
Inter-organizational Interoperability through

integration of Multiagent, Web Service, and Semantic

Web Technologies∗∗∗∗

Paul Karaenke¹, Michael Schuele¹, András Micsik², Alexander Kipp³

¹University of Hohenheim, Information Systems 2, Schwerzstr. 35, 70599 Stuttgart,
Germany, {karaenke, mschuele}@uni-hohenheim.de

²MTA SZTAKI, Budapest Lágymányosi u. 11. H-1111, Hungary, micsik@sztaki.hu
³High Performance Computing Center Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany,

kipp@hlrs.de

Abstract. This paper presents a software architecture for inter-organizational
multiagent systems. The architecture integrates Web service technology into
multiagent systems to overcome the technical interoperability problem of
current multiagent systems in the fast growing service-oriented environments.
We integrate Semantic Web technology to make multiagent systems
semantically interoperable. We address the problem of interoperability
regarding interfaces, messaging protocols, data exchanged, and security whilst
considering a dynamic e-business environment. The proposed architecture
enables service virtualization, secure service access across organizational
boundaries, service-to-agent communication, and OWL reasoning within
agents.

Keywords: multiagent systems, web services, semantic web

1 Introduction

In recent years, service-oriented computing (SOC) has lead to significant
transformations of industrial software architectures. SOC is in particular aiming at
more flexible and open architectures for cross-organizational applications. It has
originated a remarkable technology stack for Web services (WS) and respective
standards which all contribute to the interoperability of systems. The same cannot be
said for multiagent systems. However, it has been argued that both technologies “need
each other” [5]. Both are concerned with problem solving by distributed systems, but
focus on different approaches and offer divergent capabilities: WS-* standards
facilitate the building of secure, robust and reliable virtual organizations (VOs) to
solve problems with distributed resources, but lack the capability to react or adapt to
undesired conditions and changing requirements in dynamic environments.

Multiagent technology, in contrast, offers the capability for flexible and adaptive
problem solving behavior both on single agent and multiagent level, but lacks

∗ Appeared in: Springer Lecture Notes in Business Information Processing Volume 98, 2012,

pp 55-75

reliability, security, and robustness [5]. Thus, combining WS and multiagent
technologies could make use of the advantages of both technologies while avoiding
their respective drawbacks.

WS specifications foster interoperability on the technical level regarding interfaces
(e.g., WSDL) and messaging protocols (e.g., SOAP). However, specifications of the
data exchanged (i.e., message content) is beyond the scope of WS specifications. The
Semantic Web (SW) approach, in contrast, focuses on semantic interoperability.
Thus, we propose an approach combining multiagent, WS, and SW technologies and
a respective software architecture for inter-organizational multiagent systems. We
address the problem of interoperability regarding interfaces, messaging protocol, data
exchanged, and security. The contribution of this research is a software architecture
for inter-organizational multiagent systems. This architecture enables service
virtualization, secure service access across organizational boundaries, service-to-agent
communication, and OWL reasoning within agents.

The remainder of this paper is as follows: section 2 defines the architectural
requirements and discusses related work. In section 3, we describe our approach for
integrating multiagent and Web service technologies. Section 4 describes the
integration of multiagent and Semantic Web technologies. We provide an evaluation
of the architecture in section 5. Section 6 summarizes the result.

2 Requirements and Related Work

2.1 Requirements Analysis

For the targeted interoperability of agent-based systems, agents must have adapters to
WS systems; i.e., agents need capabilities for interactions with systems following the
service-oriented architecture (SOA) paradigm. In addition, the inter-agent
communication has to be conceptually based on standardized agent communication
mechanisms (e.g., [3]). Communication mechanisms of agents have to be integrated
with Web service technologies to (i) ensure the preservation of the SOA properties
interoperability, reliability, security, and robustness for the integration and to (ii)
enable the utilization of existing SOA infrastructures.

Communicating components need to have a common understanding of exchanged
messages. This means at least, that exchanged messages can be enriched by
annotations that refer to shared ontologies. Semantic technologies support the agents
having behaviors with reasoning capabilities about the current agents’ environment,
the internal status, and especially messages received from other agents. Table 1
summarizes these requirements in a qualitative form following the IEEE software
requirements specification [10] according to the recommended basic issues
(functionality, external interfaces, performance, attributes, design constraints imposed
on an implementation).

Table 1. Requirements.

Issue Description
Functionality #1 Provision of inter-organizational communication interfaces and

messaging protocols.
Functionality #2 Provide agent capabilities for calling Web services.
Functionality #3 Provide agent capabilities for providing Web service interfaces.
Functionality #4 The agents’ internal reasoning is linked to semantically annotated

data utilized in inter-organizational communication.
External Interface #1 The data exchanged between organizations is semantically

annotated.
External Interface #2 The agent-to-agent communication via inter-organizational

communication interfaces is based on Web service technology.
Performance #1 Throughput should not essentially deviate from intra-organizational

communication.
Performance #2 Availability should not essentially deviate from intra-organizational

communication.
Performance #3 Response time should not essentially deviate from intra-

organizational communication.
Attributes #1 Ensure secure inter-organizational communication.
Design Constraints #1 Inter-organizational communication interfaces are based on Web

service standards.
Design Constraints #2 Inter-agent communication has to be conceptually based on

standardized agent communication mechanisms.
Design Constraints #3 Semantically annotated data bases on Semantic Web standards.

2.2 Related Work

Related research exists in the areas of translating agent to WS messages and vice
versa as well as in the area of integrating Semantic Web languages in agent
communication and reasoning.

