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Abstract. This paper presents a software architecture for inter-organizational 
multiagent systems. The architecture integrates Web service technology into 
multiagent systems to overcome the technical interoperability problem of 
current multiagent systems in the fast growing service-oriented environments. 
We integrate Semantic Web technology to make multiagent systems 
semantically interoperable. We address the problem of interoperability 
regarding interfaces, messaging protocols, data exchanged, and security whilst 
considering a dynamic e-business environment. The proposed architecture 
enables service virtualization, secure service access across organizational 
boundaries, service-to-agent communication, and OWL reasoning within 
agents. 
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1   Introduction 

In recent years, service-oriented computing (SOC) has lead to significant 
transformations of industrial software architectures. SOC is in particular aiming at 
more flexible and open architectures for cross-organizational applications. It has 
originated a remarkable technology stack for Web services (WS) and respective 
standards which all contribute to the interoperability of systems. The same cannot be 
said for multiagent systems. However, it has been argued that both technologies “need 
each other” [5]. Both are concerned with problem solving by distributed systems, but 
focus on different approaches and offer divergent capabilities: WS-* standards 
facilitate the building of secure, robust and reliable virtual organizations (VOs) to 
solve problems with distributed resources, but lack the capability to react or adapt to 
undesired conditions and changing requirements in dynamic environments. 

Multiagent technology, in contrast, offers the capability for flexible and adaptive 
problem solving behavior both on single agent and multiagent level, but lacks 
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reliability, security, and robustness [5]. Thus, combining WS and multiagent 
technologies could make use of the advantages of both technologies while avoiding 
their respective drawbacks. 

WS specifications foster interoperability on the technical level regarding interfaces 
(e.g., WSDL) and messaging protocols (e.g., SOAP). However, specifications of the 
data exchanged (i.e., message content) is beyond the scope of WS specifications. The 
Semantic Web (SW) approach, in contrast, focuses on semantic interoperability. 
Thus, we propose an approach combining multiagent, WS, and SW technologies and 
a respective software architecture for inter-organizational multiagent systems. We 
address the problem of interoperability regarding interfaces, messaging protocol, data 
exchanged, and security. The contribution of this research is a software architecture 
for inter-organizational multiagent systems. This architecture enables service 
virtualization, secure service access across organizational boundaries, service-to-agent 
communication, and OWL reasoning within agents.  

The remainder of this paper is as follows: section 2 defines the architectural 
requirements and discusses related work. In section 3, we describe our approach for 
integrating multiagent and Web service technologies. Section 4 describes the 
integration of multiagent and Semantic Web technologies. We provide an evaluation 
of the architecture in section 5. Section 6 summarizes the result.  

2   Requirements and Related Work 

2.1   Requirements Analysis 

For the targeted interoperability of agent-based systems, agents must have adapters to 
WS systems; i.e., agents need capabilities for interactions with systems following the 
service-oriented architecture (SOA) paradigm. In addition, the inter-agent 
communication has to be conceptually based on standardized agent communication 
mechanisms (e.g., [3]). Communication mechanisms of agents have to be integrated 
with Web service technologies to (i) ensure the preservation of the SOA properties 
interoperability, reliability, security, and robustness for the integration and to (ii) 
enable the utilization of existing SOA infrastructures. 

Communicating components need to have a common understanding of exchanged 
messages. This means at least, that exchanged messages can be enriched by 
annotations that refer to shared ontologies. Semantic technologies support the agents 
having behaviors with reasoning capabilities about the current agents’ environment, 
the internal status, and especially messages received from other agents. Table 1 
summarizes these requirements in a qualitative form following the IEEE software 
requirements specification [10] according to the recommended basic issues 
(functionality, external interfaces, performance, attributes, design constraints imposed 
on an implementation).



Table 1.  Requirements.  

Issue Description 
Functionality #1 Provision of inter-organizational communication interfaces and 

messaging protocols.  
Functionality #2 Provide agent capabilities for calling Web services. 
Functionality #3 Provide agent capabilities for providing Web service interfaces. 
Functionality #4 The agents’ internal reasoning is linked to semantically annotated 

data utilized in inter-organizational communication. 
External Interface #1 The data exchanged between organizations is semantically 

annotated. 
External Interface #2 The agent-to-agent communication via inter-organizational 

communication interfaces is based on Web service technology. 
Performance #1 Throughput should not essentially deviate from intra-organizational 

communication. 
Performance #2 Availability should not essentially deviate from intra-organizational 

communication. 
Performance #3 Response time should not essentially deviate from intra-

organizational communication. 
Attributes #1 Ensure secure inter-organizational communication. 
Design Constraints #1 Inter-organizational communication interfaces are based on Web 

service standards. 
Design Constraints #2 Inter-agent communication has to be conceptually based on 

standardized agent communication mechanisms. 
Design Constraints #3 Semantically annotated data bases on Semantic Web standards. 

2.2   Related Work 

Related research exists in the areas of translating agent to WS messages and vice 
versa as well as in the area of integrating Semantic Web languages in agent 
communication and reasoning. 

