dt =

= qk +
dt

2
(A1(ρk)qk +A2(qk)bk + V1(qk)v

q
k)+

+
dt

2

(
A(ρk+1, bk+1)qk+1 + V1(qk+1)v

q
k+1

)

bk+1 ≈ bk +
vbk + vbk+1

2
dt

(7)
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Here, dt is the discrete time step and indexes k and k + 1
denote the sampled data values. Assuming bk+1 = bk (slowly

varying bias value), considering the predicted quaternion q̄k+1

with some approximation in the V1terms, introducing fictitious

noises
(
v̄qk+1

, v̄bk+1

)
and reordering the terms in (7) results

in:

(

I −
dt

2
A (ρk+1, bk)

)

︸ ︷︷ ︸

M
+

k+1

qk+1 =

(

I +
dt

2
A1 (ρk)

)

︸ ︷︷ ︸

M
−

k

qk+

+
dt

2
A2 (qk) bk + dtV1 (q̄k+1) v̄

q
k+1

bk+1 = bk + dtv̄bk+1

(8)

The EKF can be programmed in a way which ensures that

the measured ρk+1 parameter vector is available at the time

of state prediction. This means that (8) has a closed form

solution, if M+

k+1
is invertible. It can be proven that it is always

invertible and its inverse can be calculated in closed form. This

way, the DT state dynamic equation of the filter is as follows:

[
qk+1

bk+1

]

︸ ︷︷ ︸

xk+1

=

[(
M+

k+1

)−1
M−
k

dt
2

(
M+

k+1

)−1
A2 (qk)

0 I2

]

︸ ︷︷ ︸

Ak

[
qk
bk

]

︸︷︷︸

xk

+

+

[

dt
(
M+

k+1

)−1
V1 (q̄k+1) 0

0 dtI2

]

︸ ︷︷ ︸

Vk

[
v̄qk+1

v̄bk+1

]

(9)

After deriving the DT state equations, the output equations

should be derived. The first equation (10) is the measurement

of magn. vector in body coord. sys. The nonlinear equation

and its Jacobian are as follows:

V B = TEB (q)V E = h1(q, V
E), C1 =

∂h1(q, V
E)

∂q
(10)

Here, V E (Earth's magnetic vector) is known from the

initialization and can be assumed to be constant during the 10-

15 minutes flight duration. TEB (q) represents the quaternion

based rotation matrix from earth to body coord. sys.

The second equation (11) is the measurement of Earth's

gravity vector in body coord. sys:

aB = TEB (q)
[
0 0 1

]T
= h2(q), C2 =

dh2(q)

dq
(11)

Here, aB is approximately corrected with the dynamic

acceleration in MODE 4, otherwise it is used as measured.

The last output is the azimuth angle from GPS (12). This

can be calculated either from the GPS position or velocity.

GPS velocity measurements are usually more accurate and

the azimuth angle can be calculated from their instantaneous

values. Therefore, the velocity components are used. The

nonlinear output equation (with Evel and Nvel as east and

north GPS velocities) and the Jacobian are:

ψ = arctan 2

(
Evel

Nvel

)

=

= arctan

(
TEB (q) (1, 2)

TEB (q) (1, 1)

)

= h3(q), C3 =
dh3(q)

dq

(12)

Here, TEB (q) (1, i) are selected elements from the rotation

matrix.

This way the output matrix of the DT linearized equation

in the different operation modes is as follows:

• MODE 2, 4, 5: C =

[
C1 0
C2 0

]

• MODE 3: C =

[
C1 0
C3 0

]

or C =
[
C1 0

]

Here, the additional zero matrix blocks are required because

the biases are also parts of the EKF state vector (see (9)). The

structure of the output equation is shown below (with w zero-

mean Gaussian measurement noise vector):

yk+1 = Ck+1xk+1 + wk+1 (13)

After deriving the DT linearized equations, the observability

of the system must be checked. This can be done by checking

the observability of the linearized system in several points

of the state space. The question is whether the system is

observable in all the operation modes, or not. A set of Euler

angles was used to grid the quaternion space:

φ =
[
−90 : 10 : 90 −45 45

]
[deg]

θ =
[
−60 : 10 : 60 −45 45

]
[deg]

ψ =
[
−180 : 10 : 180 −45 45

]
[deg]

These values were selected to cover the flight envelope of

a non-aerobatic UAV. Observability check with zero angular

rates and biases and also with nonzero ones was performed.

In the first case, the system was not observable if only

magnetic measurements were used. In the second case, it was

always observable. But it is known that the orientation can

not be determined from only one vector measurement. As a

consequence, there can be only local observability in case of

pure magnetic measurements.

Finally, the order of calculations should be decided upon.