The coupling of agents and WS resources in a similar approach is investigated in
[21], though the authors remain on a very high level of abstraction and do not
consider agent-to-agent communication based on WS technology. The Web Service
Integration Gateway (WSIG) [6][12] is an official Jade plug-in, which provides
bidirectional invocation facility, by which Jade agents can call WSs and WS clients
can call Jade agent services. The connection of agents and WSs is implemented using
elaborate on-the-fly translation between agent messages and SOAP messages.
However, WSIG cannot connect agent platforms via SOAP and does not allow
transparent wrapping of agent message content into SOAP, thus it fails to support the
mentioned scenarios (dynamically changing business partners, secure communication,
etc.).

The AgentWeb Gateway [24] is a middleware between agent platforms and WS
platforms, which provides various transformation mechanisms between the two
worlds: agent platforms and web services. Therefore, it enables integration of the two
worlds without changing existing specifications. As part of the solution, the gateway
provides SOAP to ACL and ACL to SOAP protocol converters. One of our goals is to
achieve SOAP-based communication among agent platforms (External Interface #2).
However, dynamic aspects as required within typical inter-organizational scenarios

are not considered, such as the dynamic and transparent substitution of collaboration
partners as well as the transparent integration of security related issues. These
exemplary issues play a fundamental role in inter-organizational environments, since
in particular the substitution of service endpoints typically enforces a significant effort
to build up an according, trusted environment. Furthermore, implementation details or
source code are not available for this work.

Paurobally and Jennings [23] use WS protocols to describe speech acts and
implement the contract net protocol for WSs. This approach requires a complex re-
engineering of existing WSs to handle speech acts and agent coordination protocols,
whereas multiagent platforms already include this functionality and provide a variety
of well established coordination protocols. Furthermore, software agent properties
like pro-activeness and goal-orientation are not considered in this approach.

[7] gives an overview of different approaches to directly integrating FIPA
communication and Web Service Technologies, and collects requirements for such an
integration. In prior work, we have evaluated the mentioned approaches [18] for this
aspect of our architecture and found that most of them are not available for re-use
(reasons are given below).

The approach of Soto [23] falls closest to ours, but in this case the contents of
FIPA envelopes are mapped to WS-Addressing headers, thus it is unavailable for use
by the transport layer itself. Later it will be explained that WS-Addressing headers are
used in a different way in our environment.

WS2Jade [21] is an integration approach focusing on closely coupling Jade agents
and Web Services by representing a web service by a gateway agent. A new gateway
agent is created automatically for a WS by WS2Jade (which could lead to
performance and management issues in our scenario). As WS2Jade focuses on agents
executing web services, it is not suited for bi-directional agent-to-agent
communication via SOAP either.

Moreira et al. propose the AgentSpeak-DL dialect, which extends AgentSpeak
towards Description Logic (DL) [19]. However, AgentSpeak-DL is a specific
language and its underlying DL is less expressive than OWL Lite and OWL DL.
Therefore, it does not allow for using existing OWL ontologies, but required
modifications to these. AgentOWL is a Jade plug-in, which enables agents to
exchange SPARQL queries and RDF triples in ACL messages [17]. It also contains
an embedded inference engine and connection possibility with remote knowledge
bases. However, AgentOWL is not integrated with a BDI implementation, and
furthermore its interoperability with external ontologies is unsuitable for our
purposes. Nuin [2] is an agent framework designed for practical development of
agents in SW applications based on BDI principles. The agents running in Nuin may
have access to different knowledge sources, including RDF and OWL ones. However,
Nuin does not support RDF knowledge sources fully. In contrast to Nuin, our
approach establishes a direct connection between the agent belief base and the
underlying OWL knowledge base, which supports both accessing and modifying
OWL facts.

JACK Intelligent Agents [9] is a framework for multi-agent system development,
which is built using the BDI principles, so agents can manage beliefs, desires and can
also plan their actions to implement their desires. It also provides its own Java-based
plan language and graphical planning tools. Although JACK has an extension that

enables it to communicate with other FIPA agents, the framework is a commercial,
closed software, and thus could not be used in our case.

3 Integrating Multiagent and Web Service Technologies

In this section, we describe our approach to integrate Web service technologies into
multiagent systems. Firstly, we describe the overall approach of coupling multiagent
and WS technologies. Secondly, we give details about secure inter-organizational
communication in our approach. Finally, we give details about secure agent
communication in inter-organizational settings utilizing the two former approaches.

3.1 Encapsulation of Web Service Resources

We propose an approach for coupling of WS and agent technology in a head body
architecture [26][8]. The head body paradigm implies a conceptual separation of a
software agent into two parts – head and body. The agent’s head is used for
interactions with other agents. This includes reasoning about interactions such as
participating in cooperative processes for problem solving. The body is encapsulating
any other (domain) functionality of an agent [26][8]. The head body paradigm is used
in the approach shown in Fig. 1. WS resources that are represented by agents are part
of the body. The agent’s core capabilities are implemented in the head; i.e.,
interactions and especially coordination with other agents in the agent society. The
agent communicates with the encapsulated WS via WS sensor and WS effector.

On the conceptual level, agent-to-agent communication is based on FIPA
communication standards (e.g., [3]). On the technical level, agent-to-agent
communication is based on WS technologies and standards. Therefore, the agents can
be used in existing WS infrastructures and systems. The presented approach of
coupling WS and agents allows the utilization of multiagent coordination protocols
for the coordination of existing WSs in existing infrastructures. A WS which is
represented by an agent can transparently be invoked by WS clients. The agent can
evaluate the invocation requests and can reason whether an invocation of the
encapsulated WS is in accordance with its own goals. If the invocation request is
opposed to the goals, the agent can intercept the invocation and the encapsulated WS
is not invoked. Further, the agents can pro-actively work towards the goals; e.g.,
maximizing revenue for encapsulated resources by establishing Service Level
Agreements (SLAs).