The coupling of agents and WS resources in a similar approach is investigated in 
[21], though the authors remain on a very high level of abstraction and do not 
consider agent-to-agent communication based on WS technology. The Web Service 
Integration Gateway (WSIG) [6][12] is an official Jade plug-in, which provides 
bidirectional invocation facility, by which Jade agents can call WSs and WS clients 
can call Jade agent services. The connection of agents and WSs is implemented using 
elaborate on-the-fly translation between agent messages and SOAP messages. 
However, WSIG cannot connect agent platforms via SOAP and does not allow 
transparent wrapping of agent message content into SOAP, thus it fails to support the 
mentioned scenarios (dynamically changing business partners, secure communication, 
etc.). 

The AgentWeb Gateway [24] is a middleware between agent platforms and WS 
platforms, which provides various transformation mechanisms between the two 
worlds: agent platforms and web services. Therefore, it enables integration of the two 
worlds without changing existing specifications. As part of the solution, the gateway 
provides SOAP to ACL and ACL to SOAP protocol converters. One of our goals is to 
achieve SOAP-based communication among agent platforms (External Interface #2). 
However, dynamic aspects as required within typical inter-organizational scenarios 



 

are not considered, such as the dynamic and transparent substitution of collaboration 
partners as well as the transparent integration of security related issues. These 
exemplary issues play a fundamental role in inter-organizational environments, since 
in particular the substitution of service endpoints typically enforces a significant effort 
to build up an according, trusted environment. Furthermore, implementation details or 
source code are not available for this work.  

Paurobally and Jennings [23] use WS protocols to describe speech acts and 
implement the contract net protocol for WSs. This approach requires a complex re-
engineering of existing WSs to handle speech acts and agent coordination protocols, 
whereas multiagent platforms already include this functionality and provide a variety 
of well established coordination protocols. Furthermore, software agent properties 
like pro-activeness and goal-orientation are not considered in this approach. 

[7] gives an overview of different approaches to directly integrating FIPA 
communication and Web Service Technologies, and collects requirements for such an 
integration. In prior work, we have evaluated the mentioned approaches [18] for this 
aspect of our architecture and found that most of them are not available for re-use 
(reasons are given below). 

The approach of Soto [23] falls closest to ours, but in this case the contents of 
FIPA envelopes are mapped to WS-Addressing headers, thus it is unavailable for use 
by the transport layer itself. Later it will be explained that WS-Addressing headers are 
used in a different way in our environment. 

WS2Jade [21] is an integration approach focusing on closely coupling Jade agents 
and Web Services by representing a web service by a gateway agent. A new gateway 
agent is created automatically for a WS by WS2Jade (which could lead to 
performance and management issues in our scenario). As WS2Jade focuses on agents 
executing web services, it is not suited for bi-directional agent-to-agent 
communication via SOAP either. 

Moreira et al. propose the AgentSpeak-DL dialect, which extends AgentSpeak 
towards Description Logic (DL) [19]. However, AgentSpeak-DL is a specific 
language and its underlying DL is less expressive than OWL Lite and OWL DL. 
Therefore, it does not allow for using existing OWL ontologies, but required 
modifications to these. AgentOWL is a Jade plug-in, which enables agents to 
exchange SPARQL queries and RDF triples in ACL messages [17]. It also contains 
an embedded inference engine and connection possibility with remote knowledge 
bases. However, AgentOWL is not integrated with a BDI implementation, and 
furthermore its interoperability with external ontologies is unsuitable for our 
purposes. Nuin [2] is an agent framework designed for practical development of 
agents in SW applications based on BDI principles. The agents running in Nuin may 
have access to different knowledge sources, including RDF and OWL ones. However, 
Nuin does not support RDF knowledge sources fully. In contrast to Nuin, our 
approach establishes a direct connection between the agent belief base and the 
underlying OWL knowledge base, which supports both accessing and modifying 
OWL facts. 

JACK Intelligent Agents [9] is a framework for multi-agent system development, 
which is built using the BDI principles, so agents can manage beliefs, desires and can 
also plan their actions to implement their desires. It also provides its own Java-based 
plan language and graphical planning tools. Although JACK has an extension that 



enables it to communicate with other FIPA agents, the framework is a commercial, 
closed software, and thus could not be used in our case. 

3   Integrating Multiagent and Web Service Technologies 

In this section, we describe our approach to integrate Web service technologies into 
multiagent systems. Firstly, we describe the overall approach of coupling multiagent 
and WS technologies. Secondly, we give details about secure inter-organizational 
communication in our approach. Finally, we give details about secure agent 
communication in inter-organizational settings utilizing the two former approaches. 

3.1   Encapsulation of Web Service Resources 

We propose an approach for coupling of WS and agent technology in a head body 
architecture [26][8]. The head body paradigm implies a conceptual separation of a 
software agent into two parts – head and body. The agent’s head is used for 
interactions with other agents. This includes reasoning about interactions such as 
participating in cooperative processes for problem solving. The body is encapsulating 
any other (domain) functionality of an agent [26][8]. The head body paradigm is used 
in the approach shown in Fig. 1. WS resources that are represented by agents are part 
of the body. The agent’s core capabilities are implemented in the head; i.e., 
interactions and especially coordination with other agents in the agent society. The 
agent communicates with the encapsulated WS via WS sensor and WS effector. 