The structure of EKF algorithm can be found e.g. in [2]. The

computing modes and steps of the current algorithm are as

follows:

1) STEP k ONLY PREDICTION

•
(
M+

k

)−1
→ Ak−1

• x̄k = Ak−1x̂k−1 → V1(q̄k) ⇒ Vk−1

• X̄k = Ak−1Xk−1A
T
k−1

+ Vk−1V V
T
k−1

• x̂k = x̄k, Xk = X̄k

• M−
k ,

dt
2
A2 (q̂k)

2) STEP k + 1 PREDICTION WITH CORRECTION

•
(
M+

k+1

)−1
→ Ak

• x̄k+1 = Akx̂k → V1(q̄k+1) ⇒ Vk
• X̄k+1 = AkXkA

T
k + VkV V

T
k

• Ck+1 (q̄k+1)

• Kk+1 = X̄k+1C
T
k+1

[
Ck+1X̄k+1C

T
k+1

+W
]−1
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• x̂k+1 = x̄k+1 +Kk+1 [yk+1 − h (x̄k+1)]
• Xk+1 = [I −Kk+1Ck+1] X̄k+1

• M−
k+1

, dt
2
A2 (q̂k+1)

Here, V is the angular rate and gyro bias noise covariance

matrix, while W is the noise covariance matrix of output

measurements. Note that its dimension is different in the

different operation modes. X is the state estimation error

covariance matrix, (̄.) denotes predicted, while (̂.) denotes

corrected values.

IV. TUNING AND TESTING OF THE FILTER

Tuning and testing alternated during the filter development.

The final filter weights (noise covariance values) were selected

after several iterations, and it turned out that MODE 4 requires

magnetic and acceleration noise covariances different from

those in MODE 2 and 5. This is not surprising if we consider

the different function of these operation modes.

The whole process was performed as follows:

1) Step by step implementation and testing of the EKF code

in Matlab and tuning of parameters using real flight test

data.

2) Code optimization considering the sparse and special

structure of the system matrices (see (9))

3) C−mex file implementation of the code and comparison

with m file results in Matlab for the same data. The C
code should give exactly the same results as the m and

this was achieved.

4) Implementation onboard the MPC555 microcontroller.

Indoor and outdoor tests and fine tuning of weights in

ground mode.

5) HIL tests and fine tuning of weights in aerial mode.

6) Several successful flight tests were conducted with au-

topilots using the new EKF (NEKF), but evaluation of

flight test data is out of the scope of this paper.

Now, the HIL test results with the original (UofM) and new

(NEKF) estimators are compared. This is the only possibility

to evaluate the performance of the NEKF as the real Euler an-

gles are not measured in flight. The estimated Euler angles in

mixed manual and autopilot flight tests (with several simulated

GPS losses) are shown in Figs. 2-4. The steps of the HIL test

with NEKF were as follows (note that the UofM filter does

not use GPS):

• Start with manual flight, lose GPS after some time.

• GPS re-appears, then start roll doublet tracking, lose GPS

during tracking.

• Switch back GPS during manual flight.

• Switch auto mode again, lose GPS during stabilization

phase.

• Switch back GPS during stable (autopilot) flight.

• Lose and switch back GPS during roll doublet tracking

maneuver.
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Fig. 2. Estimation of roll angles
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Fig. 3. Estimation of pitch angles

The dashed lines represent the 'real' Euler angle values

computed by Matlab while the continuous lines represent the

estimated ones. It is obvious from all figures that the new

EKF has better performance than the original one, despite the

simulated GPS losses (for about 20 / 30 / 40 seconds).

Fig. 5 shows the absolute values of the estimation errors

for the original (UofM) and new (NEKF) codes. In case of

the new code, these errors are much smaller.

In essence, the goal of the development was clearly

achieved, a new EKF was successfully developed which out-

performs the original one. This was verified on real flight data

and during flight tests.

V. CONCLUSION

This paper presented the development and HIL testing of an

attitude EKF. The work was motivated by unsatisfactory expe-

riences from a previous EKF solution. After literature review,

a multi-mode solution was proposed which uses the sensor
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Fig. 4. Estimation of azimuth angles
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Fig. 5. Absolute estimation errors

measurements optimally. This means the use of magnetic and

acceleration data in ground modes and the use of magnetic

and GPS data in aerial mode. An emergency aerial mode for

the cases with lost GPS is also developed.

It was pointed out that the yaw rate bias can be considered

constant and therefore, only the other two (roll and pitch)

biases should be estimated.

The well-known and widely used EKF algorithm was se-

lected to solve the estimation problem. A quaternion repre-

sentation of the rotation matrix was applied. Besides non-

singularity, this made it possible to derive a closed-form solu-

tion for the Heun scheme used in the CT-DT transformation

of the system equations.

The used equations and algorithm steps were presented,

together with a flowchart of the whole estimator program.

After checking the observability of the system in the differ-

ent modes using a state space gridding technique (considering

the flight envelope of a non aerobatic small UAV), the steps

of the tuning and testing procedure were briefly described.

Finally, the evaluation of estimator performance was done

through HIL simulations by comparing it to another algorithm

and testing with simulated GPS losses.

Real flight tests of the algorithm were also performed but

these will form a topic of another article with the more detailed

evaluation of results achieved.
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