A special case of the invocation of a Web service encapsulated in an agent’s body
is the processing of invocation requests from external callers. In this case, the agent
acts as a proxy for the Web service to the external environment. This case is
especially important for the integration of WS and multiagent technology, as the
encapsulation is transparent to the external caller; i.e., the approach can be used in
existing WS infrastructures and for existing Web services.

Fig. 1. Head Body Architecture

An external invocation request of an encapsulated Web service is initiated by either
another agent or an external Web service client. The agent has full control over the
encapsulated Web service and can decide, based on semantic reasoning, if an
invocation of the Web service is compatible with the agent’s own goals. That is, the
agent can decide if it invokes the Web service or not. The result of the invocation is
then delivered to the component that has requested the invocation.

Practical examples for reasoning about service invocations fall into the areas of
task prioritization and business partnership. The type of task requested is naturally
extractable from the service request. Furthermore, our framework injects the business
context into the service requests, namely the identifier of the customer and the
contractual context of the request, as further discussed in 3.2. By this information, the
agent can decide to hold or completely re-order the execution of incoming service
requests, and here the semantic description of tasks, business partners and priorities
are utilized in conjunction with reasoning inside agents.

3.2 Secure Inter-organizational Communication

In order to allow for a seamless integration of components, a corresponding flexible
and adaptive messaging infrastructure, commonly titled as “Enterprise Message Bus”,
has to be provided. We address this requirement by a set of components referred to as
the Gateway Toolkit which provides such a messaging infrastructure by allowing for
a “double-blind” virtualization approach [16]. On customer side, the Gateway Toolkit
allows to hide the concrete service provider (SP) which allows describing
corresponding workflows in a more abstract manner. Additionally, the customer can
easily change service providers by adapting the routing information of the Gateway
Toolkit infrastructure whilst not affecting the corresponding workflows.

The SP can easily hide the underlying service infrastructure by providing virtual,
callable service endpoints to potential customers. The major benefit of the service
provider hereby is that he is now able to adapt the underlying service infrastructure
whilst not affecting the corresponding service customers. The SP is additionally
enabled to involve third party SPs for particular sub-tasks without affecting the
customer. Such a realization provides benefits for both sides, the service providers as
well as for the service customers. Service provider can easily provide their
“products”, e.g. in the form of combined services, in such a way that potential service
customers can integrate these services in their own products. This is done in an
abstract manner which means in particular that no implementation details of the
underlying service implementation needs to be considered.

Through using “double-blind” virtualization mechanisms, i.e., by deploying the
gateway on both consumer and SP side, it is possible to alter resources and providers
without affecting the calling applications. Fig. 2 presents a sample deployment of the
Gateway infrastructure. The dashed line denotes an indirect link (as the gateway
extends the message channel).

Fig. 2. Sample deployment of the Gateway infrastructure

This deployment of the gateway allows a transparent and secure interaction
channel for the involved components. In particular, the gateway allows the provision
of virtual endpoints via which the corresponding components are able to interact with
each other in a secure way without the need to explicitly consider the corresponding
security as well as the according WS standards. The interaction is done completely
transparent for the components whilst considering dynamic e-business needs; e.g., the
possibility to change service provider during runtime, transparent usage of resources
whilst considering accounting and secure and reliable communication.

The Gateway mediates the communication between the front end WSs of the two
domains. Each front end authenticates itself to their respective Gateway. The Gateway
allows the invocation of virtual service endpoints by resolving these virtual to
concrete endpoints via the service instance registry (SIR). The SIR also provides
additional metadata such as the gateway endpoint that the message has to travel
through, as well as the endpoint of the security token service (STS) where tokens
affiliated with this service can be requested.

Virtual addresses used in SOAP messages can be translated dynamically to
appropriate real services. This enables service fault management, on-the-fly

reconfiguration, and other advanced solutions to enhance reliability of the service
environment. For example, a Web service can be moved to a different host very
easily, only its virtual address has to be remapped to the new real endpoint address
inside the Gateway.

The STS issues claim-based tokens to authenticated users, respectively software
components, and is also involved in the process of establishing federation with the
STS in the SP domain. The consumer-side role of the STS issues tokens that are
necessary to pass the security check on the service side. The tokens are generated
based on the information that is extracted from the service call message. The service-
side role of the security token service acts not as token issuer but as verification
instance for security tokens that are attached to the incoming message. It hence has
the role of a policy decision point (PDP). In the example, the consumer requests a
service from his own SIR by providing an URN (uniform resource name) and the SIR
returns the virtual address along with the endpoints of the gateway and the STS. The
provider side SIR will convert the server side virtual endpoint to an actual endpoint
where the client request can be satisfied.

This dynamic and flexible infrastructure enables service consumers as well as
service provider to react easily on dynamic changes within a service environment,
whilst taking account security issues in a transparent way as well. In particular the
latter is a significant issue when referring to common ways in establishing trusted
service environments, namely Virtual Private Networks (VPN). These networks are
characterized by a static end-to-end connection, which makes it difficult to
dynamically change the according service endpoints. In particular these networks do
not allow for the transformation and adaptation of the according messages, so in case
of a service provider replacement both, the according service endpoint as well as
interface descriptions have to be considered by the invoking application, whilst the
introduced gateway infrastructure allows for the invocation of virtual service
endpoints by allowing for the transparent adaptation of the according messages within
the gateway environment.

3.3 SOAP-based Agent Communication

For multiagent systems, FIPA provides specifications in the area of agent
communication and agent message transport. The Agent Message Transport group
defines ACL (Agent Communication Language), envelope representations, and the
transport protocols that can be used to transfer agent messages between hosts.
Currently IIOP and HTTP protocols are supported for agent message transport (WAP
support is experimental). The problem concerning multiagent and WS integrations is
that the use of IIOP and WAP is declining, while the HTTP based MTP (Message
Transport Protocol) is incompatible with SOAP (the most commonly used WS
messaging protocol) as it uses the MIME multipart construct to transfer the agent
message envelope and agent message body parts, while SOAP has its own XML-
based way to embed arguments into the request.