On the conceptual level, agent-to-agent communication is based on FIPA 
communication standards (e.g., [3]). On the technical level, agent-to-agent 
communication is based on WS technologies and standards. Therefore, the agents can 
be used in existing WS infrastructures and systems. The presented approach of 
coupling WS and agents allows the utilization of multiagent coordination protocols 
for the coordination of existing WSs in existing infrastructures. A WS which is 
represented by an agent can transparently be invoked by WS clients. The agent can 
evaluate the invocation requests and can reason whether an invocation of the 
encapsulated WS is in accordance with its own goals. If the invocation request is 
opposed to the goals, the agent can intercept the invocation and the encapsulated WS 
is not invoked. Further, the agents can pro-actively work towards the goals; e.g., 
maximizing revenue for encapsulated resources by establishing Service Level 
Agreements (SLAs). 

A special case of the invocation of a Web service encapsulated in an agent’s body 
is the processing of invocation requests from external callers. In this case, the agent 
acts as a proxy for the Web service to the external environment. This case is 
especially important for the integration of WS and multiagent technology, as the 
encapsulation is transparent to the external caller; i.e., the approach can be used in 
existing WS infrastructures and for existing Web services. 

 



 

 

Fig. 1. Head Body Architecture 

An external invocation request of an encapsulated Web service is initiated by either 
another agent or an external Web service client. The agent has full control over the 
encapsulated Web service and can decide, based on semantic reasoning, if an 
invocation of the Web service is compatible with the agent’s own goals. That is, the 
agent can decide if it invokes the Web service or not. The result of the invocation is 
then delivered to the component that has requested the invocation. 

Practical examples for reasoning about service invocations fall into the areas of 
task prioritization and business partnership. The type of task requested is naturally 
extractable from the service request. Furthermore, our framework injects the business 
context into the service requests, namely the identifier of the customer and the 
contractual context of the request, as further discussed in 3.2. By this information, the 
agent can decide to hold or completely re-order the execution of incoming service 
requests, and here the semantic description of tasks, business partners and priorities 
are utilized in conjunction with reasoning inside agents. 

3.2 Secure Inter-organizational Communication 

In order to allow for a seamless integration of components, a corresponding flexible 
and adaptive messaging infrastructure, commonly titled as “Enterprise Message Bus”, 
has to be provided. We address this requirement by a set of components referred to as 
the Gateway Toolkit which provides such a messaging infrastructure by allowing for 
a “double-blind” virtualization approach [16]. On customer side, the Gateway Toolkit 
allows to hide the concrete service provider (SP) which allows describing 
corresponding workflows in a more abstract manner. Additionally, the customer can 
easily change service providers by adapting the routing information of the Gateway 
Toolkit infrastructure whilst not affecting the corresponding workflows. 



The SP can easily hide the underlying service infrastructure by providing virtual, 
callable service endpoints to potential customers. The major benefit of the service 
provider hereby is that he is now able to adapt the underlying service infrastructure 
whilst not affecting the corresponding service customers. The SP is additionally 
enabled to involve third party SPs for particular sub-tasks without affecting the 
customer. Such a realization provides benefits for both sides, the service providers as 
well as for the service customers. Service provider can easily provide their 
“products”, e.g. in the form of combined services, in such a way that potential service 
customers can integrate these services in their own products. This is done in an 
abstract manner which means in particular that no implementation details of the 
underlying service implementation needs to be considered. 

Through using “double-blind” virtualization mechanisms, i.e., by deploying the 
gateway on both consumer and SP side, it is possible to alter resources and providers 
without affecting the calling applications. Fig. 2 presents a sample deployment of the 
Gateway infrastructure. The dashed line denotes an indirect link (as the gateway 
extends the message channel). 

 

 

Fig. 2. Sample deployment of the Gateway infrastructure 

This deployment of the gateway allows a transparent and secure interaction 
channel for the involved components. In particular, the gateway allows the provision 
of virtual endpoints via which the corresponding components are able to interact with 
each other in a secure way without the need to explicitly consider the corresponding 
security as well as the according WS standards. The interaction is done completely 
transparent for the components whilst considering dynamic e-business needs; e.g., the 
possibility to change service provider during runtime, transparent usage of resources 
whilst considering accounting and secure and reliable communication. 

The Gateway mediates the communication between the front end WSs of the two 
domains. Each front end authenticates itself to their respective Gateway. The Gateway 
allows the invocation of virtual service endpoints by resolving these virtual to 
concrete endpoints via the service instance registry (SIR). The SIR also provides 
additional metadata such as the gateway endpoint that the message has to travel 
through, as well as the endpoint of the security token service (STS) where tokens 
affiliated with this service can be requested. 

Virtual addresses used in SOAP messages can be translated dynamically to 
appropriate real services. This enables service fault management, on-the-fly 



 

reconfiguration, and other advanced solutions to enhance reliability of the service 
environment. For example, a Web service can be moved to a different host very 
easily, only its virtual address has to be remapped to the new real endpoint address 
inside the Gateway. 

The STS issues claim-based tokens to authenticated users, respectively software 
components, and is also involved in the process of establishing federation with the 
STS in the SP domain. The consumer-side role of the STS issues tokens that are 
necessary to pass the security check on the service side. The tokens are generated 
based on the information that is extracted from the service call message. The service-
side role of the security token service acts not as token issuer but as verification 
instance for security tokens that are attached to the incoming message. It hence has 
the role of a policy decision point (PDP). In the example, the consumer requests a 
service from his own SIR by providing an URN (uniform resource name) and the SIR 
returns the virtual address along with the endpoints of the gateway and the STS. The 
provider side SIR will convert the server side virtual endpoint to an actual endpoint 
where the client request can be satisfied. 

This dynamic and flexible infrastructure enables service consumers as well as 
service provider to react easily on dynamic changes within a service environment, 
whilst taking account security issues in a transparent way as well. In particular the 
latter is a significant issue when referring to common ways in establishing trusted 
service environments, namely Virtual Private Networks (VPN). These networks are 
characterized by a static end-to-end connection, which makes it difficult to 
dynamically change the according service endpoints. In particular these networks do 
not allow for the transformation and adaptation of the according messages, so in case 
of a service provider replacement both, the according service endpoint as well as 
interface descriptions have to be considered by the invoking application, whilst the 
introduced gateway infrastructure allows for the invocation of virtual service 
endpoints by allowing for the transparent adaptation of the according messages within 
the gateway environment. 

3.3   SOAP-based Agent Communication 

For multiagent systems, FIPA provides specifications in the area of agent 
communication and agent message transport. The Agent Message Transport group 
defines ACL (Agent Communication Language), envelope representations, and the 
transport protocols that can be used to transfer agent messages between hosts. 
Currently IIOP and HTTP protocols are supported for agent message transport (WAP 
support is experimental). The problem concerning multiagent and WS integrations is 
that the use of IIOP and WAP is declining, while the HTTP based MTP (Message 
Transport Protocol) is incompatible with SOAP (the most commonly used WS 
messaging protocol) as it uses the MIME multipart construct to transfer the agent 
message envelope and agent message body parts, while SOAP has its own XML-
based way to embed arguments into the request.  

Furthermore, the communication between multiagent groups, containers or 
platforms also raises issues when this communication crosses organizational 
boundaries. Organizations often aim at providing a unified messaging architecture, 



which can be administered and monitored easily and centrally. The aim of such 
messaging architectures is to ensure the reliability, flexibility, and security of message 
transfers. Since we propose a mixed environment of WSs and agents, a natural 
solution is to transfer messages using SOAP and WS-* standards. Therefore, we 
utilize SOAP as message transport between multiagent platforms. 

Uniform transportation of agent and WS messages simplifies system 
administration and enables common mechanisms to be introduced in routing and 
delivery. This is achieved by adding support for a new MTP to agent platforms. The 
SOAP MTP add-on [18] is a pluggable driver for sending and receiving SOAP 
messages and translating them to/from internal agent message format. Each agent 
platform uses the SOAP MTP add-on configured with a virtual endpoint address, 
which is mapped to the agent platform address in the Gateway component. The virtual 
endpoint address is also advertised in registries and directories outside the 
organizational domain, so that external entities will use the virtual address to reach 
the agent platform. 

Agent platforms can be operated in separate organizational domains. Inside each 
platform the communication between agents is usually not supervised and not 
restricted. Similarly, agents can access WSs freely inside the domain. However, the 
communication between agent platforms has to be supervised, according to current 
policies of the embedding domains. 

Other approaches like the AgentWeb Gateway [24] or WSIG [6] also provide basic 
support to enable agents to communicate via WS technologies. However, these 
approaches lack in facing these essential e-business requirements thus enforcing the 
agent developer to adapt the setup of the corresponding framework every time an 
evolution step has been processed (cf. section 2). To this end the interaction via 
virtual endpoints allows the adaption of the communication infrastructure during 
runtime; e.g., in the case an agent has to be replaced by another without affecting the 
remaining involved agents at any time, which is an essential need for dynamic e-
business environments. 

Messages between administrative domains are sent and received by the Gateway of 
each domain (Fig. 3). In our example the Jade agent platform [11] is used. The 
following steps are executed when sending a message to a remote agent platform: (1) 
the consumer agent addresses the message using the virtual endpoint address of the 
remote agent on the SP side. (2) The Messaging Service detects that this address 
belongs to the SOAP MTP, and forwards the message to the SOAP MTP add-on for 
delivery. (3) The SOAP MTP client prepares the SOAP message, and delivers it to the 
virtual address of the remote agent, but the outgoing message is actually caught by the 
local Gateway. (4) The local Gateway identifies the recipient SP using the SIR, and 
arranges for a security token with the STS of both sides. (5) The message is sent to 
the Gateway at SP side. (6) The SP Gateway checks the access rights for the service, 
decrypts the message, then finds the real endpoint service using the SIR, and calls the 
endpoint of the Jade platform. (7) The SOAP MTP of the SP’s Jade platform 
reconstructs the original agent message and passes it to the internal Messaging 
Service, which finally delivers it to the recipient agent. 
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Fig. 3. Inter-organizational Agent Communication 

4   Integrating Multiagent and Semantic Web Technologies 

This section describes our approach to integrate Semantic Web technologies into 
multiagent systems. We give a conceptual overview and provide details about the 
interactions of different system components. Further, we provide details about the 
implementation. 