Furthermore, the communication between multiagent groups, containers or
platforms also raises issues when this communication crosses organizational
boundaries. Organizations often aim at providing a unified messaging architecture,

which can be administered and monitored easily and centrally. The aim of such
messaging architectures is to ensure the reliability, flexibility, and security of message
transfers. Since we propose a mixed environment of WSs and agents, a natural
solution is to transfer messages using SOAP and WS-* standards. Therefore, we
utilize SOAP as message transport between multiagent platforms.

Uniform transportation of agent and WS messages simplifies system
administration and enables common mechanisms to be introduced in routing and
delivery. This is achieved by adding support for a new MTP to agent platforms. The
SOAP MTP add-on [18] is a pluggable driver for sending and receiving SOAP
messages and translating them to/from internal agent message format. Each agent
platform uses the SOAP MTP add-on configured with a virtual endpoint address,
which is mapped to the agent platform address in the Gateway component. The virtual
endpoint address is also advertised in registries and directories outside the
organizational domain, so that external entities will use the virtual address to reach
the agent platform.

Agent platforms can be operated in separate organizational domains. Inside each
platform the communication between agents is usually not supervised and not
restricted. Similarly, agents can access WSs freely inside the domain. However, the
communication between agent platforms has to be supervised, according to current
policies of the embedding domains.

Other approaches like the AgentWeb Gateway [24] or WSIG [6] also provide basic
support to enable agents to communicate via WS technologies. However, these
approaches lack in facing these essential e-business requirements thus enforcing the
agent developer to adapt the setup of the corresponding framework every time an
evolution step has been processed (cf. section 2). To this end the interaction via
virtual endpoints allows the adaption of the communication infrastructure during
runtime; e.g., in the case an agent has to be replaced by another without affecting the
remaining involved agents at any time, which is an essential need for dynamic e-
business environments.

Messages between administrative domains are sent and received by the Gateway of
each domain (Fig. 3). In our example the Jade agent platform [11] is used. The
following steps are executed when sending a message to a remote agent platform: (1)
the consumer agent addresses the message using the virtual endpoint address of the
remote agent on the SP side. (2) The Messaging Service detects that this address
belongs to the SOAP MTP, and forwards the message to the SOAP MTP add-on for
delivery. (3) The SOAP MTP client prepares the SOAP message, and delivers it to the
virtual address of the remote agent, but the outgoing message is actually caught by the
local Gateway. (4) The local Gateway identifies the recipient SP using the SIR, and
arranges for a security token with the STS of both sides. (5) The message is sent to
the Gateway at SP side. (6) The SP Gateway checks the access rights for the service,
decrypts the message, then finds the real endpoint service using the SIR, and calls the
endpoint of the Jade platform. (7) The SOAP MTP of the SP’s Jade platform
reconstructs the original agent message and passes it to the internal Messaging
Service, which finally delivers it to the recipient agent.

Consumer

Gateway

Service
Instance

Registry

Security
Token

Service

Service Provider

Agent Container

Gateway

Agent

Agent

Security
Token

Service

Service
Instance
Registry

Agent Container

Agent

SOAP MTP

Agent

Endpoint

Client

SOAP MTP

Client

Endpoint

Messaging
Service

Messaging
Service

… …

Fig. 3. Inter-organizational Agent Communication

4 Integrating Multiagent and Semantic Web Technologies

This section describes our approach to integrate Semantic Web technologies into
multiagent systems. We give a conceptual overview and provide details about the
interactions of different system components. Further, we provide details about the
implementation.

4.1 Concept and Architecture

The belief-desire-intention (BDI) approach [1] is the most common architecture for
deliberative agents, agents who deliberate over symbolic knowledge to reach given
goals [28]. That is, the BDI architecture facilitates goal-driven system behavior. The
model consists of the following concepts: beliefs capture informational attitudes
realized as a data structure containing current facts about the world. Desires capture
the motivational attitudes that form concrete goals, if an agent has potentially the
chance to fulfill the desire. Intentions capture the deliberative attitudes realized by
reasoning to select appropriate actions to achieve given goals or to react to particular
situations.

A BDI agent is equipped with sensors to assist it on its environmental awareness,
and effectors to impact the environment by actions. A reasoning mechanism between
the sensors’ input and the effectors’ output deduces the necessary actions for
achieving the agent’s goals. The agent acquires new beliefs in response to changes in
the environment and through the actions that it performs as it carries out its intentions
[1]. Thus, the BDI agents allow reasoning regarding decisions to determine which,
possibly conflicting, business goals can be achieved and how the agent is going to
achieve these goals. For example, for an agent representing a resource of our case,
beliefs correspond to the state, capabilities, and SLAs of the resource; desires
represent the business goals of the resource provider, while intentions result from a
collection of possible decision mechanisms to select and execute requests to use the
resource.

In addition, the BDI concept has been integrated with explicit semantics: the
agent’s beliefs, stored in the agent’s beliefbase, are completely based on semantic
data. Further, semantic reasoning is applied to derive new knowledge – especially

required actions to reach goals – based on the semantic beliefs. Conceptual definitions
of SLA parameters, metrics, and economic values as well as resource characteristics
are given in an OWL DL ontology [27]. New data arriving to the agents are inserted
into the knowledge base, which is automatically enriched using DL reasoning. Agents
can then retrieve the results of reasoning via the beliefs. This provides essential
support towards the targeted technical interoperability over organizational boundaries,
representing real-world business relationships.

Fig. 4 shows the interactions of the Semantic BDI Agent’s internal components for
semantic BDI reasoning: based on an internal (step 1) or external (step 2) event, the
agent first stores new facts into its beliefbase (step 3). The agent utilizes semantic
reasoning to assess the event, deriving new knowledge (step 5-10) and especially
appropriate intentions to achieve the agent’s goals (step 11). These intentions lead to
actions (step 12) which potentially include interactions with external components via
the agent’s effectors (step 13).

Fig. 4. Semantic BDI Reasoning Sequence Diagram

4.2 Realization

An embedded OWL engine provides the core semantic functions inside the agents.
The OWL engine is connected to the BDI agent via the beliefbase. The implemented
BDI agent plans add or modify facts in the semantic database, which activate any
OWL DL reasoning, SWRL or other rules inside the semantic core. The BDI agent
core (Jadex [13] in this case) polls dedicated beliefs, which are actually stored in the
semantic database. The following cut-out of the agent definition file (ADF) of our
Jadex agents shows the described mapping relation between facts in the
knowledgebase and the agent’s beliefs. The reference to the semantic knowledge base
itself is integrated as a dedicated belief. The knowledge base receives a reference on
the beliefbase to realize a bidirectional mapping between knowledge base and
beliefbase.

...
<belief name="kb" class="JadexReasoner">
 <fact>
 new JadexReasoner(„http://../url/for/ontology”, $beliefbase)
 </fact>
</belief>
...
<belief name="availability" class="Float" exported="true">
 <fact evaluationmode="dynamic">
 $beliefbase.kb.getPropFloatValue($agent.getName(), "#avail")
 </fact>
</belief>
...

Thus, when reasoning changes the semantic representation of the agent beliefs

inside the semantic core, it can trigger a goal via the BDI beliefs. Finally, when goals
activate selected plans, the semantic core is updated and the loop starts again. We
experimented with prototype implementations for the embedded lightweight semantic
core using the Jena SW toolkit, Jena built-in rules and Pellet OWL reasoner
(applicable as SWRL rule engine as well). Both solutions provided a small and
effective extension to our BDI agents.

In order to exchange semantic data, the components can apply two methods. RDF
can be exchanged as plain text (the N3 notation is more convenient during
development). Further, semantic annotations can be used with existing XML message
formats. An example for the latter is the Semantically Annotated SLA (SA-SLA)
format, used for the negotiation of Service Level Agreements (SLAs) between agents
[20]. SA-SLA takes an existing XML representation of SLA and connects XML
elements to corresponding ontology concepts. Therefore, the common interpretation
of loosely defined XML elements is ensured. In contrast to existing approaches (e.g.,
[17]), our approach allows utilization of OWL not only as a content language for
agent messages but also for data exchange with other software components (e.g.,
WSs). In addition, it enables to determine appropriate actions to reach the agents’
goals based on semantic reasoning.

5 Evaluation

To demonstrate the applicability and usefulness of our approach, we perform two
types of evaluation. Firstly, we analyze the performance of the secure inter-
organizational agent communication to provide evidence that our approach does not
result in an inappropriate overhead. Secondly, we provide a detailed use case
description for our approach, which also includes details about the implementation.
We conclude this section with a discussion of the benefits and drawbacks of our
approach and its potential impact on inter-organizational interoperability.

5.1 Performance Evaluation

This section provides a performance evaluation of the inter-organizational agent
communication. The goal of this evaluation is to provide evidence that the proposed
approach does not cause an inappropriate computational overhead. The experiments
evaluate the proposed SOAP MTP and Gateway infrastructure in comparison to
conventional agent message transport via RMI and HTTP regarding performance in
terms of communication time. In the following experiments we compare the agent
message transport (1) locally via RMI, agent-to-agent communication on one
platform, (2) distributed via HTTP, agent-to-agent communication on different
platforms/machines via HTTP, (3) distributed via SOAP MTP, agent-to-agent
communication on different platforms/machines via SOAP MTP, and (4) distributed
using Gateway infrastructure, agent-to-agent communication on different
platforms/machines via SOAP MTP using the Gateway infrastructure.

The setup of experiment1 contains two agents which interact accordingly with the
FIPA Request Interaction Protocol [4]. Agent1 constitutes the initiator; it sends a
request to Agent2, the participant. Agent2 replies to the request with an inform
message to Agent1. The experiment repeats this process 1,000 times for each type of
agent message transport. The duration of the protocol execution is measured for every
iteration. Fig. 5 shows the results of experiment1 in one chart for each type of agent
message transport. Table 2 shows the mean execution time for every type of agent
message transport.

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 0 200 400 600 800 1000

m
e

a
n

 e
xe

cu
ti

o
n

 t
im

e
 [

m
s]

number of messages

Experiment 1

local
http

soapmtp
gateway

Fig. 5. Mean execution time in experiment1

Table 2. Mean execution time in experiment1

 Local HTTP SOAP MTP Gateway
Mean execution time [ms] 3,019 3,023 3,053 3,641

In experiment2, number of agents is extended to 20. Ten agents act as initiators and

ten as participants. Each initiator sends 100 requests to each receiver. The duration of
the protocol execution is measured for 10,000 interaction iterations. Fig. 6 shows the
mean execution time over all initiator agents in experiment2. Table 3 shows the mean
of the protocol execution time of every initiator agent for every type of agent message
transport and the mean over all initiator agents.