4.1   Concept and Architecture 

The belief-desire-intention (BDI) approach [1] is the most common architecture for 
deliberative agents, agents who deliberate over symbolic knowledge to reach given 
goals [28]. That is, the BDI architecture facilitates goal-driven system behavior. The 
model consists of the following concepts: beliefs capture informational attitudes 
realized as a data structure containing current facts about the world. Desires capture 
the motivational attitudes that form concrete goals, if an agent has potentially the 
chance to fulfill the desire. Intentions capture the deliberative attitudes realized by 
reasoning to select appropriate actions to achieve given goals or to react to particular 
situations. 

A BDI agent is equipped with sensors to assist it on its environmental awareness, 
and effectors to impact the environment by actions. A reasoning mechanism between 
the sensors’ input and the effectors’ output deduces the necessary actions for 
achieving the agent’s goals. The agent acquires new beliefs in response to changes in 
the environment and through the actions that it performs as it carries out its intentions 
[1]. Thus, the BDI agents allow reasoning regarding decisions to determine which, 
possibly conflicting, business goals can be achieved and how the agent is going to 
achieve these goals. For example, for an agent representing a resource of our case, 
beliefs correspond to the state, capabilities, and SLAs of the resource; desires 
represent the business goals of the resource provider, while intentions result from a 
collection of possible decision mechanisms to select and execute requests to use the 
resource. 

In addition, the BDI concept has been integrated with explicit semantics: the 
agent’s beliefs, stored in the agent’s beliefbase, are completely based on semantic 
data. Further, semantic reasoning is applied to derive new knowledge – especially 



required actions to reach goals – based on the semantic beliefs. Conceptual definitions 
of SLA parameters, metrics, and economic values as well as resource characteristics 
are given in an OWL DL ontology [27]. New data arriving to the agents are inserted 
into the knowledge base, which is automatically enriched using DL reasoning. Agents 
can then retrieve the results of reasoning via the beliefs. This provides essential 
support towards the targeted technical interoperability over organizational boundaries, 
representing real-world business relationships. 

Fig. 4 shows the interactions of the Semantic BDI Agent’s internal components for 
semantic BDI reasoning: based on an internal (step 1) or external (step 2) event, the 
agent first stores new facts into its beliefbase (step 3). The agent utilizes semantic 
reasoning to assess the event, deriving new knowledge (step 5-10) and especially 
appropriate intentions to achieve the agent’s goals (step 11). These intentions lead to 
actions (step 12) which potentially include interactions with external components via 
the agent’s effectors (step 13). 

 

Fig. 4. Semantic BDI Reasoning Sequence Diagram 

 



 

4.2 Realization 

An embedded OWL engine provides the core semantic functions inside the agents. 
The OWL engine is connected to the BDI agent via the beliefbase. The implemented 
BDI agent plans add or modify facts in the semantic database, which activate any 
OWL DL reasoning, SWRL or other rules inside the semantic core. The BDI agent 
core (Jadex [13] in this case) polls dedicated beliefs, which are actually stored in the 
semantic database. The following cut-out of the agent definition file (ADF) of our 
Jadex agents shows the described mapping relation between facts in the 
knowledgebase and the agent’s beliefs. The reference to the semantic knowledge base 
itself is integrated as a dedicated belief. The knowledge base receives a reference on 
the beliefbase to realize a bidirectional mapping between knowledge base and 
beliefbase. 

 
... 
<belief name="kb" class="JadexReasoner"> 
     <fact> 
         new JadexReasoner(„http://../url/for/ontology”, $beliefbase) 
     </fact> 
</belief> 
... 
<belief name="availability" class="Float" exported="true"> 
    <fact evaluationmode="dynamic"> 
         $beliefbase.kb.getPropFloatValue($agent.getName(), "#avail") 
    </fact> 
</belief> 
... 

 
Thus, when reasoning changes the semantic representation of the agent beliefs 

inside the semantic core, it can trigger a goal via the BDI beliefs. Finally, when goals 
activate selected plans, the semantic core is updated and the loop starts again. We 
experimented with prototype implementations for the embedded lightweight semantic 
core using the Jena SW toolkit, Jena built-in rules and Pellet OWL reasoner 
(applicable as SWRL rule engine as well). Both solutions provided a small and 
effective extension to our BDI agents. 

In order to exchange semantic data, the components can apply two methods.  RDF 
can be exchanged as plain text (the N3 notation is more convenient during 
development).  Further, semantic annotations can be used with existing XML message 
formats. An example for the latter is the Semantically Annotated SLA (SA-SLA) 
format, used for the negotiation of Service Level Agreements (SLAs) between agents 
[20]. SA-SLA takes an existing XML representation of SLA and connects XML 
elements to corresponding ontology concepts. Therefore, the common interpretation 
of loosely defined XML elements is ensured. In contrast to existing approaches (e.g., 
[17]), our approach allows utilization of OWL not only as a content language for 
agent messages but also for data exchange with other software components (e.g., 
WSs). In addition, it enables to determine appropriate actions to reach the agents’ 
goals based on semantic reasoning. 



5   Evaluation 

To demonstrate the applicability and usefulness of our approach, we perform two 
types of evaluation. Firstly, we analyze the performance of the secure inter-
organizational agent communication to provide evidence that our approach does not 
result in an inappropriate overhead. Secondly, we provide a detailed use case 
description for our approach, which also includes details about the implementation. 
We conclude this section with a discussion of the benefits and drawbacks of our 
approach and its potential impact on inter-organizational interoperability.  

5.1   Performance Evaluation 

This section provides a performance evaluation of the inter-organizational agent 
communication. The goal of this evaluation is to provide evidence that the proposed 
approach does not cause an inappropriate computational overhead. The experiments 
evaluate the proposed SOAP MTP and Gateway infrastructure in comparison to 
conventional agent message transport via RMI and HTTP regarding performance in 
terms of communication time. In the following experiments we compare the agent 
message transport (1) locally via RMI, agent-to-agent communication on one 
platform, (2) distributed via HTTP, agent-to-agent communication on different 
platforms/machines via HTTP, (3) distributed via SOAP MTP, agent-to-agent 
communication on different platforms/machines via SOAP MTP, and (4) distributed 
using Gateway infrastructure, agent-to-agent communication on different 
platforms/machines via SOAP MTP using the Gateway infrastructure. 

The setup of experiment1 contains two agents which interact accordingly with the 
FIPA Request Interaction Protocol [4]. Agent1 constitutes the initiator; it sends a 
request to Agent2, the participant. Agent2 replies to the request with an inform 
message to Agent1. The experiment repeats this process 1,000 times for each type of 
agent message transport. The duration of the protocol execution is measured for every 
iteration. Fig. 5 shows the results of experiment1 in one chart for each type of agent 
message transport. Table 2 shows the mean execution time for every type of agent 
message transport. 
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Fig. 5. Mean execution time in experiment1 



 

Table 2.  Mean execution time in experiment1 

 Local HTTP SOAP MTP Gateway 
Mean execution time [ms] 3,019 3,023 3,053 3,641 

 
In experiment2, number of agents is extended to 20. Ten agents act as initiators and 

ten as participants. Each initiator sends 100 requests to each receiver. The duration of 
the protocol execution is measured for 10,000 interaction iterations. Fig. 6 shows the 
mean execution time over all initiator agents in experiment2. Table 3 shows the mean 
of the protocol execution time of every initiator agent for every type of agent message 
transport and the mean over all initiator agents. 

Table 3.  Mean execution time in experiment2 

 Local HTTP SOAP MTP Gateway 
Agent1 [ms] 4,376 4,458 4,433 4,806 
Agent2 [ms] 4,365 4,511 4,409 4,842 
Agent3 [ms] 4,304 4,476 4,412 4,828 
Agent4 [ms] 4,373 4,435 4,447 4,825 
Agent5 [ms] 4,368 4,478 4,376 4,914 
Agent6 [ms] 4,366 4,488 4,420 4,956 
Agent7 [ms] 4,325 4,472 4,434 4,922 
Agent8 [ms] 4,368 4,477 4,414 4,946 
Agent9 [ms] 4,375 4,511 4,420 4,951 
Agent10 [ms] 4,338 4,472 4,409 4,916 
mean Agent1 – Agent10 [ms] 4,356 4,478 4,417 4,891 
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Fig. 6. Mean execution time over all agents in experiment2 

 



5.2 Use Case 

In this section, we provide a detailed use case description for a scenario from the 
airport logistics domain to show the applicability and utility of our approach. Further, 
we provide details about a prototype implementation. 

 
Business Background. Airports are subject of an on-going transformation from 
monolithic, hierarchical organizations to networks of multiple companies that (1) 
either cooperate closely to offer services to its customers or (2) allocate resources by 
market-based mechanisms in competition [14]. For instance, ground handling services 
are no longer offered only by the airport exclusively but also by third parties, even 
including airlines, both located at the airport. In these cases, the airport provides only 
basic infrastructure and services such as buildings, flight plan information, access to 
power supply and telecommunication networks etc. 

Due to ad hoc changes in the flight plan (e.g., due to delays), there can be 
temporary resource shortages for ground handling service providers. Thus, these 
providers need to outsource some tasks to another service provider that has sufficient 
resources for the time frame in question, i.e., the problem the provider needs to solve 
goes beyond a local optimization problem. The interoperability of the service 
providers’ information systems, especially regarding availability information for 
outsourcing requests, is a key aspect of decision support for ground handling 
dispatchers. This interoperability is also required to enable resources of a ground 
handling service provider to receive task information from, respectively provide 
execution information to other service providers. 