Table 3. Mean execution time in experiment2

 Local HTTP SOAP MTP Gateway
Agent1 [ms] 4,376 4,458 4,433 4,806
Agent2 [ms] 4,365 4,511 4,409 4,842
Agent3 [ms] 4,304 4,476 4,412 4,828
Agent4 [ms] 4,373 4,435 4,447 4,825
Agent5 [ms] 4,368 4,478 4,376 4,914
Agent6 [ms] 4,366 4,488 4,420 4,956
Agent7 [ms] 4,325 4,472 4,434 4,922
Agent8 [ms] 4,368 4,477 4,414 4,946
Agent9 [ms] 4,375 4,511 4,420 4,951
Agent10 [ms] 4,338 4,472 4,409 4,916
mean Agent1 – Agent10 [ms] 4,356 4,478 4,417 4,891

 3500

 4000

 4500

 5000

 5500

 6000

 0 200 400 600 800 1000

m
e

a
n

 e
xe

cu
ti

o
n

 t
im

e
 [

m
s]

number of messages

Agent1 - Agent10

local
http

soapmtp
gateway

Fig. 6. Mean execution time over all agents in experiment2

5.2 Use Case

In this section, we provide a detailed use case description for a scenario from the
airport logistics domain to show the applicability and utility of our approach. Further,
we provide details about a prototype implementation.

Business Background. Airports are subject of an on-going transformation from
monolithic, hierarchical organizations to networks of multiple companies that (1)
either cooperate closely to offer services to its customers or (2) allocate resources by
market-based mechanisms in competition [14]. For instance, ground handling services
are no longer offered only by the airport exclusively but also by third parties, even
including airlines, both located at the airport. In these cases, the airport provides only
basic infrastructure and services such as buildings, flight plan information, access to
power supply and telecommunication networks etc.

Due to ad hoc changes in the flight plan (e.g., due to delays), there can be
temporary resource shortages for ground handling service providers. Thus, these
providers need to outsource some tasks to another service provider that has sufficient
resources for the time frame in question, i.e., the problem the provider needs to solve
goes beyond a local optimization problem. The interoperability of the service
providers’ information systems, especially regarding availability information for
outsourcing requests, is a key aspect of decision support for ground handling
dispatchers. This interoperability is also required to enable resources of a ground
handling service provider to receive task information from, respectively provide
execution information to other service providers.

Current ICT systems at airports realize interoperability by increasing the coverage
of the airport’s enterprise resource planning (ERP) system as far as possible, thus
replacing legacy systems and making interfaces obsolete. In network organizations,
however, this approach is no longer feasible, since network participants will not make
short-term, risky investments in proprietary, hence airport-customized ERP systems.
In the airport management domain, de-facto standard software packages do not exist,
which makes interoperability even more challenging.

Connectivity addresses the capability of ICT systems to allow an easy entry to the
airport system as well as an easy dissolution of the connection. This capability
supports new business models of service providers that participate flexible and
temporarily in such virtual organizations. Both issues call for a machine-readable,
unambiguous and inter-organizational representation of the common domain
concepts, the actors, their goals and service capabilities.

Airport operations are subject of extensive security requirements (e.g., security
checks, hand baggage restrictions, customs, anti-terrorism measures) as well as
legislation (e.g., passenger rights) that either can (1) require to exchange a specific
information with third parties or (2) prevent exchanging and accessing all flight and
passenger-related information within the process.

The use case setup, which has been developed in the EU project BREIN
(http://www.eu-brein.com), is as follows: Stuttgart Airport has about 400 flight
movements per day. Most of the flights arrive and depart in two peak time periods: in
the early morning and late afternoon. Fig. 7 shows an example of the flight
movements over time. However, all planned activities can be subject of internal (e.g.,

resource failure) and external disturbances (e.g., delay of arriving flight) that affect,
delay or constrain the process. These deviations cannot be foreseen; though their
probability can be forecasted to some extend and thus considered in planning.

 0

 5

 10

 15

 20

 25

 30

 35

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

n
u

m
b

e
r

o
f

!
ig

h
t

m
o

v
e

m
e

n
ts

time

Flight movements

number of !ight movements over time
number of !ight movements over time (inbound)

number of !ight movements over time (outbound)

Fig. 7. Flight movements over time

Scenario Description. The service network consists of airlines as customers and
several ground handling service providers. Actors on the provider side are ground
handling companies and their resources (exemplarily limited to busses, baggage carts
and baggage handling staff). The airlines have SLAs with the ground handling
companies regarding ground handling services in order to dispatch the airlines’
aircrafts. The resources provide atomic services for their ground handling company.
In the case of a resource bottleneck, the ground handling companies are able to
outsource tasks to another ground handling company. Fig. 8 shows the service
network in a graph. Nodes represent actors, edges represent services, x denotes the
tier of the service network.

The key data of the scenario is shown in Table 4. The three considered types of
resources are able to provide five different types of services. The number of ground
handling companies, airlines, and aircraft types is based on data from Stuttgart
Airport for a single day.

The ground handling companies’ dispatchers have pre-planned schedules of the
tasks that have to be executed by the resources according to the incoming and
outgoing aircrafts. The dispatchers can obtain dynamic flight plan information (e.g.,
flight delays) to reschedule resources accordingly. The resources inform the
dispatchers about their current situation, task execution progress, delays, and
malfunctions.

In case of a deviation of the pre-planned schedule, e.g., because of a delay of an
aircraft, the dispatchers try to shift tasks to available resources to resolve any conflicts
resulting from the deviation. If the own resources are insufficient, the dispatcher can
outsource some of the tasks for the dispatching of the aircrafts to another service
provider at the same airport which has sufficient resources for the time frame in

question. Thus, the problem the provider needs to solve goes beyond a local
optimization problem.