Current ICT systems at airports realize interoperability by increasing the coverage 
of the airport’s enterprise resource planning (ERP) system as far as possible, thus 
replacing legacy systems and making interfaces obsolete. In network organizations, 
however, this approach is no longer feasible, since network participants will not make 
short-term, risky investments in proprietary, hence airport-customized ERP systems. 
In the airport management domain, de-facto standard software packages do not exist, 
which makes interoperability even more challenging. 

Connectivity addresses the capability of ICT systems to allow an easy entry to the 
airport system as well as an easy dissolution of the connection. This capability 
supports new business models of service providers that participate flexible and 
temporarily in such virtual organizations. Both issues call for a machine-readable, 
unambiguous and inter-organizational representation of the common domain 
concepts, the actors, their goals and service capabilities.  

Airport operations are subject of extensive security requirements (e.g., security 
checks, hand baggage restrictions, customs, anti-terrorism measures) as well as 
legislation (e.g., passenger rights) that either can (1) require to exchange a specific 
information with third parties or (2) prevent exchanging and accessing all flight and 
passenger-related information within the process. 

The use case setup, which has been developed in the EU project BREIN 
(http://www.eu-brein.com), is as follows: Stuttgart Airport has about 400 flight 
movements per day. Most of the flights arrive and depart in two peak time periods: in 
the early morning and late afternoon. Fig. 7 shows an example of the flight 
movements over time. However, all planned activities can be subject of internal (e.g., 



 

resource failure) and external disturbances (e.g., delay of arriving flight) that affect, 
delay or constrain the process. These deviations cannot be foreseen; though their 
probability can be forecasted to some extend and thus considered in planning. 
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Fig. 7. Flight movements over time 

Scenario Description. The service network consists of airlines as customers and 
several ground handling service providers. Actors on the provider side are ground 
handling companies and their resources (exemplarily limited to busses, baggage carts 
and baggage handling staff). The airlines have SLAs with the ground handling 
companies regarding ground handling services in order to dispatch the airlines’ 
aircrafts. The resources provide atomic services for their ground handling company. 
In the case of a resource bottleneck, the ground handling companies are able to 
outsource tasks to another ground handling company. Fig. 8 shows the service 
network in a graph. Nodes represent actors, edges represent services, x denotes the 
tier of the service network. 

The key data of the scenario is shown in Table 4. The three considered types of 
resources are able to provide five different types of services. The number of ground 
handling companies, airlines, and aircraft types is based on data from Stuttgart 
Airport for a single day. 

The ground handling companies’ dispatchers have pre-planned schedules of the 
tasks that have to be executed by the resources according to the incoming and 
outgoing aircrafts. The dispatchers can obtain dynamic flight plan information (e.g., 
flight delays) to reschedule resources accordingly. The resources inform the 
dispatchers about their current situation, task execution progress, delays, and 
malfunctions. 

In case of a deviation of the pre-planned schedule, e.g., because of a delay of an 
aircraft, the dispatchers try to shift tasks to available resources to resolve any conflicts 
resulting from the deviation. If the own resources are insufficient, the dispatcher can 
outsource some of the tasks for the dispatching of the aircrafts to another service 
provider at the same airport which has sufficient resources for the time frame in 



question. Thus, the problem the provider needs to solve goes beyond a local 
optimization problem. 
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Fig. 8. Service network of customers, airline service providers, and resources 

Table 4.  Use case scenario key data  

Parameter Characteristic 
Number of ground handling companies 3 
Number of resource types 3 (bus, baggage, staff) 
Number of resources 58 
Number of service types (offered by resources) 5 (passenger transportation, deliver 

baggage to flight, deliver baggage to claim 
area, loading, unloading) 

Planning horizon full day 
Number of airlines 15 
Number of aircraft types 18 

 
In this context our integration approaches for integrating Web service and 

Semantic Web technologies into multiagent systems are applied in order to fulfill the 
requirements of intra-organizational und inter-organizational task reallocation 
regarding interoperability, connectivity and security. The WS communication enables 
interoperability on the interface level while the Semantic Web technologies enable 
semantic interoperability regarding task, resource and SLA information based on 
shared ontologies. The Gateway Toolkit provides the required security infrastructure. 
 
Realization. Each actor is represented as a Jadex software agent equipped with Jena 
SW toolkit as described in section 4.2. An agent platform with the respective agents 
and the Gateway Toolkit are deployed on three different machines for the different 
ground handling organizations. All communication between the organizations is 
routed through the Gateways. In addition, we have implemented a central 



 

visualization interface to which all agents report their status, movements, etc. A 
screenshot is shown in Fig. 9.  
 