Resource

Airline

a0,1

a1,1

Airline Service Provider

Bus

a1,3

Ground Handling

Company: Dispatcher

x=2 x=1 x=0

Customer

a0,n

Airline

a2,1

a2,2

a2,3

Ground Handling

Company: Dispatcher

Baggage

Staff

O
u

tso
u

rcin
g

…

a1,2O
u

tso
u

rcin
g

…
…

…
…

Fig. 8. Service network of customers, airline service providers, and resources

Table 4. Use case scenario key data

Parameter Characteristic
Number of ground handling companies 3
Number of resource types 3 (bus, baggage, staff)
Number of resources 58
Number of service types (offered by resources) 5 (passenger transportation, deliver

baggage to flight, deliver baggage to claim
area, loading, unloading)

Planning horizon full day
Number of airlines 15
Number of aircraft types 18

In this context our integration approaches for integrating Web service and

Semantic Web technologies into multiagent systems are applied in order to fulfill the
requirements of intra-organizational und inter-organizational task reallocation
regarding interoperability, connectivity and security. The WS communication enables
interoperability on the interface level while the Semantic Web technologies enable
semantic interoperability regarding task, resource and SLA information based on
shared ontologies. The Gateway Toolkit provides the required security infrastructure.

Realization. Each actor is represented as a Jadex software agent equipped with Jena
SW toolkit as described in section 4.2. An agent platform with the respective agents
and the Gateway Toolkit are deployed on three different machines for the different
ground handling organizations. All communication between the organizations is
routed through the Gateways. In addition, we have implemented a central

visualization interface to which all agents report their status, movements, etc. A
screenshot is shown in Fig. 9.

Fig. 9. Screenshot of the visualization interface

For intra-organizational and inter-organizational task reallocation, we apply a
market-based coordination approach. The dispatcher agents can execute reverse
auctions for tasks that are to be executed by its resource agents. These can answer the
messages with bids on the atomic tasks. The dispatcher agent will select the
appropriate allocation of bids and tasks by semantic reasoning and informs the
resource agents accordingly. If the intra-organizational reallocation fails, the
dispatcher agent tries to outsource the conflicting tasks to another ground handling
company, executing reverse auctions with the other two dispatchers. These will
disaggregate and forward the invitation to bid to their resources in a multi-tier
interaction sequence, which we have described in previous work [15].

This behavior leads to different implications for the inter-organizational
communication. The dispatchers have to be able to communicate with each other.
This is done by pre-defined policies in the Gateway Toolkit. Once the execution of a
task has been outsourced to another ground handling company, the client’s dispatcher
has to be able to communicate with the contractor’s resource agent to coordinate and
monitor the provision of the ground handling service. This can be realized by
dynamically adapting the policies in the Gateway Toolkit.

Regarding the contents of the interchanged messages, our approach is based on
semantic annotations. For example, the inter-organizational bids of the dispatchers are
realized as SA-SLA templates; i.e., description of the services which the agents are
willing to accept including information on agreement creation constraints. These SA-
SLA templates contain references to ontology concepts as described in [20]. Thus, the
receiving agent is able to use the semantic reasoning mechanisms to determine if and
which of the received bids it accepts.

5.3 Discussion

The results of performance experiment1 show that the mean execution times of the
local RMI transport, the distributed HTTP, and SOAP MTP transport differ in a small
range of about 35ms. The gateway approach differs from the other approaches with a
mean execution time difference of about 600ms (20%).

In the performance experiment with 20 agents, the mean execution time of the
local RMI, distributed HTTP, and SOAP MTP transport approach increases to
approximately 4,400ms. However, the mean of the gateway transport approach differs
from the other approaches in experiment2 with only about 500ms (11%). An analysis
of the charts of the single agents shows that the divergences from the mean are more
explicit in this experiment. These divergences are caused by the mechanisms of the
BDI framework and relativize the time differences regarding the type of agent
message transport. This effect is also visible in the chart with the consolidated mean
over all initiator agents. In the use case scenario, the additional overhead caused by
the secure messaging infrastructure is acceptable with regard to the benefits of an
inter-organization decision support system.

A key advantage of the presented architecture is a simple, yet powerful
communication using a single message bus for both agents and WSs, gateways for the
protection of organizational boundaries, and exchange of semantic content based on
shared ontologies. An example for the successful application of all these benefits is
SLA negotiation, where the SLA requests and offers can be exchanged using common
semantics among several service providers. Furthermore, SLAs can be interpreted and
reasoned about inside agents, enabling the use of agent cooperation mechanisms for
SLA negotiation. Using the proposed architecture based on WS technology, agent
messages can be transferred in a secured way, agent messages can be routed through
gateways, and agent addressing can be virtualized; i.e., the agent platform can be
dynamically relocated to a different address. The accessibility of agent platforms can
be enhanced, as SOAP-based transport is more tolerant with firewalls and other
security restrictions. Heterogeneous WS and agent environments may use a
homogeneous message transport layer that reduces the complexity of system
administration. It also enables secure inter-organizational transfer of agent messages
between agent platforms, thus facilitating the advantages of both multiagent and WS
technologies in a single environment. The utilization of explicit semantics further
facilitates the semantic interoperability by incorporating domain knowledge in all
phases of the service life cycle.

Furthermore, agents representing various resources of the airport may have their
own, local reasoning support to enhance their operation. For example, at the lowest
level, transport vehicles have maintenance regulations. This means that the vehicle
has to visit the service station at regular intervals. Additionally, the vehicle or its
driver may detect types of malfunction, which have typical repair time. The schedule
of the next maintenance and the estimated time while the vehicle would be out of
service affects the overall schedule of its service provider. The knowledge about
previous maintenance, detected errors, and detected parts to replace combined with
forthcoming jobs can be used to suggest time slots for the next maintenance of the
vehicle, when it is less disturbing for the customers and yet keeps the vehicle in good

condition. A simplified solution for this use case has been implemented using OWL
and Jena rules in our prototype.

6 Conclusion

The contribution of this research is a software architecture for inter-organizational
multiagent systems. The approach is based on the integration of Web service and
Semantic Web technologies into multiagent systems and a uniform transportation of
agent and Web service messages.

The resulting combination of technologies enables secure and flexible
communication including a virtualization layer for communication endpoints,
addressing the requirements of an application in inter-enterprise settings.
Furthermore, existing service implementations and infrastructures can be enhanced
with technology achievements of the Semantic Web and multiagent areas, enabling
complex coordination and adaptation mechanisms to be applied to existing services.

The evaluation has shown that the additional computational effort caused by the
uniform communication bus decreases with the number of agents. In addition, we
have shown the applicability and utility of our approach in a use case from the airport
logistics domain.

Acknowledgments. This work has been supported by the BREIN project
(http://www.eu-brein.com) and has been partly funded by the European Commission
under contract FP6-034556. We are especially grateful to Joerg Leukel and the
participants of the ATOP 2010 workshop for their helpful comments on an earlier
version of this paper.

References

1. Bratman, M. E., Israel, J., Pollack, M. E.: Plans and resource-bounded practical reasoning.
In: Computional Intelligence 4, 349--355 (1988)

2. Dickinson, I., Wooldridge, M.: Towards Practical Reasoning Agents for the Semantic Web.
In: 2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-03). (2003)

3. FIPA Communicative Act Library Specification, http://www.fipa.org/specs/fipa00037/
4. FIPA Request Interaction Protocol Specification, http://www.fipa.org/specs/fipa00026/
5. Foster, I., Jennings, N. R., Kesselman, C.: Brain meets brawn: why Grid and agents need

each other. In: 3rd International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2004), pp. 8--15. (2004)

6. Greenwood D., Calisti, M.: Engineering Web Service - Agent Integration. In: IEEE
International Conference on Systems, Man & Cybernetics. IEEE Press, New York (2004)

7. Greenwood, D., Lyell, M., Mallya, A., and Suguri, H.: The IEEE FIPA approach to
integrating software agents and web services. In: 6th international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS '07). (2007)

8. Haugeneder, H., Steiner, D., McCabe, F.: IMAGINE: A framework for building multi-
agent systems. In: Deen, S. M. (ed.) 1994 International Working Conference on
Cooperating Knowledge Based Systems (CKBS-94), pp. 31--64. (1994)

9. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents - summary of
an agent infrastructure. In: 5th International Conference on Autonomous Agents (Agents
'01). (2001)

10. IEEE Recommended Practice for Software Requirements Specification, ANSI/IEEE Std
830-1998, IEEE Press, New York (1998)

11. Jade - Java Agent DEvelopment Framework, http://jade.tilab.com/
12. Jade Web Services Integration Gateway (WSIG) Guide,

http://jade.tilab.com/doc/tutorials/WSIG_Guide.pdf
13. Jadex BDI agent system, http://jadex.informatik.uni-hamburg.de
14. Jarach, D: The evolution of airport management practices: towards a multi-point, multi-

service, marketing-driven firm. Journal of Air Transport Management 7 (2), 119--125
(2001)

15. Karaenke, P., Kirn, S.: A Multi-tier Negotiation Protocol for Logistics Service Chains. In:
18th European Conference on Information Systems (ECIS 2010). (2010)

16. Kipp A, Schubert L, Geuer-Pollmann C. Dynamic Service Encapsulation. In: First
International Conference on Cloud Computing. (2009)

17. Laclavík, M., Balogh, Z., Babík, M.: AgentOWL: Semantic Knowledge Model and Agent
Architecture. Computing and Informatics 25 (5), 419--437 (2006)

18. Micsik, A., Pallinger, P., Klein, A.: SOAP based message transport for the jade multiagent
platform. In: 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Industry track, pp. 101--104. (2009)

19. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.: Agent-oriented programming with
underlying ontological reasoning, In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P.
(eds.) Third International Workshop on Declarative Agent Languages and Technologies
(DALT-05), pp. 155--170. (2005)

20. Munoz Frutos, H., Kotsiopoulos, I., Vaquero, L. M., Rodero, L.: Enhancing Service
Selection by Semantic QoS. In: 6th European Semantic Web Conference on the Semantic
Web, pp. 565--577. (2009)

21. Negri, A., Poggi, A., Tomaiuolo, M.: Intelligent Task Composition and Allocation through
Agents. In: 14th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprise (WETICE'05), pp. 255--260. IEEE Press, New York (2005)

22. Nguyen, X. T.: Demonstration of WS2JADE. In: 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’05), pp. 135--136. (2005)

23. Paurobally, S., Jennings, N. R.: Protocol engineering for web services conversations.
Engineering Applications of Artificial Intelligence 18 (2), 237--254 (2005)

24. Shafiq, O. M., Ali, A., Ahmad, H. F., Suguri, H.: AgentWeb Gateway - a middleware for
dynamic integration of Multi Agent System and Web Services Framework. In: 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprise (WETICE'05), pp. 267--270. IEEE Press, New York (2005)

25. Soto, E. L. 2007. Agent Communication Using Web Services, a New FIPA Message
Transport Service for Jade. In: P. Petta et al. (eds.): 5th German conference on Multiagent
Systems Technologies (MATES 2007), pp. 73--84. (2007)

26. Steiner, D. E., Haugeneder, H., Mahling, D.: Collaboration of knowledge bases via
knowledge based collaboration. In: Deen, S. M. (ed.) CKBS-90 — Proceedings of the
International Working Conference on Cooperating Knowledge Based Systems, pp. 113--
133. Springer, Heidelberg (1991)

27. W3C: Web Ontology Language (OWL), http://www.w3.org/2004/OWL/
28. Wooldridge, M.: Reasoning about rational agents. MIT Press (2000)