 

Fig. 9. Screenshot of the visualization interface 

For intra-organizational and inter-organizational task reallocation, we apply a 
market-based coordination approach. The dispatcher agents can execute reverse 
auctions for tasks that are to be executed by its resource agents. These can answer the 
messages with bids on the atomic tasks. The dispatcher agent will select the 
appropriate allocation of bids and tasks by semantic reasoning and informs the 
resource agents accordingly. If the intra-organizational reallocation fails, the 
dispatcher agent tries to outsource the conflicting tasks to another ground handling 
company, executing reverse auctions with the other two dispatchers. These will 
disaggregate and forward the invitation to bid to their resources in a multi-tier 
interaction sequence, which we have described in previous work [15]. 

This behavior leads to different implications for the inter-organizational 
communication. The dispatchers have to be able to communicate with each other. 
This is done by pre-defined policies in the Gateway Toolkit. Once the execution of a 
task has been outsourced to another ground handling company, the client’s dispatcher 
has to be able to communicate with the contractor’s resource agent to coordinate and 
monitor the provision of the ground handling service. This can be realized by 
dynamically adapting the policies in the Gateway Toolkit. 

Regarding the contents of the interchanged messages, our approach is based on 
semantic annotations. For example, the inter-organizational bids of the dispatchers are 
realized as SA-SLA templates; i.e., description of the services which the agents are 
willing to accept including information on agreement creation constraints. These SA-
SLA templates contain references to ontology concepts as described in [20]. Thus, the 
receiving agent is able to use the semantic reasoning mechanisms to determine if and 
which of the received bids it accepts. 



5.3 Discussion 

The results of performance experiment1 show that the mean execution times of the 
local RMI transport, the distributed HTTP, and SOAP MTP transport differ in a small 
range of about 35ms. The gateway approach differs from the other approaches with a 
mean execution time difference of about 600ms (20%). 

In the performance experiment with 20 agents, the mean execution time of the 
local RMI, distributed HTTP, and SOAP MTP transport approach increases to 
approximately 4,400ms. However, the mean of the gateway transport approach differs 
from the other approaches in experiment2 with only about 500ms (11%). An analysis 
of the charts of the single agents shows that the divergences from the mean are more 
explicit in this experiment. These divergences are caused by the mechanisms of the 
BDI framework and relativize the time differences regarding the type of agent 
message transport. This effect is also visible in the chart with the consolidated mean 
over all initiator agents. In the use case scenario, the additional overhead caused by 
the secure messaging infrastructure is acceptable with regard to the benefits of an 
inter-organization decision support system. 

A key advantage of the presented architecture is a simple, yet powerful 
communication using a single message bus for both agents and WSs, gateways for the 
protection of organizational boundaries, and exchange of semantic content based on 
shared ontologies. An example for the successful application of all these benefits is 
SLA negotiation, where the SLA requests and offers can be exchanged using common 
semantics among several service providers. Furthermore, SLAs can be interpreted and 
reasoned about inside agents, enabling the use of agent cooperation mechanisms for 
SLA negotiation. Using the proposed architecture based on WS technology, agent 
messages can be transferred in a secured way, agent messages can be routed through 
gateways, and agent addressing can be virtualized; i.e., the agent platform can be 
dynamically relocated to a different address. The accessibility of agent platforms can 
be enhanced, as SOAP-based transport is more tolerant with firewalls and other 
security restrictions. Heterogeneous WS and agent environments may use a 
homogeneous message transport layer that reduces the complexity of system 
administration. It also enables secure inter-organizational transfer of agent messages 
between agent platforms, thus facilitating the advantages of both multiagent and WS 
technologies in a single environment. The utilization of explicit semantics further 
facilitates the semantic interoperability by incorporating domain knowledge in all 
phases of the service life cycle. 

Furthermore, agents representing various resources of the airport may have their 
own, local reasoning support to enhance their operation. For example, at the lowest 
level, transport vehicles have maintenance regulations. This means that the vehicle 
has to visit the service station at regular intervals. Additionally, the vehicle or its 
driver may detect types of malfunction, which have typical repair time. The schedule 
of the next maintenance and the estimated time while the vehicle would be out of 
service affects the overall schedule of its service provider. The knowledge about 
previous maintenance, detected errors, and detected parts to replace combined with 
forthcoming jobs can be used to suggest time slots for the next maintenance of the 
vehicle, when it is less disturbing for the customers and yet keeps the vehicle in good 



 

condition. A simplified solution for this use case has been implemented using OWL 
and Jena rules in our prototype. 
 

6   Conclusion 

The contribution of this research is a software architecture for inter-organizational 
multiagent systems. The approach is based on the integration of Web service and 
Semantic Web technologies into multiagent systems and a uniform transportation of 
agent and Web service messages. 

The resulting combination of technologies enables secure and flexible 
communication including a virtualization layer for communication endpoints, 
addressing the requirements of an application in inter-enterprise settings. 
Furthermore, existing service implementations and infrastructures can be enhanced 
with technology achievements of the Semantic Web and multiagent areas, enabling 
complex coordination and adaptation mechanisms to be applied to existing services. 

The evaluation has shown that the additional computational effort caused by the 
uniform communication bus decreases with the number of agents. In addition, we 
have shown the applicability and utility of our approach in a use case from the airport 
logistics domain. 
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